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Abstract: Most of the existing staged evacuation algorithms only consider the impact of crowd
density on evacuation partition, but do not take into account the influence of the spatial distribution
of occupants and the capacity of exits on the total evacuation time (TET). Therefore, a novel indoor
emergency evacuation algorithm based on time equalization is proposed in this paper. All factors
affecting TET such as the position and size of each group and the capacity of exits are fully considered
in the proposed algorithm, which are uniformly converted into the occupancy time of each exit.
An improved Dijkstra algorithm is used to generate evacuation zones according to the proximity
relationship and the occupancy time of different exits. The strategy of waiting at the starting point is
adopted to ensure that all evacuees are free from congestion during the escape process. In addition,
the method of group merging is proposed to further increase the balance among all zones during
the partitioning process. The objectives of the proposed algorithm include minimizing the TET of
all evacuees, the path length of each escape group, avoiding congestion during the escape process.
The experimental results show that the proposed algorithm effectively reduces TET and the path
length of groups compared with existing algorithms, which improves the efficiency of evacuation
and utilization of all exits and can be applied to the various distribution and density of evacuees.

Keywords: emergency evacuation; evacuation zones; group merging method; staged algorithm

1. Introduction

With the rapid development of global urbanization, the scale of cities is becoming
larger and larger, and the internal structure of buildings is becoming more and more
complex, which makes indoor emergency evacuation more difficult. Once an emergency
such as a fire occurs indoors, it will cause huge property losses and casualties if there is no
efficient evacuation strategy. Therefore, indoor emergency evacuation has been paid more
and more attention. Existing methods are mainly divided into two categories: evacuation
drill and computer simulation [1–4]. The former can provide more accurate and richer
information about emergency evacuation, but it has obvious drawbacks such as high cost,
time-consuming, and immorality. So, this kind of method is usually used to verify the
effectiveness of evacuation strategies in the real world. Computer-aided simulation has
become the dominant method for studying emergency evacuations [5].

Nowadays, building information modeling (BIM) and geographic information systems
(GIS) are widely used for indoor emergency evacuation. BIM-GIS system has two meanings:
one is the integration of the underlying technologies, and the other is the integration at
the application level. This paper discusses BIM-GIS at the application level to solve the
emergency evacuation problem. Before path planning, a route network model can be
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generated from the BIM model. Then, all evacuation strategies are obtained by network
analysis of GIS. When an emergency occurs indoors, all occupants need to be evacuated
immediately and decision-makers are required to formulate the best evacuation strategy in
a short time. Therefore, an efficient evacuation strategy must ensure not only the shortest
TET but also the shortest formulating time of it. At present, evacuation strategies can
be roughly divided into optimization-oriented and simulation-oriented [6]. The research
in this paper belongs to the former. Generally, it is easy to cause congestion around the
emergency exits or in the corridors when there are many evacuees in a building. In existing
studies, although some strategies can reduce the congestion around exits, congestion is
inevitable in the evacuation process. Occupants at the congested locations can only run
slowly towards exits. The staged evacuation strategy transforms the stagnation time of
escape groups into their delay time to solve congestion, but it lacks the optimization of
safety exit selection.

Based on staged evacuation, to improve the utilization rate of exits and strengthen
the applicability of the algorithm in different scenarios, an indoor emergency evacuation
algorithm based on time equalization is proposed. In general, indoor emergency evacuation
is a multi-exit evacuation problem that needs to clarify the escape path and departure
time of every occupant. To simplify the problem, the multi-exit problem is transformed
into multiple single-exit problems by partitioning the whole evacuation zone into several
evacuation zones, each of which has one safety exit. The proposed algorithm allocates all
occupants to each zone and balances the evacuation time of each zone. Our contributions
include: (1) The occupancy time of each exit is introduced as the basis of the evacuation
partition, and the evacuation time of each zone is balanced to get the shortest TET; (2)
The method of group merging is proposed to further optimize the result of evacuation
zone partitioning; (3) The proposed algorithm is generally applicable to various evacuation
scenarios.

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3
describes the problem and presents our method of solving it. Section 4 gives the proposed
algorithm and its time complexity. Section 5 illustrates the results of the algorithm, evalu-
ates its performance and effectiveness by a series of tests, and gives a testing simulation.
Section 6 concludes the paper.

2. Related Work

Crowd evacuation models are mainly divided into macro-simulation models and
micro-simulation models from the perspective of simulation. Similarly, evacuation strate-
gies can also be divided into macro and micro. Macro strategies focus on controlling
network flow while micro ones focus on simulating individual behaviors. Micromodels
including the cellular automata, social force, lattice gas, and agent-based models are mainly
used to simulate some common self-organization phenomena such as transcendence behav-
ior, herding behavior, re-entry phenomenon, small group phenomenon, and so on [7–10].
Some guiding strategies can rationally evacuate the crowd and reduce congestion [11–13].
Lei et al. studied the impact of patience on evacuation efficiency and proved that the
strategy of queuing to evacuate is best when the crowd density is low, otherwise choosing
the exit with lower density to escape is the best choice [14]. Therefore, TET and crowd
density should be balanced among all safety exits during the evacuation [15]. To resolve
the problem of underutilization of exits, many strategies have been proposed. Xu et al.
proposed an optimized regional division [16]. Yue et al. integrated many strategies based
on distance and time [17]. Kurdi et al. assigned the same number of occupants to each
exit [18]. Jin et al. classified occupants according to the degree of danger to avoid the
congestion caused by the excessive crowd density [19]. Rozo et al. designed an evacuation
strategy that considered various behaviors and multiple paths of occupants [4]. Other
scholars discussed the evacuation strategies of high-rise buildings by using stairs and
elevators [20,21]. All the evacuation strategies above are based on the micro models and
their time complexity is large, which causes the slow simulation.
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The macro models focus on the overall characteristics of the crowd. Network-based
models usually abstract the evacuation problem into a network flow problem [22]. The time-
extended network can dynamically allocate evacuees and make evacuation strategy more
reasonable but its time complexity is very high [23,24]. A method was proposed to keep the
evacuation process going smoothly by controlling the speed and flow rate of occupants [25].
Noh et al. planned evacuation routes for occupants with different speeds to minimize the
blocking effect [26]. In addition, there are many strategies for path planning to reduce
the exposure time of occupants in a hazardous environment [27,28]. Liu et al. proposed
a dynamic guidance method based on digital twin [29]. Zheng et al. used the Vickrey
model to reduce queuing time and to improve the utilization rate of all exits [30]. Yang et al.
adopted the principle of “balancing evacuation time” and prioritized evacuation of floors
that required a long time to escape [31]. Xiong et al. also proposed a distinguishing model
that can avoid congestion and stagnation [32]. Based on the Dijkstra algorithm, Cao et al.
proposed an intelligent path optimization method for crowd emergency evacuation [33].
Jin et al. suggested a method of finding congestion and gave a more targeted evacuation
strategy [34]. Taneja et al. proposed an optimization model of a two-layer network to
ensure the change of optimal capacity and more efficient evacuation [35].

