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Abstract: Multitemporal environmental and urban studies are essential to guide policy making
to ultimately improve human wellbeing in the Global South. Land-cover products derived from
historical aerial orthomosaics acquired decades ago can provide important evidence to inform long-
term studies. To reduce the manual labelling effort by human experts and to scale to large, meaningful
regions, we investigate in this study how domain adaptation techniques and deep learning can help to
efficiently map land cover in Central Africa. We propose and evaluate a methodology that is based on
unsupervised adaptation to reduce the cost of generating reference data for several cities and across
different dates. We present the first application of domain adaptation based on fully convolutional
networks for semantic segmentation of a dataset of historical panchromatic orthomosaics for land-
cover generation for two focus cities Goma-Gisenyi and Bukavu. Our experimental evaluation shows
that the domain adaptation methods can reach an overall accuracy between 60% and 70% for different
regions. If we add a small amount of labelled data from the target domain, too, further performance
gains can be achieved.

Keywords: unsupervised domain adaptation; adversarial learning; correlation alignment; historical
panchromatic orthomosaics; land-cover mapping; fully convolutional networks

1. Introduction

Remote sensing datasets provide the capability to map land-cover which is useful for
environmental and urban-related studies [1,2]. A set of remote sensing data collected over
a, possibly large, window of time enables to study the historic evolution of the landscape.
Thus, multitemporal studies often must make use of both recent imagery and historical
datasets. In the mid-20th century, panchromatic aerial photographs were the main source
of high spatial resolution imagery [3]. During the colonial era in Africa, the authorities
conducted multiple air survey campaigns and generated topographical maps at different
scales. The availability and completeness of these datasets has been affected by several fac-
tors such as the political course of a country after independence, and the administration of
the relevant surveying departments. The availability of archives of historical orthomosaics
provides the capability to reconstruct the historical urban developments of these cities.
This is a challenging task especially since some of the widely used global datasets only
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start from the 1970s and have coarse spatial resolutions [4]. With the rapid population
growth rates, it is projected that over 22% of the world’s urban population will be residing
in Africa by the year 2050, creating implications on infrastructure, demand for housing and
environmental degradation [5].

The sustainable development goals (SDGs) are a set of 17 targets that provide a
pathway towards a peaceful and prosperous planet by the year 2030 for both the developed
and developing countries [6]. Most of the issues it seeks to address exhibit adverse effects
that are imbalanced mostly towards countries in the Global South. At the core of the
SDGs actions, there lies a great need for adequate data necessary for their monitoring
and implementation, among which earth observation is a valuable component [7,8]. In
addition to satellite imagery, historical orthomosaics are a pertinent source of spatial data
for addressing some of the SDG actions. For instance, SDG 15 is concerned with life on
land and addresses issues such as deforestation and land degradation. In this framework,
Dewitte et al. [9] explores the benefit of incorporating historical orthomosaics to understand
the occurrence and evolution of landslides, and the implied risks on populations. In
Depicker et al. [10], the link between deforestation, population dynamics and landslide
is analysed for 58 years facilitated by the information from historical orthomosaics. The
SDG 11 is concerned with “making cities and human settlements inclusive, safe, resilient
and sustainable”. To this end, urban land-cover maps from historical orthomosaics [11]
provide the necessary spatial data that aids in understanding the urban growth patterns
that can be analysed over a long period, including the different drivers. This kind of
information is useful in informing policies regarding the well-being and quality of life
of the city resident. From the foregoing, efficient processing algorithms are needed, and
are vital for the accurate and timely extraction of land-cover information from historical
orthomosaics, that would eventually contribute towards the SDG goals, especially in the
Global South.

In the exploitation of historical orthomosaics, some pertinent issues arise. First,
historical panchromatic photos have limited spectral information because they have a
single channel. This is often a limiting factor when presented with the task of extracting
multi-temporal land-cover classes. However, the use of texture features, also referred to
as hand-engineered features, can often mitigate against limited spectral information [12].
Secondly, the quality of the images is sensitive to the duration and condition of storage.
Furthermore, artefacts can arise during scanning, and intentional or accidental physical
marks by the personnel handling the orthomosaics. Different methods have been used
to extract land-cover from these images. While photointerpretation is a reliable method
for land-cover extraction, it is laborious and non-scalable. On the other hand, a range of
machine learning methods reduce the time taken to generate the maps, while increasing
efficiency and scalability. Recently, deep learning approaches are being widely applied
because they allow for the automatic learning of the feature representations from raw input
images as opposed to standard hand-engineering of features [11,13–18].

