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Abstract: Geocoding is an essential procedure in geographical information retrieval to associate
place names with coordinates. Due to the inherent ambiguity of place names in natural language
and the scarcity of place names in textual data, it is widely recognized that geocoding is challenging.
Recent advances in deep learning have promoted the use of the neural network to improve the
performance of geocoding. However, most of the existing approaches consider only the local context,
e.g., neighboring words in a sentence, as opposed to the global context, e.g., the topic of the document.
Lack of global information may have a severe impact on the robustness of the model. To fill the
research gap, this paper proposes a novel global context embedding approach to generate linguistic
and geospatial features through topic embedding and location embedding, respectively. A deep
neural network called LGGeoCoder, which integrates local and global features, is developed to
solve the geocoding as a classification problem. The experiments on a Wikipedia place name dataset
demonstrate that LGGeoCoder achieves competitive performance compared with state-of-the-art
models. Furthermore, the effect of introducing global linguistic and geospatial features in geocoding
to alleviate the ambiguity and scarcity problem is discussed.

Keywords: geocoding; deep learning; named entity disambiguation; place name resolution

1. Introduction

Web and smartphone technologies have brought vast volumes of unstructured text
information to the Web, which has gradually changed people’s needs for searching informa-
tion, leading to changes in search services. The function of adding geographic information
from web resources (e.g., texts) to Geographic Information Retrieval (GIR) and indexing it
has become notably attractive [1]. For example, the location information in social media
data could be tracked for poll analysis [2] or delineating activity spaces [3]. Geoparsing
is a procedure to detect the geographic information in texts and link with gazetteers, a
database storing place names and their attributes, including coordinates, population, size,
and type [4]. This process generally involves geotagging that recognizes place names
in text and geocoding that transforms place names into coordinates [5–7]. Geotagging
commonly recognizes place names in a text by constructing geographical language models
trained on massive corpora of geotagged annotations, such as river, city, etc. [8]. The goal
of geocoding is to select the correct coordinate for the place name from a list of candidate
coordinates from a gazetteer such as GeoNames [9]. The common pipeline of geocoding is
to disambiguate the place names first and then link the gazetteer [5].

This article concentrates on addressing the ambiguity of place names, the non-trivial
issue of the geocoding [10–12]. The place name disambiguation needs to deal with two
levels of ambiguity, including linguistics and geography. For linguistics, due to the inherent
ambiguity of natural language, place names often have other non-geographic meanings
and different locations are referred to as the same name. For geography, the ambiguity
is the vague of location information in place names. For example, it is unclear what is
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the range specified by saying “the bank of a river”. Disambiguation is widely studied in
Natural Language Processing (NLP) to distinguish the semantic and syntactic structure
in the context [13]. However, it is difficult to obtain the complete context of place names
in the geocoding problem due to the lack of geographical location information in natural
language. For instance, considering the following two sentences containing “Washington”.

Washington is a census-designated place located in Nevada County, California.

Washington is located on the bank of the South Fork of the Yuba River.

Without knowing the location of Yuba River, it is impossible to determine whether
those two sentences are related and distinguish the two “Washington” words.

One feasible solution is to introduce extra information from gazetteers. Presently,
many approaches apply machine learning to solve geocoding [6]. Recent research demon-
strates that using feature representation and gazetteers to express the geographical dis-
tribution of place mentions, and integrating them into linguistic features can improve
the performance of geocoding [14]. However, the limitation of the methods mentioned
above is that the extracted linguistic features and geospatial features are limited to the
co-occurrence of words or location information in a text, which could not summarize the
full features of the location. In other words, these methods only extract local context but
not global context. The global context is inherent co-occurrence patterns or clustering
structures between different texts. For example, the global context can be regarded as a
set of sentences that describe the same characteristics and have a common topic in natural
language. Lack of the ability to collect global contextual information increases the chance
of misclassification.