When a large number of occupants escape from the building where a fire breaks
out, path conflicts are easy to occur. It is necessary to adopt reasonable methods to
solve these conflicts because they will cause a severe reduction in evacuation efficiency.
Simultaneous evacuation increases the congestion on paths within a short period, which
makes it difficult for escape groups to evacuate according to the prescribed plan. This
behavior further aggravates the path conflicts with other escape groups. The partitioned
and staged evacuation planning (PSEP) algorithm [36] adopted an evacuation partitioning
strategy to assign a large number of occupants to each emergency exit and a staged
evacuation strategy to compute out the escape path and delay time of each group. The
algorithm is better than the distance-based staged algorithm in evacuation efficiency and
superior to the algorithm proposed by Li [37] in computation efficiency. However, the
PSEP algorithm can achieve better results only in the condition of high density and even
spatial distribution of occupants and takes no consideration of low density of occupants,
the uneven spatial distribution of occupants, and capacity of exits. Therefore, an improved
partitioned and staged evacuation algorithm based on time equalization is proposed in
this paper, which overcomes the shortcomings of the current staged evacuation algorithms
and further reduces TET.

3. Methodology

To evacuate all occupants as quickly as possible is what all decision-makers need to
consider when an emergency occurs indoors. In general, indoor population density is a
key factor affecting evacuation strategy. Occupants can choose the nearest exit to escape
without any congestion when the density is low. However, the same choice will cause
congestion in the evacuation process when the density is high. So, the utilization ratio
of each exit should be improved to reduce congestion. Figure 1a is an illustration of the
evacuation problem. Occupants are grouped according to their proximity. Emergency
evacuation planning is carried out in a group, that is, a group of evacuees is seen as a
whole. The related variables used in this paper are listed in Table 1.
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Figure 1. The principle of the partitioned and staged evacuation planning. (a) Multi-exit route
network model; (b) evacuation zones and delay time.

Table 1. The related variables of the proposed method.

Variable Meaning

V the escape speed of the group
Fi the traffic flow of route of group i

Arci,j the arc between node i and node j
Ci,j the capacity of Arci,j
Ci

e the capacity of exit e for group i
Ri the route of group i
Di the path length of group i
n the number of groups in the same zone
m the number of zones
Gi the number of occupants in group i
Ta

i,d the delay time of group i in zone a
Ta

i the evacuation time of group i
Ta

i,res the response time of group i in zone a
Ta

i,t the travel time of group i in zone a
Ta

i,que the queueing time of group i in zone a
Ta the evacuation time in zone a
Te the occupancy time of exit e

Top the shortest TET
N the number of nodes in the route network
Nb the number of branch nodes

Evacuation strategies can be divided into simultaneous evacuation and staged evacua-
tion. Simultaneous evacuation means that in case of emergency, all pedestrians will escape
at the same time. But in case of congestion, they need to wait until the front groups pass
through. Waiting in a crowded place is not a wise choice because increased congestion
can slow the evacuation speed of occupants. The situation will reduce traffic efficiency
and even lead to serious accidents such as stampedes. Staged evacuation is an evacuation
strategy based on evacuation partitioning, the advantage of which is that occupants in
different zones have no path conflicts with each other. Meanwhile, occupants in the same
zone can avoid path conflicts by setting a delayed departure time for each group. The delay
time of each group should be as short as possible to reach the minimum TET, as shown
in Figure 1b. Therefore, staged evacuation is chosen as the basic strategy for emergency
planning in this paper.

We mainly study the impact of the density of occupants, the spatial distribution of
occupants, and the capacity of exits on evacuation partitioning and TET respectively. To
simplify the problem, it is assumed that the speed of all groups is equal. The order of
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evacuation is in accordance with the principle of “first in first out, second delay” [36]. That
is, the delay time of each group in the same zone is calculated according to the path length
in ascending order. The formula of delay time is as follows:

Ta
i,d =


0 i = 1
(Di−1 − Di)/V + Gi−1/Fi−1 + Ta

i−1,d i = 2, 3, . . . , n and Ta
i,d > 0

0 i = 2, 3, . . . , n and Ta
i,d ≤ 0

(1)

Fi = min
{
{Cr1,r2|Arcr1,r2 ∈ Ri}

⋃
Ci

e

}
(2)

where, i denotes group i in zone a. If the delay time of the group is less than 0, it is set
to 0. If Ta

i,d > 0, it means that group i and group i − 1 are evacuated end-to-end. The
simultaneous evacuation strategy uses the following equation to calculate the evacuation
time of group i.

Ta
i = Ta

i,res + Ta
i,t + Ta

i,que (3)

It is assumed that escape groups evacuate immediately, namely Ta
i,res = 0. Ta

i,t is the
time from the group beginning to escape to the last member of the group leaving the exit,
regardless of the congestion condition. The larger Ta

i,que is, the longer the queueing time
will be. Obviously, it is very prone to congestion during the evacuation in the situation.

During the staged evacuation, the delay time of groups can avoid waiting in the
queue during the evacuation, namely Ta

i,que = 0. Therefore, the evacuation time of groups
using the staged strategy is equal to the delay time plus the travel time. In fact, the delay
time of groups takes the place of their queuing time. The evacuation time of each zone is
determined by the maximum evacuation time of all groups in the zone. The equation of Ta

is as follows:
Ta = max

(
Ta

i,d + Ta
i,t

)
i = 1, 2, 3, . . . , n (4)

Similarly, TET is determined by the maximum evacuation time of all zones. The
equation is as follows:

TET = max(Ta) a = 1, 2, 3, . . . , m (5)

Top = min{max(Ta)} = min{TET} a = 1, 2, 3, . . . , m (6)

Each zone has a safety exit. TET is one of the key factors to determine the quality
of evacuation strategies. It can be seen from Equation (5) that the TET of the staged
evacuation strategy is jointly determined by the evacuation time of all zones. Therefore, the
partitioning method is the key to the staged evacuation strategy and is one of the important
factors to determine evacuation efficiency. Equation (6) is the objective function, indicating
that a good staged strategy should make the maximum evacuation time of all zones as
small as possible. To shorten TET, a reasonable partitioning method taking into account the
density and spatial distribution of occupants and the capacity of exits should be proposed
to make the evacuation time of each zone approximately equal.