One of the key limitations in remote sensing applications stems from the high budget
of preparing reference labelled data. To overcome this issue, several strategies have been
explored by the remote sensing community, for example the use of large quantities of
freely available but noisy labels from OpenStreetMap [19], collection of labelled data from
out-of-date reference maps [20] or applied active learning to gather informative labelled
samples from experts [21]. While the above strategies might be appealing, they are not
tailored for the analysis of historical images where no reference data, even out-of-date is
available and where it is no longer possible to collect field reference data.

For this reason, we explore another well-known strategy used in reducing the amount
of training labelled data required: transfer learning. Generally speaking it is a process that
utilizes the knowledge learned by solving a task on a source domain to solve another task
on a target domain [22,23]. We focus on domain adaptation techniques which are a special
case of transfer learning, in the context of classification. In this case a classification model,
trained from labelled samples collected in the source domain, is adapted to the target
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model. It is assumed that a model trained in the source domain would be sub-optimal
for classifying the target samples, but still contain useful and discriminative knowledge
for the learning task. In remote sensing applications, the shift between the source and
target distribution (known as domain shift) might occur due to biased sampling when
a region is not representative of a new scene, or due to variations in the acquisition
conditions or seasonal changes [21]. Domain adaptation methods aim to reduce these
domain shifts caused by spectral, temporal, spatial or radiometric factors. In the domain
adaptation framework a set of labelled training data is always available in the source
domain; depending on the availability of some labelled data in the target domain, we
usually distinguish three scenarios [24]: (1) In an unsupervised domain adaptation scenario,
there is only unlabelled data available in the target domain, (2) a semi-supervised domain
adaptation scenario assumes that a limited set of labelled samples is available in the
target domain, (3) supervised domain adaptation assumes that a substantial set of labelled
samples is available in the target domains.

In this work we explore unsupervised domain adaptation using a deep learning-based
technique focusing on two methods. Both methods aim at the generation of features that are
both invariant and yet discriminative in the source and target domain. The rationale behind
the method’s selection is they have the advantage of an easy integration into a deep learning
framework, as well as avoiding distortion of data at the raw pixel level space leading to
an improved generalisation power at test time [25]. The first approach is the domain
adversarial neural network (DANN), which uses an adversarial loss function that aims at
predicting domain invariant labels [26] with an example of a binary land-cover application
using multi-date and multi-site Landsat satellite imagery [27] and multi-class classification
from multispectral and hyperspectral datasets [28]. The second approach is the D-CORAL
that reduces the domain shift using the second-order statistics [29] with an example of a
different task of object-detection of vehicles from RGB aerial images [30]. Other methods
that focus on the alignment of data distribution in the feature space between the source and
the target domains but have not been included in this work include the single maximum
mean discrepancy (MMD) kernel [31], its multiple variant [32] and optimal transport [33].

Our work is motivated by the need to valorise historical photograph products that
are a key component for the understanding of major environmental issues and urban
growth studies. We recognise that reduction in the effort of generating reference labels lies
at the heart of successfully exploiting historical archives of panchromatic orthomosaics.
Therefore, we explore the suitability of unsupervised domain adaptation for semantic
segmentation applied to remote sensing images, with a novel use-case on interpretation of
historical panchromatic orthomosaics. In addition, we conduct fine-tuning experiments
and evaluate the amount of additional reference data needed from the target domain. To
the best of our knowledge, it is the first application of domain adaptation that uses a dataset
of historical panchromatic orthomosaics. Furthermore, most of the existing works in the
remote sensing domain have been conducted using multi-spectral or hyperspectral images,
and largely for land-use classification [21,28].

In summary, the objectives of this study are the following: (i) to evaluate and compare
two unsupervised domain adaptation methods for the task of land-cover mapping from
two historical datasets of panchromatic orthomosaics from the 1940s and 1950s, and (ii) to
assess the added benefits of fine-tuning the domain adaptation networks using small
amounts of data from the target domain. The rest of the paper is organized as follows:
Section 2 provides on overview of the data and the adapted methodology; Section 3
gives the results, and Section 4 the discussion. The conclusion and recommendations are
provided in Section 5 followed by an Appendix section (Appendix A).

2. Materials and Methods
2.1. Data Description

In this work, we use a dataset of historical panchromatic orthomosaics generated from
the collections of aerial photographs of the Belgian Royal Museum for Central Africa (see
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Appendix A). It comprises of images from the city of Goma-Gisenyi (whereby Goma is in
the Democratic Republic of Congo and Gisenyi is in Rwanda) captured in 1947, and the
city of Bukavu in the Democratic Republic of Congo, captured in 1959 (Figure 1).
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Figure 1. Map of the study area showing the border cities of Goma-Gisenyi at the border of the
Democratic Republic of Congo and Rwanda and Bukavu in the Democratic Republic of Congo.