This paper proposes to use two global context embedding methods, including topic
embedding and location embedding for linguistic and geospatial feature extraction, re-
spectively. Subsequently, a novel neural network named LGGeoCoder is designed for
geocoding to integrate multiple forms of features, including local and global features,
linguistic and geographic features. The global context embedding are used to extract fea-
tures in an unsupervised manner. From this perspective, our global features are obtained
from unlabeled samples. The overall architecture of LGGeoCoder is inspired using pre-
training techniques in NLP to deal with data scarcity [15]. Our extensive evaluation of the
Wikipedia place names database published by [14] shows the method achieves competitive
performance compared with the state-of-the-art method.

The main contributions of the paper include the following three points:

• It employs topic embedding to improve feature representation by enforcing topic
modeling to transform words’ topics into low-dimensional vectors. However, tra-
ditional geocoding tasks ignore topic information and are limited to the syntax and
semantics of text.

• It employs location embedding from deep learning to transform spatial distribution
around the place reference into low-dimensional vectors and enrich the geospatial
features vector. Since place mentions in a text are often few, the location embedding
works as a priori feature aiding the generation of the geospatial feature vector to
alleviate the data scarcity.

• It discovers that fusion with topic information can effectively reduce the geospatial
feature vector’s noise.

The remainder of this article is organized as follows. Section 2 introduces related work.
Section 3 presents the proposed method in detail. The effectiveness of the proposed method
is demonstrated by experiments in Section 4. Finally, Section 5 presents conclusions and
future work.

2. Related Work

In traditional GIS, the term geocoding often means address geocoding, which aims
to convert a postal address into geographic coordinates [16]. With the emergence of large
amounts of text, the term geocoding is enriched with NLP [5,17]. It can be treated as special
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cases of Named Entity Disambiguation (NED) [5,6,18]. Moreover, it draws extensively on
ideas from NED [6].

The methods of geocoding can be divided into two categories, rule-based and data-
driven methods. Rule-based methods often use clues of text contexts as rules to eliminate
place name ambiguity [19]. These clues could be characteristics of the place names, such as
population [17], word frequency [20], types [21], and spatial relations between places [22].
The rule-based methods are often interpretative yet are limited in dealing with unstruc-
tured data. For example, social media data often omits administrative characteristics of
place names, which may lead to methods unable to use rules in disambiguation. Recent
research gradually shifted from rule-based methods to data-driven methods, which use
statistical and machine learning approaches to deal with the local context [6]. Statistical
methods [23] usually face high computational complexity, and some approximate calcu-
lation assumptions are often put forward, which usually loses a lot of information. With
the exponential growth of the Internet community and the emergence of a large amount
of text, researchers are increasingly inclined to let machines automatically obtain features,
leading to research focusing on the use of machine learning methods.

According to the label of the training sample, machine learning can be divided into
supervised learning, unsupervised learning and, semi-supervised learning [24]. Supervised
learning requires labels to be able to train the model, which can often achieve good results
when used in geocoding. For example, geocoding can be improved based on the text
using a hierarchy of logistic regression classifiers [25], a Support Vector Machine (SVM)
algorithm [26]. In 2015, deep learning methods were also proven to help improve geocoding
performance [27]. However, supervised methods heavily rely on the availability of sense-
annotated corpora. Because on a corpus with data scarcity supervised methods can lead to
overfitting [24], they are unsuitable for processing large corpus. Some research suggests that
semi-supervised methods can solve overfitting in geocoding by introducing unsupervised
methods [12,28–30] to further learn unlabeled data [6,31]. In the field of machine learning,
this approach is also called unsupervised pre-training.

In 2013, the word2vec algorithm combined with unsupervised pre-training was pro-
posed to process NLP tasks [32]; it shows better performance and gains extensive attention.
The main contribution is the introduction of a word embedding model based on word
similarity to encode the feature space of word meaning into a low-dimensional vector
space. The rationale of word2vec was quickly applied to the geospatial domain, capturing
the similarity of place names by dividing geographic locations into different regions [33] or
dividing geographic locations by popular place names [34] to express geographic spatial
features. However, these models only consider the local context and do not consider
global context. The global context can effectively promote word sense disambiguation [35].
Our work focuses on designing an embedding method for geospatial feature extraction,
which can be reasonably introduced into geocoding through unsupervised pre-training to
facilitate the dynamic acquisition of global context information.