The partitioning methods of staged evacuation are generally divided into two cate-
gories: the distance-based partitioning method and the partitioning method of balancing
the number of occupants at all exits. The former is suitable for low crowd density, while
the latter is suitable for evacuation partitioning with high density. The PSEP algorithm is
a typical staged evacuation algorithm based on population equalization. In this paper, a
partitioning method of balancing the evacuation time at all exits is suggested, to make it
better applicable to various indoor evacuation scenarios.

According to Equation (4) and the principle of “first in first out, second delay” [36],
the evacuation time of each zone is determined by the evacuation time of the group with
the longest path length in each zone. Dijkstra algorithm is used to determine which group
in the zone is the group currently extended. The evacuation time of the group is the
current evacuation time of this zone. As the zone is expanded, the current evacuation
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time of the zone is updated accordingly. When the last group is extended, the evacuation
time of the group is the final evacuation time of the zone. According to Equation (6), the
evacuation time of the last group extended in the current zone is taken as a function of the
occupancy time of each exit for expansion, which includes the delay time and travel time
of the group. The travel distance of the group consists of the length and path length of the
group (Figure 2). Then the exit with the minimum occupancy time should be chosen to
expand its evacuation zone each time. Finally, the process of evacuation partitioning based
on time equalization is finished. The function of Te is

Te = Di/V + Gi/Fi + Te
i,d (7)

Figure 2. Schematic diagram of the occupancy time of zone E.

In the process of evacuation partitioning, the Dijkstra algorithm may cause an imbal-
ance of evacuation partitioning if there are branch paths. The following pictures of a simple
partial route network illustrate this problem and the proposed solution for it, as shown in
Figure 3.

Figure 3. The expansion diagram of zone e. (a) Without group merging method; (b) with group
merging method.

In Figure 3, node D is the branch of node A. The serial numbers of nodes indicate
the order of path length. For example, the path length of group B is longer than that of
group A. The path length of group D is longer than that of groups B and C. According
to the principle of “first in first out, second delay”, groups B and C are extended by zone
E before group D. If the Dijkstra algorithm is used, group D must pass through node A.
Group D is extended by default when the node A is being extended. If the evacuation
time of group A is used as the evacuation time of zone E, it must be shorter, because the
occupancy time represents the evacuation time of the zone. Therefore, the evacuation time
of group D should be used as the current occupancy time of zone E, so that some groups,
such as groups B and C, may not be extended by zone E. The group merging method is
used to increase further the balance of expansion of zones. Node operation needs to be
executed before the group merging method as the following steps:

1. Add non-exit nodes to array M, and create an empty array B;
2. Add a virtual node, which connects to all exits, and the length of new arcs is set to 0;
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3. The virtual node is set as the search starting node;
4. Use Tarjan’s algorithm to search a cut vertex in the unvisited nodes, then mark the

visited nodes;
5. If there is a cut vertex, go to the next step; otherwise, break;
6. Except for the cut vertex, add all nodes in the bi-connected component to the array B,

return step (4).

If there are sink nodes in the bi-connected component, all groups can choose their
own exits belonging to the bi-connected component to escape without going through the
cut vertex. Step (2) excludes these bi-connected components.

The general steps for the group merging method are as follows:

1. Determine the currently extended node g and the corresponding exit E (details about
this are described in the next section);

2. Select the group i closest to the exit E in the array B;
3. If TE ≥ Di/V, go to the next step;
4. Calculate the delay time of the group i, and update the occupancy time of the exit E

with the evacuation time of the group i;
5. Remove the group i from arrays M and B, return step (2).

The expansion results partitioned by the group merging strategy are shown in Figure 3b.
When node A is extended, the evacuation time of group A is actually the evacuation time of
group D because group D is merged by node A. The continuity of groups will not increase
the evacuation time of the current zone. So, the evacuation time of group D can be used
as the occupancy time of the exit e. The PSEP algorithm can also use the group merging
method to solve the problem of the lack of local information on buildings. It only needs to
add the population on branch nodes to their own trunk node.

4. Algorithm

Based on the problem and solution proposed in Section 3, a staged evacuation al-
gorithm based on the balance of occupancy time of exits is proposed in this paper. The
algorithm considers the change of different densities and spatial distribution of occupants
and the capacity of exits.

4.1. Algorithm Idea

The PSEP algorithm is a multi-exit emergency evacuation strategy proposed for indoor
crowded conditions, but it uses the partitioning strategy of “balanced evacuation” based on
the population of each exit without consideration of the density and spatial distribution of
indoor population and capacity of exits. Therefore, we proposed the partitioning strategy of
“balanced evacuation” based on the occupancy time of each exit to improve the evacuation
efficiency and to shorten TET. The proposed method uses the improved Dijkstra algorithm
to assign all groups to different exits. During the partitioning process, the evacuation time
of each group is taken as the occupancy time of the safety exits to form evacuation zones.
The basis of partitioning is to ensure that the occupancy time of each exit is approximately
equal. For all groups in the same zone, the “delayed waiting” strategy is implemented, and
the time window for each group to occupy the safety exit is calculated according to the
path length to ensure that no path conflicts occur. In addition, it is proposed to transfer
the information of branch nodes to the trunk nodes for group merging. Therefore, the
basic idea of the proposed algorithm for constructing zones is: (1) Taking each exit as the
starting point, the Dijkstra algorithm and the group merging method are used to expand
the evacuation zone according to the path length, and the occupancy time of each exit is
updated; (2) Choose the exit with the minimum occupancy time for the next expansion of
zone until all nodes are assigned to different exits. If all nodes are extended, the process of
evacuation partitioning is completed.
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4.2. Algorithm Description

Different from the PSEP algorithm, the proposed algorithm carries out the partitioning
and the calculation of the delay time at the same time, while the PSEP algorithm performs
the partitioning first and then calculates the delay time. The detailed algorithm flow is
described as follows:

Input: indoor route network, the location and capacity of exits, the number and spatial
location of escape groups

Output: the escape path and delay time of each group, TET
Algorithm procedure:

1. Node operation, get arrays M and B;
2. Initialize the occupancy time of each exit as zero;
3. Select the exit E with the smallest occupancy time value, then use the Dijkstra algo-

rithm to find the group g closest to E in M;
4. Calculate the delay time of g, remove g from arrays M and B, then update the

occupancy time of the exit E;
5. If there is a node in the array B, go to the next step; otherwise, go to (7);
6. Group merging, seen as the previous section for specific steps;
7. If there is a node in the array M, go to (3); otherwise, go to the next step;
8. Calculate TET.