These orthomosaics are based on scanned paper reproductions of aerial surveys that
were carried out in the 1940s and 1950s in Central Africa. The image pre-processing
and photogrammetric processing to obtain the orthomosaics is described in Appendix A.
The historical orthomosaics are of limited quality due to several factors. First, camera
calibration reports associated with the aerial surveys are missing, which imposes a camera
self-calibration of limited quality due to the poor overlapping between the photographs
and the limited number of ground control points that can be obtained; the acquisition
of accurate and precise ground control points necessary for the camera calibration and
the georeferencing of the images is indeed complex, since the landscape nowadays has
drastically changed, making difficult the identification of remarkable points visible on
both the historical photos and the recent satellite imagery. Hence the final horizontal
georeferencing accuracy is of the order of 10.8 to 13.9 m (Appendix A). Secondly, the
poor quality of the paper photos makes orthomosaics of limited quality. This is due to
low-quality imaging, poor storage conditions, ageing, as well as human-induced damages
such as pen marks or scratches. Since the orthomosaics are based on the scanned photos
that are already photo-reproductions, blurring, vignetting effects, bad exposure and optical
distortions are observed [34]. All these aspects strongly affect the quality of the historical
products.
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The Goma-Gisenyi orthomosaic has a spatial resolution of 1 m, compared to the
1.1 m resolution of Bukavu. In both cities, the landscape was dominated by high and
low vegetation, bare ground and scattered built-up areas. However, Goma-Gisenyi had
small-sized buildings as compared to Bukavu. Figure 2 provides sample scenes illustrating
examples of panchromatic orthomosaics.
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Figure 2. Sample training images from Goma-Gisenyi (first two rows) and Bukavu (last two rows)
illustrating examples of panchromatic images, and the diversity in the layout and appearance of
classes. The legend is 1—building, 2—high vegetation, (3–6) mixed bare land and low vegetation.
0 represents the unclassified pixels.

There are several significant sources of domain shift between these two datasets. First,
a temporal domain shift exists since the orthomosaics were captured in different years,
1947 and 1959 for Goma-Gisenyi and Bukavu, respectively. A shift in the label/semantic
space exists that makes the images structurally different, for instance, the building class
appears different between the two images. In addition, the mixed bare ground and low
vegetation classes are diverse across both images which can be attributed to differences
in lithology of the two cities whereby soils in Goma are black while those in Bukavu are
red [35,36]. This combination of several domains shifts makes this task challenging.

The orthomosaics are panchromatic and have a single channel which implies there is
limited spectral information for the discrimination of classes. Therefore, any changes to the
magnitudes and distribution of the grey values can affect the discrimination ability of the
classifier. For example, brightening one image to match its histogram to that of a second
image might reduce the size of the shift in the global visual domain but end up distorting
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the classification accuracy resulting in a particular class being likely mislabelled. These
differences present a huge challenge to reducing the domain shift between the historical
datasets. For these reasons, including the limited quality of the images, domain adaptation
for pixel-wise land-cover classification using this dataset presents a unique situation.

2.2. Domain Adaptation Networks

For semantic segmentation of historical aerial images, we aim to generate domain
invariant yet discriminative features at the representation level. Two promising works to
build upon for our task of land-cover mapping are the correlation alignment (D-CORAL)
domain adaptation network [29] and the domain adversarial neural (DANN) [26]. Both
methods can be readily integrated into a deep learning framework, and operate at the
feature (representation) level, hence generalisable at the inference stage. Please note
that DANN has already been used successfully with remote sensing data (Landsat-8
images [27] and hyperspectral images [28]), and D-CORAL for object-detection from aerial
RGB images [30], but neither was used with historical panchromatic orthomosaics.

2.2.1. The U-Net Architecture

Similar to Mboga et al. [11] which used a U-Net architecture for supervised land-
cover mapping from historical orthomosaics, we use U-Net [37] as the base architecture
(Figure 3) in this work. The network has a classical bottleneck architecture consisting of
downsampling and upsampling branches with skip connections at each corresponding
level. The U-Net has been widely used for remotely sensed imagery [38,39]. Each encoding
block is composed of two convolutional layers. Maxpooling layers with a window size
of 2 × 2 enable downsampling while transpose convolutions are used for upsampling.
Input patches with a dimension of 128 × 128 pixels are fed into the network. The network
produces a prediction for each pixel of the input patch. In each of the convolutional layers,
rectified linear unit (ReLU) activation functions are used to introduce nonlinearities into
the network.
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2.2.2. The Domain Adaptation Network