3. Methodology

In this section, we provide the methodology of the paper. In Section 3.1, we give
the mathematical definition of the geocoding and the definition of the location frequency
map, which is used to extract geospatial features. The global context embedding and the
framework of LGGeoCoder are introduced in Sections 3.2 and 3.3, respectively.

3.1. Preliminaries

In geocoding, a deep learning algorithm is designed to classify place names as locations
on a map. Our algorithm also considers two data sources, including documents and
gazetteer, and extract linguistic features and geospatial features separately. Specifically,
given some texts (D) in documents and a set of locations (G) derived from gazetteer and
related to the text, the task is to resolve to the location of place reference, which is denoted
by x. Then, the problem can be expressed as finding a conditional distribution.
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P(x|D, G) (1)

Before computing the conditional probability in Equation (1), the rough boundary for
the locations of place names is defined. Here the surface of the earth is partitioned into a
grid space, and each location x is represented by a grid cell. In the experiment, we used a
cell with a resolution of 1 × 1 degree (1 degree on the equator is about 111 km). Frequency
information of location references in a sentence is collected and stores in a map, which is
called a location frequency map. Specifically, a NER tool developed by Spacy [36], is first
used to obtain the place names of texts. Then, the place names are matched with a gazetteer
to retrieve the corresponding ambiguous coordinates. At last, a location frequency map is
generated by mapping the ambiguous coordinates of a text to the cells, where the value of
cells is the frequency of place names. Figure 1 shows how to generate a location frequency
map from a text.

Figure 1. The generation of location frequency map.

3.2. Global Context Embedding for Linguistic Features and Geospatial Features

This section mainly explains how to construct the global context embedding methods.
First, local linguistic feature extraction with word embedding is introduced, and then how
to employ topic embedding to obtain global linguistic features is explained. Finally, how
to employ location embedding to construct a geospatial feature extraction network with
global features is described.

3.2.1. Word Embedding for Linguistic Features

The features here are extracted from the local context, which refers to various combi-
nations of words in distinguishing the place references. It addresses both semantics and
syntax of texts and is also known as a component-based grammar [37]. For example, con-
sider the following sentences where the word “New York” is a place reference, “New York
is a settlement in Nidderdale in the Harrogate district of North Yorkshire, England.” The
context of “New York” contains important semantics, such as “Nidderdale”, “Harrogate
district of North Yorkshire”, “England” and vocabularies that are related to places, such
as “settlement”. The combination of some words such as “in Nidderdale in the Harro-
gate district of North Yorkshire” implies relevant properties of the place reference. Two
modules, including word-level feature extraction and sentence-level feature extraction, are
designed to characterize the features. Word-level feature extraction is used to emphasize
the characteristics of individual word inside the place reference (e.g., “New” and “York”).
Sentence-level features indicate local context.

To extract the word-level and sentence-level features, a word embedding procedure
developed by Glove [38] is adopted. It can transform a high dimensional word vector
into a low dimensional embedding vector where two similar words are close in the vector
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space. For instance, “college” and “university” are similar because they have common
neighboring words in their context. The similarity of two words is measured by the
frequencies of their neighbouring words.

Specifically, the Glove stores the word frequency according to a corpus by constructing
a co-occurrence matrix X. The co-occurrence matrix counts the frequency that two words
Wi and Wj appear together in a context window, denoted as Xi,j. For example, when the
window size is 1, and Wi−1 and Wi+1 are the contextual words of Wi. The co-occurrence
matrix is to count the number of occurrences of (Wi−1, Wi) and (Wi, Wi+1). Then, the Glove
captures the importance of the words in different contexts to find similar features of the
words by maximizing a cost function, as follows:

J(D) =
V

∑
i,j=1

f (Xi,j)(wT
i wj + bi + bj − log(Xi,j)) (2)

where D is a word sequence, V denotes the size of a corpus, f is the weighting function,
wi, wj ∈ Rd are word vectors, bi, bj ∈ R are bias for wi, wj respectively.