The flow chart of the algorithm above is shown in Figure 4.

Figure 4. The flow chart of the proposed algorithm.

4.3. Performance Evaluation Index

Optimal Performance Statics (OPS) and Mean Non-flow Statics (MNS) are usually
used to quantify the efficiency of multi-exit evacuation. Especially, OPS is mainly used to
evaluate the utilization ratio of all exits [13,38], whose definition is as follows:

OPS =
∑m

a=1(TET − EETa)

(m− 1) ∗ TET
(8)

where, EETa is the evacuation time of the last group in zone a, which is equal to the
evacuation time of zone a. The value of OPS is in the interval [0,1]. The closer OPS is to
0, the better the utilization ratio of each exit is. On the contrary, the closer it is to 1, the
lower the utilization ratio of other exits is, which indicates that most groups escape to the
same exit. In this paper, OPS is mainly used in scenarios with a large population. It should
be noted that the OPS of the evacuation in the group may be slightly larger than that in
individuals. In addition, TET is used to judge the quality of evacuation strategies. The
average path length of all evacuees is used to evaluate the safety during evacuation.
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4.4. Time Complexity

Before the group merging method is carried out, the improved Tarjan’s algorithm is
required first to find out all branch nodes with the time complexity O

(
N2).

Each time the evacuation zone is expanded, the exit with the minimum occupancy
time will be determined. The time complexity is O(m). It is assumed that there are Nb
nodes in array B. Each node is extended by the Dijkstra algorithm, and the path length of
all nodes in the network needs to be compared N times. In the best case, all nodes in array
B are extended in the first loop, whose time complexity is O

(
N2). In the worst case, no

group is extended by group merging, whose time complexity is O
(

N2 + NNb
)
. As Nb < N,

the final time complexity is O
(

N2).
After the process of evacuation partitioning is completed, the evacuation time of each

zone needs to be compared to get TET, and the time complexity is O(m).

5. Case Study

Two experiments of single-exit network evacuation and multi-exit network evacuation
were carried out respectively. The single-exit network evacuation experiment is used
to verify the correctness and computation efficiency of the proposed algorithm. The
multi-exit network evacuation is used to compare the evacuation efficiency of different
staged evacuation algorithms. The experimental building is the teaching building J6 of
Shandong University of Science and Technology (SDUST). Its indoor network is composed
of 818 nodes and 853 arcs, shown in Figure 5. Nodes of the network are divided into three
categories: source node, sink node, and intermediate node. The sink node is the exit of the
building. There are three exits E1, E2, and E3 on the first floor of the building. Once a group
has completely passed through the sink node, it is deemed that the group has escaped.
The route and delay time of the group will be recorded. The source node is the initial
location of one group. To accurately simulate evacuation situations in the real environment,
the principle of the setting source node is that it must be a room node. The number and
location of room nodes on different floors are shown in Table 2. The rest of the nodes are
intermediate nodes.

Figure 5. The experimental data. (a) J6 teaching building in Shandong University of Science and Technology; (b) the route
network model of J6.

Table 2. The information of room nodes in the building.

Floor Southwest Southeast Northwest Northeast North The Number of Nodes

1 13 14 17 17 6 67
2 13 14 17 17 7 68
3 13 14 17 17 7 68
4 13 14 16 17 7 67
5 13 14 17 17 7 68
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All involved algorithms were developed in C-Sharp and ran on the desktop computer
whose configuration was as follows: CPU i7-6700, main frequency 3.4 GHz, running
memory 8G, and Windows 7 operating system.

5.1. Single-Exit Network Evacuation Experiment
5.1.1. Influence of Evacuation Density on TET

Evacuation density ER = EL/NL, where EL is the length of all groups and NL is the
length of all arcs of the route network, which is 5443.3 m. In this experiment, we tested
the influence of the evacuation density on TET by setting different evacuation densities.
Exit E1 is set as the sink node with the capacity of 3 person/s, 6 person/s, and 9 person/s,
respectively, to conduct three single-exit experiments. There are 338 source nodes, each of
which represents an escape group. The speed of groups is set as a fixed value of 3 m/s. The
size of groups is set to (1,5), (6,10), (11,15), (16,20) and (21,25), and the corresponding ERs
are 18.6%, 48.7%, 80.7%, 111.8%, and 142.8%. Here, (1,5) indicates that the size of a group is
a random number in the range of 1 to 5. The comparisons of TET of three algorithms under
different evacuation densities are shown in Figure 6.

Figure 6. Comparisons of TET of three strategies under different evacuation densities. (a) The capacity
of exit is 3 person/s; (b) the capacity of exit is 6 person/s; (c) the capacity of exit is 9 person/s.

When the speed of groups remains the same, the TET of the single-exit network
evacuation experiment increases linearly with the increase of evacuation density. TET
obtained by the proposed algorithm is equal to that of the other two algorithms. This
is because only one evacuation zone in the single-exit network. The single-exit network
evacuation can be seen as a network problem with one sink node solved by the Dijkstra
algorithm, so the escape route of each group in the three algorithms is the same. The delay
time is calculated according to the principle of “first in first out, second delay”, so the delay
time of each group in the three algorithms is the same. As a result, TET is also completely
identical. The experiments of different capacities of the exit show that TET is significantly
shortened as the exit capacity increases. Furthermore, the group merging method doesn’t
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affect experimental results in the single-exit network evacuation, which indicates that it is
feasible.

5.1.2. Influence of Number of Groups on Efficiency of Algorithms

The efficiency of the proposed algorithm and the PSEP algorithm is compared in
Experiment 2. The number of groups is set to be 200, 400, 600, and 800, respectively. Adding
the sink node E1, the number of the total nodes of the corresponding route networks will
be 201, 401, 601, and 801, respectively. The size of groups is set to a random number among
(5,20), and the escape speed is fixed at 3 m/s in the experiment. The results are shown in
Figure 7.

Figure 7. The relationship between the number of groups and the execution time in two algorithms.

