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Abstract: The remote-sensing ecological index (RSEI), which is built with greenness, moisture,
dryness, and heat, has become increasingly recognized for its use in urban eco-environment quality
assessment. To improve the reliability of such assessment, we propose a new RSEI-based urban eco-
environment quality assessment method where the impact of RSEI indicators on the eco-environment
quality and the seasonal change of RSEI are examined and considered. The northern Chinese
municipal city of Tianjin was selected as a case study to test the proposed method. Landsat images
acquired in spring, summer, autumn, and winter were obtained and processed for three different
years (1992, 2005, and 2018) for a multitemporal analysis. Results from the case study show that
both the contributions of RSEI indicators to eco-environment quality and RSEI values vary with the
season and that such seasonal variability should be considered by normalizing indicator measures
differently and using more representative remote-sensing images, respectively. The assessed eco-
environment quality of Tianjin was, overall, improving owing to governmental environmental
protection measures, but the damage caused by rapid urban expansion and sea reclamation in the
Binhai New Area still needs to be noted. It is concluded that our proposed urban eco-environment
quality assessment method is viable and can provide a reliable assessment result that helps gain a
more accurate understanding of the evolution of the urban eco-environment quality over seasons
and years.

Keywords: urban eco-environment quality; remote sensing ecological index; seasonal variability

1. Introduction

The eco-environment is defined as “the total quantity and quality of water resources,
land resources, biological resources and climate resources that affect human survival
and development.” [1]. It is a social-economic-natural compound system and an essen-
tial element for human subsistence [1]. Unlike the environment, which only contains
non-biological factors, the eco-environment is a holistic system with complex ecological
relationships [2]. Nowadays, urban eco-environment quality plays an increasingly im-
portant role in urban eco-environmental processes, climatic change, land use, and human
health [1–3]. While rapid urbanization accompanies economic prosperity, its negative
effects that threaten sustainable urban development cannot be ignored ranging from land
degradation to climate warming [4]. How to scientifically determine the state of urban
eco-environment quality as well as provide a quantitative analysis is among top priorities
and has been receiving increased attention.
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Traditionally, semi-quantitative methods such as the analytical hierarchy process
(AHP) and the weighted linear combination (WLC) are used for eco-environment quality
assessment [5,6]. They are considered subjective and less applicable when many indicators
are required [7]. These limitations can, however, be to some extent overcome by remote
sensing. With its capability of imaging large areas in a repeated manner, remote sensing
has now been widely applied to a variety of urban eco-environment quality studies and ap-
plications including urban eco-environment quality assessment. Many indicators required
in the assessment can be directly or indirectly derived from remote-sensing image data at
different sensor resolutions over a long period, allowing the assessment to be conducted on
various spatial and temporal scales [8]. For this reason, over the past two decades, remote
sensing has often been combined with various assessment methods [9,10].

Some studies used remote sensing to obtain a single eco-environmental assessment
factor, such as a vegetation index or land surface temperature, for assessing the urban
eco-environment quality in areas like forests, wetlands, and cities [11–13]. But a sin-
gle eco-environmental assessment factor is insufficient for characterizing complex ur-
ban eco-environmental quality and fails to consider the contribution of many other eco-
environmental assessment factors to an ecosystem. In response to those challenges, Xu
et al. proposed a remote-sensing ecological index (RSEI) with four indicators representing
greenness, humidity, heat, and dryness respectively and tested it to Xiong’an New Area,
Fuzhou, and many other areas in China [14–16]. They found that urban expansion is
responsible largely for increasing impervious surfaces and deteriorating surface urban
eco-environmental quality [17]. In comparison with the original ecological index in China’s
Technical Criterion for Ecosystem Status Evaluation (Trial) (HJ192–2015), the RSEI is con-
sidered easier for application and more convenient for updates in the need of monitoring a
changing urban eco-environment quality [18].