3.2.2. Topic Embedding for Global Linguistic Features

The features here are extracted from the global context, which refers to topics of texts in
distinguishing the place references. Taking the following sentence as an example, “Boston
is considered to be a global pioneer in innovation and entrepreneurship”. The main topic of
this sentence is the leading position of Boston’s education in the world. Therefore, “Boston”
in this sentence is more likely to link with the coordinate of Boston, Massachusetts. A topic
embedding procedure developed by Topical Word Embedding (TWE) [35] is adopted to
extract the features.

The main difference from the word embedding is that the TWE considers the cor-
relation among contexts when transforming a high-dimensional word vector into a low-
dimensional embedding vector where words are coupled by topics, not isolated. For
example, In topic embedding, the word vector of Washington (name) is close to the vector
related to the person’s name, and the word vector of Washington, D.C. is close to the vector
related to the place name. The generation of TWE consists of two steps. First, Latent
Dirichlet Allocation (LDA) [39] is used to get topics of words. In LDA, documents with
similar topics are close to each other. Secondly, the topic of each word is generated as a
vector using the skip-gram of word2vec [32]. The cost function of TWE, as follows:

J(D) =
V

∑
i=1

∑
−k≤c≤k

logP(wi, zi|(wi+c, zi+c; wz
Θ))) (3)

where V denotes the size of a corpus, k is the context window size of a target word, wi is
the word vector obtained by word embedding, zi is the topic vector of target word, wz

Θ is
the parameter of the model and the output vector.

3.2.3. Location Embedding for Geospatial Features

The features refer to geospatial relations such as multiple locations containing topo-
logical information among themselves and the spatial proximity. The features are implicit
in sentences describing place names or carried on explicitly through a coordinate position.
Location frequency maps are used as input for the feature extraction. The idea is provided
by the CamCoder [14] as an initial investigation, where the assumption to keep multiplicity
disregarding grammar and word order is reasonable for multiple place names in sentences.
However, the number of place names in a sentence is often limited. Their locations retrieved
from a gazetteer are often ambiguous, so that the location frequency maps are very sparse
and noisy. As the resolution of the geodetic grid increases, the location frequency maps
will become sparser and noisier, which often results in overfitting according to the theory
of machine learning (the curse of dimensionality). For this reason, location embedding is
used to introduce global context information to overcome these issues.
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Since dealing with place names ambiguity is the goal of task, we cannot explicitly use
place names to retrieve vectors such as the word embedding. We turned to express locations
in the form of probability and redesigned the network structure that introduced the embed-
ding model according to the form of the location frequency maps. The auto-encoder [40,41],
a generative network, is used to create an embedding model. The generative network is
obtained by solving the prior distribution [24,42], so the location has a rough boundary
defined by the prior distribution instead of the previously separated grid boundary. With
this advantage, some blank cells in the grid can be adaptively interpolated to obtain an
appropriate score to distinguish ambiguity. For example, given a sentence about Washing-
ton, “Washington is the county seat of Wilkes County, Georgia, United States.”. When the
geocoding is performed, the location embedding can outline the rough boundary of the
Georgia state, therefore increasing the prediction probability of the location of Washington
in Georgia. Specifically, the method in this paper characterizes geospatial features in the
following three steps.

First, the location frequency maps generated from documents are proposed as the
global context to enable location embedding. The place names used to generate a location
frequency map come from all documents corresponding to place reference.

Next, the auto-encoder is used to create the generation process from the locations of
place references to the location frequency maps generated from documents (Figure 2). In
essence, it is expected that the deep neural network can facilitate the model learn the cluster
boundaries of different locations by capturing the similarity in the corresponding global
context. Then an encoder can be generated by embedding geospatial information from
documents. The encoder can use low dimensions to represent high-dimensional features to
facilitate feature fusion. On the other hand, this feature is a global feature, and introducing
it into geocoding can strengthen geospatial features and reduce sparsity.