The domain adversarial neural network (DANN) aims to learn class labels that are
domain invariant (Figure 4a). It achieves this through the generation of domain invariant
and discriminative features [26]. The network contains an encoder (feature extractor), a
decoder (segmentation head), and a discriminator. The discriminator determines whether a
sample is originating from the source or target domain. DANN utilizes an adversarial loss
composed of two main terms: (1) a supervised semantic segmentation loss to be minimized
that computes the classical cross-entropy loss on source data, (2) the domain discrimina-
tion loss to be maximized, that aims at determining from which domain originates the
training data.
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The encoder and decoder branches are adapted from the U-Net architecture [37] while
the domain discriminator is made of a fully connected network comprising of 100 filters.
The training of the network is possible thanks to the gradient reversal layer (GRL), which is
added to the network in between the end of the encoder and the start of the discriminator.
During the forward pass it acts similar to an identity function (Equation (1)), and does not
modify the data, while during the backward-pass it reverses the gradients (it multiplies its
input by −1). According to [26], this can be expressed as:

Forward pass : Rλ(y) = y (1)

Backward pass :
dRλ

dy
= −λ(τ)I (2)

where I is an identity matrix multiplied by a weighting factor λ to control the influence
of the domain discriminator on the learned features. In our experiments we found that
setting this value to 1 produced better results as opposed to varying it as described in
the original paper [26]. Further, y represents a feature map that is passed through the
layer Rλ(y) during forward pass. Lastly, dRλ

dy denotes the gradients computed through
backpropagation.

The feature extractor branch is derived from the encoding branch of the U-Net ar-
chitecture. As illustrated in Figure 4a, a gradient reversal layer is used just before the
domain classifier responsible for determining whether a sample belong to the source or
target domain. Features from the last bottleneck layer of the encoder are flattened before
a gradient reversal layer is applied, and the features passed through a domain classifier
comprising of fully connected layers of 100 neurons and a binary cross-entropy loss. A
segmentation head is made of the decoding branch of a U-Net and allows for the prediction
to have similar dimensions to the input image.
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The energy function of the domain adaptation is given by:

E
(

θ f , θy, θd

)
= Ly

(
θ f , θy

)
− λLd

(
θ f , θd

)
(3)

where Ly

(
θ f , θy

)
is the total loss of the class discriminator against the source domain train-

ing samples given by the cross-entropy loss, and Ld

(
θ f , θd

)
is the total loss for the domain

discriminator against both the source and the target training samples. The parameters
θ f , θy, θd, respectively, represents the parameters learned to map the original input into a
new latent space, parameters learned to assign the correct class labels to samples from the
source domain, and parameters learned to predict the source/domain of the samples.

2.2.3. The D-CORAL Domain Adaptation Network

In this framework, the correlation alignment metric reduces domain discrepancy using
the second order statistics (i.e., covariance) between source and target data (Figure 4b). The
objective is to ensure that the final deep features are discriminative enough to train a strong
classifier and invariant to the shift between the source and target domain.

Let CS and CT be the covariance matrices in the source and target domains, respectively.
Let us denote by DS and DT the nS source domain samples and the nT unlabelled target
samples. Covariances matrices can be expressed as follows:

CS =
1

nS − 1

(
Dᵀ

S DS −
1

nS
(1ᵀ DS )ᵀ (1ᵀ DS)

)
(4)

CT =
1

nT−1

(
Dᵀ

T DT −
1

nT
(1ᵀ DS )ᵀ (1ᵀ DS)

)
(5)

where 1 is a column vector with all elements equal to 1. The CORAL loss can be defined as

LCORAL =
1

4d2 ‖ CS − CT ‖2
F (6)

where ‖ · ‖2
F represents the squared matrix Frobenius norm and d is the dimension of the

activation features.
During training both the classification loss (cross-entropy loss) and the CORAL loss

are minimised using the equation:

L = Ly +
t

∑
i=1

αiLCORAL (7)

where t denotes the number of CORAL loss layers in a deep network and α is a weight
that trades off adaptation with the classification accuracy on the source domain. The
weight of the CORAL loss is set in a way such that at the end of the training, there is an
equal contribution between the CORAL loss and the classification loss. An objective that
comprises categorical cross entropy loss Ly helps to prevent the likelihood of the network
to learn degenerate or useless features as it attempts to reduce the domain shift between
the source and target images.

Similar to DANN, the feature extractor is based on the encoding branch of the U-
Net architecture. The CORAL loss is computed from the extracted bottleneck features
of the source and the target domain just before the start of the decoding branch. Shared
parameters are learned by the encoder branch. The segmentation head is comprised of the
decoder branch and allows for the propagation of a supervised signal based on images
from the source domain. During training, the coefficient of the coral loss is gradually varied
from 0 to 1 using a simple scheme α = current epoch

number o f epochs .
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2.3. Experimental Set-Up

The first set of experiments is conducted using standard U-Net without domain
adaptation. Training on data from only the source domain provides the lower bound of
test accuracy on the target domain (source only). On the other hand, training on images
from the target domain provides the upper bound of the test accuracy on the target domain
(target only).