As shown in Figure 7, the execution time of the two algorithms is increasing as the
number of groups increases. Compared with the PSEP algorithm, node operation increases
the execution time before the implementation of group merging, but the group merging
method can reduce the search range of the Dijkstra algorithm. When the evacuation zones
are expanded, the delay time of each group is obtained in the proposed algorithm, which
shortens the execution time. In fact, there is little difference in the computation efficiency
of the two algorithms because their computation speeds are at the millisecond level.

5.2. Multi-Exit Network Evacuation Experiment

The PSEP algorithm adopts the partitioned and staged evacuation strategy to evacuate
occupants with high population density, but takes no consideration of the density and
spatial distribution of occupants and the capacity of exits. In fact, these factors have a
great impact on evacuation efficiency. Accordingly, the density and spatial distribution
of occupants are simulated by setting the room nodes with different sizes as the source
nodes. Three exits, E1, E2, E3, are set in different capacities, respectively. It is assumed
that the capacity of arcs is 9 person/s. The experimental route network model has five
floors, and each floor is divided into five types of room nodes in different directions:
southwest, southeast, northwest, northeast, and north. As shown in Figure 5a, there are
mostly conference halls and bathrooms in the south, where the density of occupants is
small, so they are treated as intermediate nodes. This is more conducive to the study of the
impact of the uneven spatial distribution of occupants on evacuation efficiency.

5.2.1. Influence of Distribution of Occupants on Evacuation Efficiency

The room nodes are set as the source nodes in different directions in the building
respectively. Sink nodes are set to E1, E2, and E3 with the capacity of 6 person/s, and
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other nodes are set to intermediate nodes. The size of groups is set to (1,10), and the speed
is 3 m/s. When the distribution of groups changes, TET and the average path length
of the three algorithms are compared. The influence of the distribution of occupants on
evacuation efficiency is analyzed, as shown in Figure 8 and Table 3. TETd, TETp, and
TETb represent TET of the distance-based staged algorithm, the PSEP algorithm, and the
proposed algorithm respectively. Ld, Lp, and Lb represent the average path length of all
groups of them.

Figure 8. Comparison of evacuation efficiency by three strategies in the condition that the distribution of occupants is
different. (a) TET of three algorithms; (b) the average path length of three algorithms.

Table 3. Statistical results of evacuation efficiency by the three algorithms.

Direction Southwest Southeast Northwest Northeast North

(TETd − TETb)/TETd 8.24% 0 12.70% 25.13% 1.63%
(TETp − TETb)/TETP 16.79% 19.97% 21.05% 34.29% 19.21%

(Ld − Lb)/Ld −7.26% 0 −0.43% −5.02% −0.51%
(Lp − Lb)/LP 35.22% 50.95% 14.47% 31.92% 23.28%

As shown in Figure 8, the TET of the proposed algorithm is the shortest and that of
the PSEP algorithm is the longest in all experiments. Compared with the PSEP algorithm,
the TET of the proposed algorithm is reduced by more than 16%. TET in the northeast
is up to the maximum reduction of 34.29%. Except for the experiment in the northeast,
the proposed algorithm is not far from the distance-based staged algorithm in terms of
TET and the average path length. In the experiment in the north, although the evacuation
density is half of the other directions, TET doesn’t decrease significantly in the proposed
algorithm, which means the evacuation density is low, and TET is mainly determined
by the length of the path. The groups in the southeast are far away from exits E1 and
E2, and they choose the nearest exit E3 to escape, so the result of the proposed algorithm
is the same as that of the distance-based staged algorithm. The average path length of
the PSEP algorithm is much longer than the other two algorithms in all experiments. In
the case of uneven distribution of occupants and low evacuation density, the evacuation
zones of the PSEP algorithm are expanded only according to the number of occupants.
As a result, many escape groups are not assigned the shortest path to the emergency exit,
which will increase the exposure time of evacuees in the hazardous environment during
evacuation. Compared with the distance-based staged algorithm, the proposed algorithm
further shortens TET by allocating some groups to non-nearest exits in the experiment in
the southwest, northwest, northeast, and north. When occupants are unevenly distributed,
the proposed algorithm is better than the other two algorithms.
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5.2.2. Influence of Evacuation Density on Evacuation Efficiency

The purpose of this experiment is to study the influence of evacuation density on the
TET of three algorithms under the condition of the uneven distribution of occupants. The
larger the size of groups is, the greater evacuation density is. To highlight the inhomo-
geneity of spatial distribution of occupants, the room nodes in the southwest district are
selected as the source nodes in the experiment. The size of groups is set to (1,5), (6,10),
(11,15), (16,20), (21,25), (26,30), (31,35), (36,40), (41,45), and (46,50) respectively, and the
speed is 3m/s. The distance-based staged algorithm and the PSEP algorithm are used to
compare with the proposed algorithm. The results are shown in Figure 9 and Table 4.

Figure 9. The influence of ER on TET in the evacuation experiment in the case of occupants
are in the southwest. (a) TET of three algorithms in different ERs; (b) compared with the
PSEP algorithm, the reduction rate of TET of the proposed algorithm.

Table 4. The OPS of three algorithms in different ERs.

Group Size (1, 5) (6, 10) (11, 15) (16, 20) (21, 25) (26, 30) (31, 35) (36, 40) (41, 45) (46, 50)

ER/% 3.58 9.55 15.52 21.49 27.46 33.44 39.41 45.38 51.35 57.32
OPSd 1 1 1 1 1 1 1 1 1 1
OPSp 0.3766 0.3769 0.3175 0.2650 0.2237 0.2190 0.2127 0.2242 0.2227 0.2039
OPSb 1 0.5078 0.1740 0.0955 0.0494 0.0540 0.0522 0.0538 0.0575 0.0460

As shown in Figure 9, the TET of the distance-based staged algorithm is less than
that of the PSEP algorithm when ER is 3.58%. This is because, in small-scale evacuation,
the path length has a greater impact on TET. As ER increases, TET of the distance-based
staged algorithm increases rapidly and the evacuation efficiency decreases significantly.
As shown in Table 4, all room nodes in the southwest are extended by the exit E1, and the
range of the evacuation zone does not change with the change of ER in the distance-based
staged algorithm. Its expansion mode is only related to the location of exits. When ER
is higher than 9.55%, the evacuation efficiency of the distance-based staged algorithm
drops, which is mainly affected by the number of occupants. In the PSEP algorithm, when
ER is low, there will be no serious congestion along the shortest path. If the process of
partitioning expands base on the number of occupants, some groups may not be assigned
to the closest exit. This will lead to a longer TET. However, with the increase of ER, if all
groups choose the nearest exit, there will be serious congestion during the evacuation,
resulting in a decline in evacuation efficiency. In this case, groups are equally allocated to
each exit according to the number of occupants, which improves the evacuation efficiency.
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Therefore, the PSEP algorithm is superior to the distance-based staged algorithm in the
case of relatively high evacuation density. As ER increases, OPS decreases in the PSEP
algorithm and finally tends to 0.2. In the proposed algorithm, when ER increases from
15.52% to 21.49%, the reduction rate of TET increases, and OPS is lower than 0.1. The
experimental results show that the proposed algorithm has better evacuation efficiency for
the change of evacuation density under the uneven distribution of occupants.