Figure 2. The auto-encoder networks for location embedding.

After obtaining the encoder, the algorithm can use the additional function to fuse
encoded features with the original features in location frequency maps (Figure 3). In this
way, the encoder facilitates strengthening the information of each location in the location
frequency maps. The final network for deriving geospatial features can be formalized in
Equation (4).

g = δ(∑
n

al−1
encoded × wl

encoded + bl
encoded) + δ(∑

n
al−1

original ∗ wl
original + bl

original) (4)

where δ represents an activation function, l represents the l-th layer of the network, n
represents the number of layers, w denotes the learnable weights, b denotes the learnable
bias, al−1

encoded and al−1
original represent dense layers, and both a1

encoded and a1
original are the same,

which is a location frequency map. All values of wl
encoded and bl

encoded, come from the auto-
encoder, which is frozen in the training of geocoding in Figure 3. However, wl

original and

bl
original are parameters that are learned from the training of geocoding.
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Figure 3. The network module for generation of geospatial features.

3.2.4. Training of Embedding Model

The embedding model is trained separately. The parameters of the embedding model
are fixed when used for the supervised classification. According to the theoretical foun-
dation from [43], word embedding, topic embedding, and location embedding can be
seen as regularizers. The loss function is shown in Equation (5). The regularizers can
facilitate obtaining a more robust model by modifying the learning algorithm to reduce
its generalization error. Furthermore, the model can be much easier to be trained, and
geospatial features can play a more effective role in overall features.

L(D) = ∑
i∈ζ

l(yi, f (pi, si)) + λ1 ∑
i,j

logP(wi|wi+c) + λ2 ∑
i,j

logP(ti|ti+c)+

λ3 ∑
i,j

logP(gi|gi+c)
(5)

where l(yi, f (pi, si)) is the object function of the supervised classification model, si rep-
resents the sample of text, pi is the place name, yi is the labelled cell , ζ represents all
geographic cells, λi is a hyperparameter used to adjust the effects of different features,
∑i,j logP(wi|wi+c) is the object function of word embedding, ∑i,j logP(ti|ti+c) is the ob-
ject function of document embedding, ∑i,j logP(gi|gi+c) is the object function of network
embedding, gi+c is the location context of gi.

3.3. LGGeoCoder

The proposed framework consists of input, linguistic features, and geospatial feature
extraction and output (Figure 4). For the extraction of linguistic features, each word in
the place references and texts are treated as a sequence that uses a padding technology to
reconstruct into a fixed-size matrix x1:n, respectively. The matrix rows correspond to the
word vector of each word, where the word vector for word-level features and sentence-level
features is obtained by word embedding, and the word vector for topic features is obtained
by topic embedding. For the linguistic feature extraction, there are 4 components, layers
for word-level feature extraction to emphasize the place reference, layers for sentence-level
feature extraction to represent the local context, and layers for topic feature extraction to
represent the global context. For the generation of geospatial features, the specific details
have been described in Section 3.2.3.

Next, the integration of linguistic and geospatial features is formalized as a merging
layer (Equation (6)), then going through dense to generate the predictive geocoding result.
The dense are strategies used in deep learning. The training process here is the supervised
learning classification.

m = w⊕ s⊕ t⊕ g (6)

where ⊕ is the concatenation operation, w denotes word-level features, s denotes sentence-
level features, t denotes topic features, g denotes geospatial features. Finally, the classifica-
tion model can be trained to predict a geo-located cell. The loss function adopts focal loss,
which can effectively alleviate the imbalance problem of multi-class classification [44].
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Figure 4. The framework of LGGeoCoder.