In both domain adaptation strategies, data from the source domain includes the raw
images and the corresponding labels, while only the raw images are available for the target
domain. Figure 5 shows the location of spatially distributed tiles from which training and
testing samples were generated for both Goma-Gisenyi and Bukavu. In total, a dataset
of 3000 samples of patch size 128 × 128 pixels is obtained from the tiles designated for
training and the distribution is shown in Figure 6. During test time, we use an independent
test set based on the tiles designated for testing from the target domain to evaluate the
classification accuracy and quality of predicted maps.
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We further conduct experiments to evaluate the amount of training samples from the
target domain needed to fine-tune a domain adaptation network. This is accomplished
to assess the added benefit of domain adaptation in reducing amount of reference labels
required in a target domain. For this, a domain adaptation network trained using a
combination of 150 labelled samples from the source domain and 150 unlabelled samples
from the target domain is fine-tuned using samples from the target domain of three sizes
namely 150, 300 and 450 selected from the original sample set of 3000 samples, and the
accuracy metrics averaged over five runs.

The networks are trained in 50 epochs, using ADAM optimizer [40] with a learning
rate of 0.001, and implemented using python 3.7 and PyTorch deep learning framework.
The choice of number of epochs, optimizer and learning rate has been identified as optimal
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after several trial-and-error tests. We use a computer equipped with an NVIDIA GPU
GeForce GTX 1080 with 8 GB of RAM.
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3. Results
3.1. Unsupervised Domain Adaptation Results

The accuracy assessment is conducted by computing several metrics namely the
producer accuracy (PA), the user accuracy (UA), the F1 score and the overall accuracy. An
independent test set was used for the calculation of the accuracy metrics. In Table 1, the
overall accuracy (OA) tests are presented. Performance of DANN and D-CORAL domain
adaptation methods are quite comparable, and the difference in performance is within
plus or minus 2%. Both approaches achieve a slightly higher OA compared to the U-Net
without domain adaptation (lower bound). In the case of Goma-Gisenyi to Bukavu, there
is a difference of + 0.52% in the overall accuracy with and without domain adaptation. An
higher OA value is observed when the domain transfer is from Bukavu to Goma-Gisenyi
(~72%) as opposed to from Goma-Gisenyi to Bukavu (~62%). The low gain in classification
performance can be explained by the fact that there is a remarkable difference in the scene
layout of the two cities in terms of the building sizes, vegetation types and high vegetation.

Table 1. Overall accuracy metrics on the target and source domains with domain adaptation (DANN,
D-CORAL) and without domain adaptation (source only, target only).

METHOD
Source Goma-Gisenyi Bukavu

Target Bukavu Goma-Gisenyi

Target only (upper-bound) % - 91.28 94.50
DANN % - 61.30 74.78

D-CORAL % - 62.56 73.00
Source only (lower-bound) % - 62.04 72.54

Table 2 presents the test class-wise accuracy metrics. High PA, UA and F1 are observed
for the U-Net because of the benefit of training using reference data from the target domain,
and these provide an upper bound for the classification metrics. The domain adaptation
experiments achieve low performance for the building class, the F1 score achieves values in
the order of ~0.1–0.2 for both target domains Goma-Gisenyi and Bukavu. For both domain
adaptation methods, a high F1 score is observed for the high vegetation (class 2) and the
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class 5 and 6 of the mixed bare ground and low vegetation class. In addition, very slight
differences are observed in the class-wise metrics between the lower-bound U-Net (no
transfer) and both domain adaptation methods. As expected, training with labelled target
data (upper bound) produces high F1 score and OA compared to the domain adaptation
methods and U-Net (lower-bound).

Table 2. The producer accuracy (PA), user accuracy (UA) and F1 score per class for training with and training without
domain adaptation. In (a) the city of Bukavu is the target while in (b) the city of Goma-Gisenyi is the target domain. The
legend is 1—building (BD), 2—high vegetation (HV), (3–6) mixed bare land and low vegetation (MBLV). 3000 training
samples are used.