5.2.3. Influence of Exit Capacity on Evacuation Efficiency

All room nodes are set as the source nodes. The capacity of the exit E1 is 3 person/s,
6 person/s, and 9 person/s, respectively, and the capacity of other exits is 6 person/s. The
speed of groups is 3 m/s, and the size of groups is set to (1,5), (6,10), (11,15), (16,20), (21,25),
and (26,30), respectively. The purpose of this experiment is to test the performance of the
proposed algorithm in the condition that the capacity of exit is different. The experimental
results of the proposed algorithm and the PSEP algorithm are shown in Figure 10 and
Table 5.

Figure 10. Comparison of the relationship between ER and TET at different capacities of exit E1. (a)
The TET of the proposed algorithm with different ERs; (b) compared with the PSEP algorithm, the
reduction rate of TET of the proposed algorithm.

From Figure 10, the TET of the proposed algorithm linearly increases with the increase
of ER. When ER is fixed, increasing the capacity of exit E1 can shorten the TET. The impact
of the capacity of the exit E1 on the TET is not very obvious, but that of the PSEP algorithm
is very great. When the capacity of the exit E1 is 3 person/s, the reduction rate of TET of the
proposed algorithm is about 33%. In the PSEP algorithm, the occupants in the evacuation
zone E1, with the weakest traffic capacity, need more time to evacuate. In this case, TET is
equal to the evacuation time of zone E1, resulting in a large OPS value. When the capacity
of the exit E1 is 6 person/s, TETs and OPS values obtained by the two algorithms are
very close. The number of occupants in each zone becomes a key factor affecting TET if
the capacity of different exits is the same. When the capacity of the exit E1 is 9 person/s,
occupants in zone E1 complete evacuation first, and TET is equal to the evacuation time of
zone E2 or E3. TET of the proposed algorithm is reduced by 12% compared with that of
the PSEP algorithm. When the PSEP algorithm is used to formulate an evacuation plan,
the influence of the exit capacity on the evacuation efficiency is ignored. When ER is high,
TET is determined by the evacuation zone with the weakest traffic capacity. However,
the capacity of exit E1 does not affect the OPS value obviously, which is lower than 0.1.
The proposed algorithm can dynamically adjust the number of occupants in each zone
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according to the exit capacity to balance the evacuation time of each zone, providing a
stable and efficient evacuation plan.

Table 5. The OPS in two algorithms with different capacities of exit E1.

Group Size ER/% The Capacity of Exit E1 OPSp OPSb

(1,5) 18.6
3 0.3790 0.0277
6 0.1136 0.0556
9 0.1716 0.0819

(6,10) 49.7
3 0.4253 0.0211
6 0.0670 0.0534
9 0.2096 0.0802

(11,15) 80.7
3 0.4321 0.0204
6 0.0657 0.0556
9 0.2080 0.0786

(16,20) 111.8
3 0.4327 0.0202
6 0.0651 0.0594
9 0.2093 0.0749

(21,25) 142.8
3 0.4332 0.0198
6 0.0646 0.0604
9 0.2117 0.0794

(26,30) 173.9
3 0.4333 0.0244
6 0.0667 0.0571
9 0.2114 0.0755

5.2.4. Evacuation Process Simulation

To visually verify the effectiveness of the proposed algorithm, we simulated the
emergency evacuation process using our software. In the simulation scene, different colors
of lines indicate different groups, which are produced randomly by the simulating system.
The length represents the length of a group, and the width indicates the traffic flow of a
group. There are 383 source nodes and three sink nodes in the testing network. The capacity
of exit E1 is 3 person/s, and that of other exits is 6 person/s. The size of groups decreases
with the height of the floor, and the speed is 3 m/s. Table 6 statistics the information of
each zone. The evacuation process of the PSEP algorithm is shown in Figure 11. That of
the proposed algorithm is shown in Figure 12.

Table 6 shows the number of groups, the number of occupants in different zones, and
their evacuation time of the PSEP algorithm and the proposed algorithm respectively. It
can be seen that most of the groups belong to zone E1, but each zone has nearly the same
number of occupants when the PSEP algorithm is adopted. This means that many groups
on the high floor are extended by zone E1. The evacuation strategy of “time equalization”
makes many nodes originally belonging to zone E1 assigned to zones E2 and E3, so that
each evacuation zone has approximately equal evacuation time. The evacuation time of
zones E2 and E3 increases by 30 s compared with that of the PSEP algorithm, but the
evacuation time of zone E1 reduces by 180 s.

Table 6. The number of groups, the number of occupants in different zones, and their evacuation
time of the PSEP algorithm and that of the proposed algorithm.

ID of Exits E1 E2 E3

PSEP algorithm
The number of groups 138 88 112

The number of occupants 1451 1469 1501
Evacuation time/s 487.17 250.11 254.27

The proposed
algorithm

The number of groups 67 110 161
The number of occupants 879 1770 1772

Evacuation time/s 296.50 300.28 299.43
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Figure 11. The simulation of the evacuation process planned by the PSEP algorithm.

Figure 12. The simulation of the evacuation process planned by the proposed algorithm.
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The visual simulation process of the PSEP algorithm is shown in Figure 11. It is
assumed that the start time of evacuation is 0. All occupants in zones E2 and E3 already
have completed evacuation after 280 s. However, some groups on floor 5 still have not
left safety exits after 420 s. Therefore, the evacuation strategy planned by the PSPE algo-
rithm under this condition is not optimistic. By comparison, the strategy of the proposed
algorithm makes all groups complete evacuation after 300.28 s, as shown in Figure 12. If
the capacity of exits is considered, the evacuation time of the three zones is still almost
equal. The proposed algorithm improves the utilization rate of exits and greatly reduces the
evacuation time. On the whole, the proposed algorithm is better than the other two staged
evacuation algorithms, which provides a new method for indoor emergency evacuation.