4. Experiments and Result Discussion
4.1. Experimental Settings

Datasets: The sample dataset is generated from geographically annotated Wikipedia
pages (dumped February 2017). The title of each page is the place name, including a
coordinate, so we directly use it to generate classification labels, which means these place
names are used as place references. Then, each page is decomposed into multiple patches.
Each patch has 200 words with the place reference as the center of the words, which
means that the patch chooses 100 words forward and 99 words backward around the
place reference. Patches less than 200 words use a padding completion, and patches with
information redundancy higher than 50% are deleted. Some pre-processing steps are used
to clean up patches, such as removing stop words and lowercase words. In the experiment,
The method of splitting the data is the hold-out method, which is a commonly used
method for training machine learning. The purpose of the hold-out method is to ensure the
consistency of the data distribution of the training data, the verification data and the test
data. Specifically, we first define a sample based on the place name and the corresponding
coordinates, then we define the unit of the sample set as the place reference, which means
that our model needs to generate unseen locations. The method of solving such issues in
the field of machine learning is called inductive learning [45]. Next, we randomize the
sample set to split out the training, verification and test data set. For the ratio of splitting
the data sets, we define it based on the empirical value of machine learning. The final
sample set includes approximately 414,000 training samples, 103,000 validation samples,
and 129,000 testing samples. We downloaded these articles and GeoNames directly from
the link [14]. Duplicates are removed from GeoNames by detecting locations with the same
name and within a distance of 100 km. Since topic embedding and location embedding
require their learning processes, two sample datasets are generated, respectively. All texts,
about 646,000 samples in total, form a sample dataset for topic embedding. All articles are
used to generate a sample dataset for location embedding, which includes approximately
310,000 articles. The ratio of training samples over test samples in both topic embedding
and location embedding is 7:3.

Implementation details: Our experiments use a 50-dimensional vector with Glove for
the word embedding and a 400-dimensional vector with TWE for the topic embedding.
The LDA used to generate topics is implemented by the tool GibbsLDA++ [46], with the
following hyperparameters, α as 0.5, β as 0.1, topic as 500, and iteration as 1000 times. The
auto-encoder for the location embedding consists of two parts, encoder and decoder. The
encoder includes three dense layers, with 2500, 1000 and, 500 filters, respectively. Each
dense layer is followed by a Rectified Linear Unit (ReLu). The decoder includes two dense
layers, with 1000 and 2500 filters, respectively. A ReLu layer also follows each dense layer.
The model is optimized by AdaDelta [47]. The loss function uses cross-entropy.

All the linguistic feature extraction modules use a layer of convolutional neural
network (CNN) [48] with a ReLu and a layer of global maximum pooling, respectively.
The word-level feature extraction uses a one-dimensional convolutional layer, setting
“number_o f _ f ilters = 500” and “kernelsize = 3”. The sentence-level and topic feature
extraction uses a one-dimensional convolutional layer, setting “number_o f _ f ilters = 500”
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and “kernelsize = 2”. Then, unlike word-level feature extraction, both sentence-level and
topic feature extraction additionally use a dense layer with a 250 filter to change the feature
dimension. Finally, all modules use a dropout layer with the setting “p = 0.5” to avoid
the model from overfitting. In the geospatial features extraction, the part that removes
the encoder included three dense layers with an ReLu, which are set to 2500, 1000, and
500 filters.

Finally, the merging layer is followed by a dense layer with softmax for output. The
output of the model has 23,002 classes, which are cells with a resolution of 1 × 1 degrees
covering the world’s surface, excluding the ocean. The model is optimized by Adam, the
gradient-based optimization [49], with a batch size at 410 for training data, a batch size at
410 for validation data, and a learning rate at 0.001. The batch size for testing data is 410.
The entire deep network is implemented on the publicly available platform Keras 2.4.3
and is trained on a single NVIDIA Titan P40 GPU card with 12 GB memory. It takes about
4 hours to train our deep network.

4.2. Performance Comparison

The proposed model LGGeoCoder is compared with the baseline model and state-of-
the-art models, including

• GeoCoder: GeoCoder is a deep learning approach for geocoding based on CNN,
which is use to represent word-level and sentence-level features, respectively. Glove
is used in the GeoCoder to represent word vectors.