- - - U-Net (Upper-Bound) DANN D-CORAL U-Net (Lower-Bound)

G
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G

is
en

yi
->

Bu
ka

vu

Bukavu (Target) PA % UA % F1 % PA % UA % F1 % PA % UA % F1 % PA % UA % F1 %
BD Class 1 86.1 66.4 75 9.7 56.4 17 7.2 62.9 13 12.7 56.9 21
HV Class 2 97.1 94.5 96 61.8 53.7 58 63.0 53.9 58 65.7 53.3 59

MBLV

Class 3 90.8 95.9 93 55.4 37.8 45 58.7 39.7 47 51.3 39.7 45
Class 4 90.1 96.7 93 61.9 68.1 65 61.7 70.9 66 62.7 69.9 66
Class 5 92 88.6 90 74.5 78.1 76 77.2 78.2 78 74.9 75.7 75
Class 6 80.3 85.0 83 72.8 76.2 74 75.9 76.0 76 71.1 76.9 74

Bu
ka

vu
->

G
om

a-
G

is
en

yi

Goma (Target) - - - - - - - - - - - -

BD Class 1 79.6 59.2 68 19.6 4.8 8 13.5 7.97 10 9.1 2.4 4
HV Class 2 96.1 97.4 97 78.9 98.2 88 75.0 98.6 85 74.1 98.5 85

MBLV

Class 3 90.2 93.9 92 25.1 59.6 35 26.5 57.5 36 27.0 55.5 36
Class 4 92.3 89.8 91 86.5 44.1 58 87.2 42.1 57 85.5 41.7 56
Class 5 92.4 88.8 91 88.4 69.8 78 88.7 67.9 77 90.5 68.2 78
Class 6 98.2 93.2 96 81.8 86 84 82.8 84.4 84 84.1 86.7 85

Figure 7 presents sample scenes of classified images. The first column displays the
original panchromatic images, the second one the reference data. The third represents the
classified map obtained after training on the target image (upper bound). The fourth and
the fifth represent the classified maps from domain adaptation models. The last represents
the classified map obtained after training on the source image and then making prediction
on the target image (lower bound). We observe that both domain adaptation methods
classify the mixed bare land and low vegetation well in row (a). The classification of the
building class by the domain adaptation methods in Goma-Gisenyi is more challenging as
can be observed in row (b), whereas in row (c) the high vegetation class is well captured.
In the city of Bukavu, we observe similar good classification performance on the high
vegetation class and the mixed bare land and low vegetation classes in row (d) and row (f).
While buildings are classified well in row (d), they are not correctly classified in row (e).
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3.2. Fine-Tuning Results

While being able to generalize to the target domain without target labels at training
time is certainly desirable, when the task is too complex, as in this case, such approach can
lead to non-satisfactory performance. However, it is possible to use domain adaptation
techniques such that a lower amount of reference labels is needed to obtain a certain
classification performance on the target domain. The results of finetuning DANN and
D-CORAL using labelled data of different sample sizes from the target domain, namely
Bukavu and Goma-Gisenyi, respectively, are shown in Tables 3 and 4 respectively.

The added advantage of using pretrained networks is observed for the three different
sample sizes. There is minimal difference in the OA and F1 metrics between upper bound
(i.e., with training only from the target domain samples) and when the weights from
unsupervised training from each of the domain adaptation models are used as pre-trained
weights. The results mean that pretrained weights are used, then fewer samples from
the target domain would be required to achieve a similar or slightly better accuracy
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performance. For example, when Bukavu is the target domain, see Table 3, OA values
of 81.40% and 82.19% is obtained, respectively, for U-Net (upper bound training using
only data from the target domain) and DANN when 450 samples are used, respectively.
In essence, DANN has been finetuned with an amount of labelled data from the target
domain that is 150 less than in the U-Net experiment which used exclusively target samples
for training (Table 4) where Goma-Gisenyi is the target domain. For instance, training
U-Net on 300 labelled target samples gives an OA of 87.49% while fine-tuning a DANN
model with only 150 labelled target samples gives an OA of 87.78%. The results imply that
it is plausible to take advantage of pre-trained weights generated through unsupervised
domain adaptation to reduce the amount of required labelled data from the target domain

Table 3. Showing overall accuracy (OA) and F1 scores after finetuning model initially trained using 150 samples of the
source and target domain using labelled samples from Bukavu. The results are compared to training the U-Net on only
target samples and only source samples.

- Bukavu Target

Number of Samples 300 450 600

- OA % F1 % OA % F1 % OA % F1 %
U-Net (upper bound- only target training) 79.66 74.4 81.40 76.6 82.99 78.2
DANN (150 from source + rest from target) 76.91 73.4 82.19 77.8 83.16 79

D-CORAL (150 from source + rest from target) 78.78 73.8 80.67 76.4 82.27 77.6
U-Net (lower bound—only source) 63.27 58.4 62.81 57.4 62.84 57.4

Table 4. Showing overall accuracy (OA) and F1 scores of after finetuning model initially trained using 150 samples of the
source and target domain using labelled samples from Goma-Gisenyi. The results are compared to training the U-Net on
only target samples and only source samples.