6. Conclusions

The density and spatial distribution of occupants and the capacity of exits have an
impact on emergency evacuation indoors. Based on the analysis of staged evacuation
algorithms, a novel multi-zone staged indoor emergency evacuation algorithm based on
time equalization is proposed. It can perform excellently in various evacuation scenarios
and significantly shorten TET. In the partitioning process, a group merging method is
proposed to overcome the drawbacks of the PSEP algorithm that causes unreasonable
expansion of evacuation zones. In addition, a “delayed waiting” strategy is adopted to
ensure that there will be no path conflicts during the evacuation process. The strategy
makes the indoor emergency evacuation more orderly, safe, and efficient. In addition, the
proposed method can also be applied to outdoor emergency evacuation, which has strong
operability and robustness.

As a staged evacuation method considering the balance of time, the proposed algo-
rithm can get better planning results. However, it does not take into account the real-time
state of the route network. In the case of an actual fire disaster, some nodes and arcs in
the network may become impassable. Therefore, how to combine the staged evacuation
strategy with dynamic path planning needs further research. In addition, the strategy of
waiting in the original place of emergency needs to be further discussed, because it may be
unsafe and does not apply to the occurrence of local disasters such as an indoor fire.

Author Contributions: Conceptualization, Litao Han; methodology, Litao Han and Cheng Gong;
software, Cheng Gong, Lei Gu, Hu Qiao and Mengfan Liu; validation, Cheng Gong and Lei Gu;
writing–original draft, Litao Han, Cheng Gong and Aiguo Zhang; writing–review and editing, Litao
Han and Aiguo Zhang. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of Shandong Province (Grant
No. ZR2017MD003) and the Natural Science Foundation of Fujian Province (Grant No. 2020J01262).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Murray-Tuite, P.; Wolshon, B. Evacuation transportation modeling: An overview of research, development, and practice. Transp.

Res. Part C Emerg. Technol. 2013, 27, 25–45. [CrossRef]
2. Gao, J.; Zhang, J.; He, J.; Gong, J.; Zhao, J. Experiment and simulation of pedestrian’s behaviors during evacuation in an office.

Physica A 2020, 545, 123749. [CrossRef]
3. Kodur, V.K.R.; Venkatachari, S.; Naser, M.Z. Egress Parameters Influencing Emergency Evacuation in High-Rise Buildings. Fire

Technol. 2020, 56, 2035–2057. [CrossRef]
4. Rozo, K.R.; Arellana, J.; Santander-Mercado, A.; Jubiz-Diaz, M. Modelling building emergency evacuation plans considering the

dynamic behavious of pedestrians using agent-based simulation. Saf. Sci. 2019, 113, 276–284. [CrossRef]
5. Liu, H.; Xu, B.; Lu, D.J.; Zhang, G.J. A path planning approach for crowd evacuation in buildings based on improved artificial bee

colony algorithm. Appl. Soft Comput. 2018, 68, 360–376. [CrossRef]
6. Li, X.; Li, Q.; Xu, X.; Xu, D.; Zhang, X. A novel approach to developing organized multispeed evacuation plans. Trans. GIS 2018,

22, 1205–1220. [CrossRef]
7. Cheng, Y.; Zheng, X.P. Can cooperative behaviors promote evacuation efficiency? Physica A 2018, 492, 2069–2078. [CrossRef]

http://doi.org/10.1016/j.trc.2012.11.005
http://doi.org/10.1016/j.physa.2019.123749
http://doi.org/10.1007/s10694-020-00965-3
http://doi.org/10.1016/j.ssci.2018.11.028
http://doi.org/10.1016/j.asoc.2018.04.015
http://doi.org/10.1111/tgis.12459
http://doi.org/10.1016/j.physa.2017.11.124


ISPRS Int. J. Geo-Inf. 2021, 10, 499 18 of 18

8. Yang, L.Z.; Zhao, D.L.; Li, J.; Fang, T.Y. Simulation of the kin behavior in building occupant evacuation based on Cellular
Automaton. Build. Environ. 2005, 40, 411–415. [CrossRef]

9. Wang, J.H.; Chen, M.M.; Yan, W.Y.; Zhi, Y.R.; Wang, Z.R. A utility threshold model of herding–panic behavior in evacuation under
emergencies based on complex network theory. Simulation 2017, 93, 123–133. [CrossRef]

10. Zheng, X.P.; Cheng, Y. Conflict game in evacuation process: A study combining Cellular Automata model. Physica A 2011, 390,
1042–1050. [CrossRef]

11. Yang, X.X.; Yang, X.L.; Wang, Q.L. Pedestrian evacuation under guides in a multiple-exit room via the fuzzy logic method.
Commun. Nonlinear Sci. Numer. Simul. 2019, 83, 105138. [CrossRef]

12. Guo, H.X.; Zeng, Y.; Chen, W.M. Research on indoor emergency evacuation simulation of multi-exit based on social force model.
J. Syst. Simul. 2021, 33, 721–731.

13. Wang, J.; Guo, J.; Wu, X.M.; Guo, X.H. Study on intelligent algorithm of guide partition for emergency evacuation of a subway
station. IET Intell. Transp. Syst. 2020, 14, 1440–1446. [CrossRef]

14. Lei, Y.; You, L.; Wu, Q.H.; Wei, J.; Hu, J.; Wang, J.; Liang, Y. A study of pedestrian evacuation model of impatient queueing with
cellular automata. Phys. Scr. 2020, 95, 095211.

15. Jin, B.W.; Wang, J.H.; Wang, Y.; Gu, Y.M.; Wang, Z.R. Temporal and spatial distribution of pedestrians in subway evacuation
under node failure by multi-hazards. Saf. Sci. 2020, 127, 104695. [CrossRef]

16. Xu, X.; Shi, C.L.; Wu, B.B.; He, L. Study on the optimization algorithm of the crowd partition evacuation. J. Saf. Sci. Technol. 2016,
12, 153–158.

17. Yue, H.; Zhang, B.Y.; Shao, C.F.; Xing, Y. Exit selection strategy in pedestrian evacuation simulation with multi-exits. Chin. Phys.
B 2014, 23, 050512. [CrossRef]

18. Kurdi, H.; Almulifi, A.; Al-Megren, S.; Youcef-Toumi, K. A Balanced Evacuation Algorithm for Facilities with Multiple Exits. Eur.
J. Oper. Res. 2020, 289, 285–296. [CrossRef]

19. Jin, L.H.; Yi, X.Y.; Yin, S.P.; Chen, S.; Zheng, X.Z.; Wang, Y.L. Study on topological analysis model of streamline load for crowd
evacuation in public buildings. J. Saf. Sci. Technol. 2020, 16, 30–36.