• CamCoder: CamCoder is a deep learning approach that integrates linguistic and
geospatial features for geocoding based on CNN, which is used to represent word-
level features, sentence-level features and geospatial features, respectively. Glove is
also used in the CamCoder to represent word vectors. The main difference between
the CamCoder and our method is that CamCoder does not extract topic features and
uses one-hot encoding to represent location vectors. As far as we know, this is the
only deep learning network that combines geospatial features and linguistic features
for geocoding.

In these models, the parameters of the feature extraction of the same category are the
same, and the same random seed is used in the training process.

Four standard metrics are used for later performance comparison with baselines,
i.e., mean error, median error, accuracy, and Area Under the Curve (AUC). The mean
error indicates the total error and is sensitive to outliers. The median error indicates
the distribution skewness. The accuracy measures the percentage of predictions that are
within 161 km of the true location. The 161 km is about 100 miles that is a frequently used
metric in city- and GPS-reporting methods [50]. The AUC measures the area enclosed by a
cumulative distribution function (CDF) F(x) = P(distance ≤ x), where x is the distance
from the center coordinate of the predicted location to the real coordinate [51]. The CDF
is the accuracy under x, so a lower score of AUC means a better geocoding result. AUC
provides a statistic for quantifying a system’s overall performance.

The evaluation results are listed in Table 1, using the four standard metrics. It can be
observed that first CamCoder outperforms baseline, demonstrating the effectiveness of
integrating linguistic features and geospatial features in geocoding. Secondly The mean
error of CamCoder is 882.0 higher than GeoCoder 798.5. This means that the integration
of geospatial and linguistic features in CamCoder cannot promise better results in all
aspects. It implies that advanced technologies are still needed to improve the robustness of
integration. Thirdly LGGeoCoder achieves the best performance with the highest accuracy
(72.5%), median error (km) (96.9), mean error (km) (651.4), and AUC (0.4987). In terms of
LGGeoCoder, all metrics turn out well, which demonstrates that embedding technologies
perform well on obtaining better linguistic and geospatial features. Remarkably, compared
with CamCoder, LGGeoCoder improves accuracy by 4.5%, reduces median error (km) from
102.6 to 96.9, reduces mean error(km) from 882.0 to 651.4, and reduces AUC from 0.5142
to 0.4987.
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Table 1. The prediction performance compared with the baseline models

Accuracy Median Error (km) Mean Error (km) AUC

GeoCoder 64.5% 107.7 798.5 0.5180
CamCoder 68.0% 102.6 882.0 0.5142
LGGeoCoder 72.5% 96.9 651.4 0.4987

It should be noted that the model simply uses the cells as the classification targets to
achieve inductive learning, which has disadvantages. On the one hand, the model loses
the geometric relationship information inside the cells. On the other hand, the number
of classification objects will increase exponentially as the resolution of the grid increases,
which means that the training data is sparse and noisy and more model parameters need to
be trained. According to the machine learning theory, these disadvantages can exacerbate
the curse of dimensionality and cause the model to be unstable [24,42]. Our experiments
find that the global context embedding can alleviate these disadvantages for geocoding.
The specific details are discussed in Section 4.3.

Here we first illustrate the impact of using the grid as classification targets by intro-
ducing a post-processing step of proximity search. Specifically, the proximity search can
be divided into two steps. First, the place reference is matched from an existing gazetteer
such as GeoNames to obtain a candidate set of locations. Then, the result of the model is
inferred as the nearest location in the candidate set to the center point of the prediction cell.
Table 2 shows that compared with the LGGeoCoder, LGGeoCoder with proximity search
improves accuracy from 72.5% to 89.6%, which means that LGGeoCoder finds the location
corresponding to all place references in the gazetteer with an accuracy of 89.6%, and due to
the impact, the accuracy is reduced by 17.4%; LGGeoCoder with proximity search reduces
AUC from 0.4987 to 0.176, which means that the influence caused by the grid factor is huge,
especially in the pursuit of high-precision location matching.

Table 2. The prediction performance of LGGeoCoder with proximity search

Accuracy AUC

LGGeoCoder 72.5% 0.4987
LGGeoCoder + proximity search 89.6% 0.176

4.3. Ablation Study

An ablation study is performed, which refers to removing certain “features” of the
model and seeing how it affects performance. In this way, the performance of different
improvement strategies can be compared. Because word embedding models are discussed
more in NLP, we focus on the impact of topic embedding and location embedding. The
following models are compared.