- Goma-Gisenyi Target

Number of Samples 300 450 600

- OA % F1 % OA % F1 % OA % F1 %
U-Net (upper bound- only target training) 87.49 79.8 89.15 82.4 89.16 83.8
DANN (150 from source + rest from target) 87.78 79.8 88.59 83 89.70 84.4

D-CORAL (150 from source + rest from target) 86.94 80.4 88.94 84 89.17 83.6
U-Net (lower bound—only source) 72.28 55.6 72.76 58 72.21 54

4. Discussion

In this paper, two real-world image datasets from two different cities of Goma-Gisenyi
and Bukavu, acquired in 1947 and 1959, respectively, have been utilized. From the ex-
periments, by looking at both the numerical and qualitative results, it is evident that
relying exclusively on unsupervised domain adaptation might not always be sufficient
to guarantee a certain level of performance in classification accuracy. In Bejiga et al. [27],
by using a multi-date, multi-site and multi-spectral dataset, it is observed that the use of
domain adaptation for a problem with more than one source of domain shift (i.e., images
of different spatial locations and acquired at different time periods) increases the level of
challenge in unsupervised domain adaptation approaches, affecting their performance.
For remote sensing applications, this implies that there is a need to use domain-specific
knowledge [41] that would help to reduce some degree of domain shift, hence augmenting
the unsupervised domain adaptation approaches. Most applications in computer vision
assume the scene layout between images is comparable with the differences stemming from
the spectral characteristics, for example, an image of the street taken in the morning and in
the afternoon. A leading assumption in a majority of the domain adaptation experiments
is that the differences between the domains are “mainly low-level, that is, differences
due to noise, resolution, illumination, colour rather than high-level such as in the types
of objects, geometric variations etc.” [42]. On the contrary, a scene in a remote sensing
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image exhibits a variation in the spatial and structural patterns that increase the level of
challenge in the performance of domain adaptation methods. Semantic segmentation of
multiple land-cover classes from remote sensing imagery is more challenging than a scene
classification because of the variety of categories within a scene. Furthermore, the use of
historical panchromatic orthomosaics, evident in this work, complicates the discrimination
of classes because of the limited spectral information available. Lastly, due to the quality of
the historical orthomosaics used in this work, another possible research direction would to
be to investigate effectiveness of the methods on a dataset of higher quality.

5. Conclusions

The reduction in the budget of generating reference labels is essential in remote sensing
applications, which are also important to monitoring and implementing SDGs goals. It
increases the efficiency of generating land-cover and land-use maps from datasets spanning
large geographical extents. To this end, two unsupervised domain adaptation methods,
namely, DANN and D-CORAL, are evaluated on a case study focusing on historical
panchromatic orthomosaics. According to the conducted experiments we can conclude
that unsupervised domain adaptation is not sufficient to generate accurate land-cover
maps, however, when combined with a limited amount of reference data it can greatly
reduce the labelling effort when compared to a standard supervised learning approach.
While long-term baseline studies can benefit from exploiting available archives of historical
panchromatic orthomosaics, the challenge of creating adequate reference data for each of
the dates remains. This study implies that the use of real-world datasets beyond standard
benchmarks highlights a limitation of the state-of-the-art approaches. In addition, the
availability and use of multiple, high quality, real-world datasets would serve to test
the effectiveness of the proposed approaches. In summary, future works will focus on
exploiting a highly specific domain knowledge to address the shift between source and
target domains.
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Appendix A. A Methodology to Produce the Historical Orthomosaics

The orthomosaics used in this work cover the urban areas of Goma-Gisenyi and
Bukavu and generated by the Royal Museum for Central Africa (RMCA) as described in
Smets et al. [34]. The historical aerial photographs archived at RMCA are scanned using a

http://pasteca.africamuseum.be/
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professional flatbed scanner, at a resolution of 1500 dpi, and saved in a raw uncompressed
16-bit unsigned (unit 16) tiff format. Subsequently, the digital versions of the photographs
are preprocessed to obtain a homogenized dataset comprising photographs with the same
dimensions and the center of perspective localized at the center of the image. Ground
control points (GCPs) are deduced from salient points such as buildings and road intersec-
tions that have been preserved to date, and the coordinates sourced from existing geodetic
surveys, and recent images and digital elevation models of the cities having a meter to
sub-meter scale spatial resolution. The photogrammetric processing workflow is carried
out using Agisoft Metashape Pro (https://www.agisoft.com/ (31 January 2018)) that en-
tails: (1) photo alignment, (2) addition of GCPs, (3) tie point filtering, (4) Optimization
of the camera calibration based on the two previous steps, (5) dense matching using the
cloud compare software (https://www.danielgm.net/cc/ (31 January 2018)), (6) dense
point cloud denoising through filtering and subsampling, (7) DEM production, (8) Or-
thomosaic production and accuracy assessment. The final productions are georeferenced
uint16 GeoTIFF orthomosaics having a horizontal georeferencing accuracy of 10.8 m and
13.9 m for Goma-Gisenyi and Bukavu (area of interest only), respectively (Figures A1
and A2; Tables A1 and A2). This limited georeferencing accuracy is related to the limited
number of GCPs, their non-ideal distribution in the orthomosaics and the poor quality of
the camera calibration.
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Table A1. Table of the GCP’s positioning errors for the 1959 orthomosaic of Bukavu, with the
calculated root mean square errors (RMSE). Values followed by an asterisk (*) are for the area of
interest (i.e., white frame in Figure A1).