20. Ding, Y.C.; Yang, L.Z.; Weng, F.L.; Fu, Z.J.; Rao, P. Investigation of combined stairs elevators evacuation strategies for high rise
buildings based on simulation. Simul. Model. Pract. Theory 2015, 53, 60–73. [CrossRef]

21. Chen, X.F.; Yu, J.Q. A comparative study on safety evacuation strategies for super high rise office buildings. Fire Sci. Technol. 2017,
36, 610–612.

22. Zhang, J.H.; Liu, Y.; Zhao, Y.X.; Deng, T.H. Emergency evacuation problem for a multi-source and multi-destination transportation
network: Mathematical model and case study. Ann. Oper. Res. 2018, 291, 1153–1181. [CrossRef]

23. Li, X.; Li, Q.P.; Claramunt, C. A time-extended network model for staged evacuation planning. Saf. Sci. 2018, 108, 225–236. [CrossRef]
24. Oh, C.H.; Kim, M.H.; Kim, B.; Ko, Y.M. An Efficient Building Evacuation Algorithm in Congested Networks. IEEE Access 2019, 7,

169480–169494. [CrossRef]
25. Kawsar, L.A.; Ghani, N.A.; Kamil, A.A.; Mustafa, A. Optimization based controlled evacuation. J. Intell. Transp. Syst. 2019, 23,

477–498. [CrossRef]
26. Noh, D.; Koo, J.; Kim, B. An efficient partially dedicated strategy for evacuation of a heterogeneous population. Simul. Model.

Pract. Theory 2016, 62, 157–165. [CrossRef]
27. Liu, W.Y.; Wu, L. A dynamic evacuation algorithm in fire situation based on CCRP. J. Saf. Sci. Technol. 2020, 16, 32–37.
28. Mirahadi, F.; McCabe, B.Y. EvacuSafe: A real-time model for building evacuation based on Dijkstra’s algorithm. J. Build. Eng.

2020, 34, 101687. [CrossRef]
29. Liu, Z.S.; Zhang, A.S.; Wang, W.S.; Wang, J.J. Dynamic Fire Evacuation Guidance Method for Winter Olympic Venues Based on

Digital Twin-Driven Model. J. Tongji Univ. Nat. Sci. 2020, 48, 962–971.
30. Zheng, X.Z.; Cai, L.L.; Zhang, M.; Jin, L.H.; Chen, Y. Emergency evacuation path optimization model under multi-export

conditions. China Saf. Sci. J. 2019, 29, 180–186.
31. Yang, J.F.; Gao, Y.; Wang, H.J. Multi-storied Building Emergency Evacuation Model and Algorithm. J. Syst. Simul. 2014, 26,

267–273.
32. Xiong, Q.; Zhu, Q.; Du, Z.Q.; Zhu, X.Y.; Zhang, Y.T.; Niu, L.; Li, Y.; Zhou, Y.; Kainz, W. A Dynamic Indoor Field Model for

Emergency Evacuation Simulation. ISPRS Int. J. Geo Inf. 2017, 6, 104. [CrossRef]
33. Cao, Y.X.; Luo, C.M.; Liu, Y.Y.; Teng, S.R.; Xin, G.F. Path intelligent optimization for dense crowd emergency evacuation in

heritage buildings. J. Cult. Herit. 2020, 47, 180–187. [CrossRef]
34. Jin, H.L.; Wang, Y.L.; Yuan, M.; Chen, M.L. Research on escape path planning algorithm for high-rise buildings based on A*. Bull.

Surv. Map. 2019, 0, 17–21, 25.
35. Taneja, L.; Bolia, N.B. Network redesign for efficient crowd flow and evacuation. Appl. Math. Model. 2018, 53, 251–266. [CrossRef]
36. Han, L.T.; Guo, H.; Zhang, H.S.; Kong, Q.L.; Zhang, A.G.; Gong, C. An Efficient Staged Evacuation Planning Algorithm Applied

to Multi-Exit Buildings. ISPRS Int. Geo Inf. 2020, 9, 46. [CrossRef]
37. Li, X.; Huang, B.; Liu, Z.J.; Zhang, X.H.; Sun, J. A novel method for planning a staged evacuation. J. Syst. Sci. Complex. 2012, 25,

1093–1107. [CrossRef]
38. Wang, Y.C.; Ma, J.X.; Lu, T.; Liu, Y.H.; Wang, W.Q. Simulation study on fire location and crowd evacuation route in highway

tunnel. J. Saf. Sci. Technol. 2019, 15, 38–44.

http://doi.org/10.1016/j.buildenv.2004.08.005
http://doi.org/10.1177/0037549716678659
http://doi.org/10.1016/j.physa.2010.12.007
http://doi.org/10.1016/j.cnsns.2019.105138
http://doi.org/10.1049/iet-its.2019.0655
http://doi.org/10.1016/j.ssci.2020.104695
http://doi.org/10.1088/1674-1056/23/5/050512
http://doi.org/10.1016/j.ejor.2020.07.012
http://doi.org/10.1016/j.simpat.2015.01.004
http://doi.org/10.1007/s10479-018-3102-x
http://doi.org/10.1016/j.ssci.2017.08.004
http://doi.org/10.1109/ACCESS.2019.2955477
http://doi.org/10.1080/15472450.2018.1562348
http://doi.org/10.1016/j.simpat.2016.02.002
http://doi.org/10.1016/j.jobe.2020.101687
http://doi.org/10.3390/ijgi6040104
http://doi.org/10.1016/j.culher.2020.06.007
http://doi.org/10.1016/j.apm.2017.08.030
http://doi.org/10.3390/ijgi9010046
http://doi.org/10.1007/s11424-012-0257-4

	Introduction 
	Related Work 
	Methodology 
	Algorithm 
	Algorithm Idea 
	Algorithm Description 
	Performance Evaluation Index 
	Time Complexity 

	Case Study 
	Single-Exit Network Evacuation Experiment 
	Influence of Evacuation Density on TET 
	Influence of Number of Groups on Efficiency of Algorithms 

	Multi-Exit Network Evacuation Experiment 
	Influence of Distribution of Occupants on Evacuation Efficiency 
	Influence of Evacuation Density on Evacuation Efficiency 
	Influence of Exit Capacity on Evacuation Efficiency 
	Evacuation Process Simulation 


	Conclusions 
	References