• FEATURE-G: Compared with CamCoder, it enrich geospatial features using loca-
tion embedding.

• FEATURE-D: Compared with CamCoder, it adds topic features through topic embedding.

Table 3 shows the results of the ablation study. It can be observed that both FEATURE-
G and FEATURE-D perform better than CamCoder. These show that the introduction of
location embedding and topic features improves geocoding. On the other hand, FEATURE-
G improves CamCoder by about 1% on accuracy, FEATURE-D improves CamCoder by
about 2% on accuracy, and LGGeoCoder improves CamCoder by 4.5% on accuracy. The
results show that when performing textual geographic analysis, it may not be sufficient
to explain place names only from language. It is also essential to explain place names
from the perspective of geometric relations. The multi-angle explanation can better explain
place names.
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Table 3. The prediction performance of ablation study

Accuracy Median Error (km) Mean Error (km) AUC

CamCoder 68.0% 102.6 882.0 0.5142
FEATURE-G 69.5% 100.6 835.0 0.5100
FEATURE-D 70.2% 99.95 661.4 0.5032
LGGeoCoder 72.5% 96.9 651.4 0.4987

From an algorithmic point of view, introducing the topic embedding and location
embedding assumes that some clustering properties in the global context need to be em-
phasized to avoid being lost in supervised learning. Here our training target is the gridded
cells, and the training scene is that the values of most cells are unknown. Supervised
learning automatically extracts features by identifying the similarity of sample features,
which enables the value of the unknown cell to be interpolated by the values of the known
cells. However, many unknown cells will increase the difficulty of interpolation, and it may
also cause weak features to be replaced by wrong features. The global embedding model
can strengthen these weak features and ensure that a large number of interpolations will
not produce wrong values to improve geocoding performance. For example, considering a
sentence about Dubai zoo,

Dubai zoo housed approximately 230 animal species. Endangered species include Socotra
shag or cormorant, Bengal tiger, gorilla, subspecies of grey wolf and Arabian wolf,
Siberian tiger, and the indigenous Gordon’s wildcat [52].

The NER tools often tend to treat the words “Socotra”, “Bengal” and “Gordon” as
place names instead of names of species. Thus, these words as place mentions affect the
value of the location frequency map. It is then found that CamCoder cannot predict the
location of the Dubai zoo correctly. However, the FEATURE-D can work correctly in that
the sample features of the embedded model extracted by LDA, a clustering algorithm.
These clustering features are fused in the high-level feature layer, enhancing the supervised
model’s expression of these clustering structures so that the model can be noise reduced.
Similarly, FEATURE-G performs better than CamCoder, which means that place names
articles from Wikipedia can provide global geometric area to enrich geospatial features. In
addition, the combination of multiple features provides a richer expression ability, so it is
reasonable to integrate topic features and geospatial features, which makes the model have
better performance and more robust.

5. Conclusions and Future Work

This paper proposed a novel global context embedding approach, including topic
embedding and location embedding, to introduce global information for linguistics and
geospatial features. The topic embedding is based on the clustering of the documents to
construct words’ topics to enrich the linguistic features. The location embedding uses the
inherent spatial clustering or influence of place names to construct the rough boundary
of the place name to enrich geospatial features. Subsequently, a deep learning-based
framework LGGeoCoder is designed for text geocoding by combining local and global
features. It demonstrates how the global context embedding can be used in pre-training
for geocoding to alleviate the curse of dimensionality caused by ambiguity and scarcity.
Compared to the baseline model CamCoder, it improves the performance by a delicate
design of more comprehensive integration between geospatial and linguistic features.

It should be noted that the approach can be further improved in the future. The current
approach only considers texts from Wikipedia, which contains relatively standardized
textual documents. Processing place names in social media data such as Twitter could be
more complicated, where future work is planned.
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