Label X Error (m) Y Error (m) Z Error (m) XY Error (m) XYZ Error (m)

point 1b 3.414 9.482 10.163 10.078 14.313
point 2b * −6.755 4.333 −5.242 8.025 9.585
point 4b * 11.369 0.919 15.110 11.406 18.932
point 5b * −7.235 5.415 4.807 9.037 10.236
point 6b * −9.505 −1.061 −15.532 9.565 18.240
point 7b * −11.769 −6.309 −15.839 13.354 20.717
point 9b −15.336 −1.060 9.025 15.372 17.826
point 10b 20.457 0.891 8.558 20.477 22.193

point 11b * 3.163 −3.832 −0.283 4.969 4.977
point 12b * 5.309 2.824 9.575 6.013 11.306
point 13b * −11.498 −7.404 −1.221 13.675 13.730
point 14b * 4.258 −8.760 −10.187 9.740 14.094
point 15b * 14.127 4.565 −8.930 14.846 17.325
point 16b * −18.834 −6.824 −7.904 20.032 21.535

point 1 * 2.478 3.885 −8.516 4.608 9.683
point 2 * −3.605 −8.769 8.037 9.481 12.429
point 3 * 12.600 −14.801 −7.462 19.438 20.821
point 4 * 5.189 −2.580 6.400 5.795 8.634
point 5 * 4.878 −3.134 11.871 5.798 13.211
point 6 * 9.286 8.257 10.528 12.425 16.286
point 7 * 15.700 8.438 10.178 17.823 20.525
point 8 * 11.459 0.783 −2.382 11.486 11.730
point 9 * −18.172 12.862 11.192 22.263 24.918

point 10 * −15.418 11.483 −3.310 19.224 19.507
point 11 * 0.231 2.820 −4.672 2.829 5.462
point 12 * −32.857 5.203 −1.095 33.266 33.285
point 13 * 12.522 7.157 5.794 14.423 15.543
point 14 24.354 13.152 13.609 27.679 30.843
point 15 15.121 12.907 5.236 19.881 20.559
point 16 −18.571 −1.010 −22.021 18.598 28.824
point 17 −14.467 −19.705 −26.199 24.446 35.833

point 18 * −2.337 −11.347 14.526 11.585 18.580
point 19 * −1.907 3.032 −7.031 3.581 7.890
point 20 0.885 14.277 3.106 14.305 14.638
point 21 −4.874 12.142 1.021 13.084 13.124
point 22 −4.813 4.648 −9.204 6.691 11.379
point 23 −0.185 −9.206 16.397 9.207 18.806
point 24 −10.286 7.173 −1.423 12.540 12.620
point 25 9.475 −5.874 14.731 11.148 18.474
point 26 −7.180 −10.746 −6.214 12.924 14.340
point 27 1.830 27.020 8.350 27.082 28.340
point 28 0.531 3.849 −1.587 3.886 4.198
point 29 4.043 −9.259 2.476 10.103 10.402
point 30 −0.248 −4.221 −11.690 4.228 12.432
point 31 8.532 −33.427 −4.353 34.499 34.772
point 32 6.098 −8.682 −14.070 10.609 17.622
point 33 −9.640 −16.103 −1.320 18.768 18.815
point 34 5.560 −9.205 −2.927 10.754 11.145
point 35 −10.319 5.718 −19.248 11.797 22.576
point 36 7.716 7.628 11.264 10.850 15.639
point 37 −3.609 −4.374 0.014 5.671 5.671
RMSE 11.267 10.171 10.253 15.178 18.317

RMSE * 11.937 7.072 9.111 13.875 16.599
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panchromatic image is the orthomosaic. The color map in the background is a Waze map.
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calculated root mean square errors (RMSE).

Label X Error (m) Y Error (m) Z Error (m) XY Error (m) XYZ Error (m)

GCP01 5.921 −1.088 2.568 6.020 6.545
GCP02 6.657 −5.622 −4.152 8.713 9.652
GCP03 3.288 −0.270 −4.614 3.299 5.672
GCP04 −26.120 7.834 3.178 27.269 27.454
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