In recent years, the RSEI has grown in popularity and been frequently adopted for
urban eco-environment quality assessment in individual cities such as Pingtan Compre-
hensive Pilot Zone [19] in China, regions such as the Beijing–Tianjin–Hebei region [20], the
Guangdong–Hong Kong–Macau Bay area [21], the Chaohu basin [22,23], and the Beijing–
Hangzhou Canal coast [24], and even at a national scale [25]. It has also been applied
by international researchers, for example, to Gaomishan City in Iran [26], the Samara
region of Russia [27], as well as different cities in the United States [28] and Europe [29].
These studies usually calculated annual RSEI from individual remote-sensing images and
then performed a multi-year analysis of the change in eco-environmental conditions [30].
Because eco-environmental conditions in a given area do not necessarily remain the same
throughout a year, there is a need to consider the seasonal and even monthly variability of
RSEI if remote-sensing image data become available. In addition, the principal component
analysis (PCA) method is a multi-dimensional data compression technology that can re-
move any impact of co-linearity between the four variables [31], and these studies rarely
examined the nature of the contribution of the indicators to the eco-environment quality
before the implementation of principal component analysis, and the RSEI model might be
inappropriately constructed for not correcting the direction of eigenvectors [22].

In this study, therefore, we propose a new urban eco-environment quality assessment
method using the RSEI where seasonal variability is considered. The method was tested
in Tianjin, a municipal city in North China. Landsat data acquired in spring, summer,
autumn, and winter of three different years (i.e., 1992, 2005, and 2018, for the availability
and quality of image data) were obtained and processed for a multi-temporal analysis.
The selected years could help create a timeline for Tianjin’s eco-environmental quality
change at intervals of 13 years. The specific objectives of the study are as follows: (1)
optimizing the normalization of the individual indicators of the RSEI model; (2) examining
the seasonal variability of RSEI and its impact on the assessment; and (3) characterizing
the spatiotemporal change of Tianjin’s urban eco-environment quality over the 26 years.
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2. Study Area

As one of China’s four municipalities, Tianjin (38◦34′–40◦15′W, 116◦43′–118◦04′ E) cov-
ers a geographical area of 11,916.85 km2, located in North China on the shore of the Bohai
Sea and bordered by Hebei province and Beijing to the north, west, and south (Figure 1a).
Tianjin is generally flat with an average altitude of 3.3 m but hilly in the far north—its
highest point is Jiuding Peak in the district of Jizhou, at an altitude of 1078.5 m. Due to
its situation between the mid-latitude coastal and inland transition zone, Tianjin has a
typical warm temperate semi-humid continental monsoon climate with an average annual
maximum temperature of 18.6 ◦C, an average annual minimum temperature of 9.7 ◦C, and
average annual precipitation of 43.2 mm [32]. Seasons are distinct in Tianjin with warm
and rainy summers and cold and dry winters (Figure 2).
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Figure 1. Study area: (a) Tianjin borders Hebei and Beijing to the norther, west, and south; (b) Tianjin consists of 16 districts
which are grouped into four areas by location (full names tabulated in Table 1).
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Figure 2. The weather of Tianjin in different months (1981–2010) [32].
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Table 1. The districts of Tianjin.

Area District

The Central Urban Area Heping (HP), Hongqiao (HQ), Hebei (HB), Hexi (HX), Hedong (HD), Nankai (NK)

The Around-Center Area Jinnan (JN), Dongli (DL), Beichen (BC), Xiqing (XQ)

The Binhai New Area Binhaixinqu (BH)

The Remote Suburbs Area Ninghe (NH), Jinghai (JH), Baodi (BD),Wuqing (WQ), Jizhou (JZ)

As of 2016, Tianjin has jurisdiction over 16 municipal districts, traditionally grouped
into four (Figure 1b), namely the Central Urban Area, the Around-Center Area, the Bin-
hai New Area, and the Remote Suburbs Area (Table 1). Thanks to its rapid economic
development and urban expansion in recent years, Tianjin has ranked as one of China’s
new 15 first-tier cities from 337 Chinese cities in 2019 [33,34]. Its population increased
from 9.204 million in 1992 to 15.596 million in 2018 and its economy, measured by GDP
(gross domestic product) soared from 41.124 billion to 1880.964 billion RMB during the
same period [35,36]. However, such socioeconomic prosperity came at the cost of tremen-
dous consumption of resources and prominent environmental degradation. As such, the
sustainable development of Tianjin was under rising pressure. The eco-environment has
been reported to be generally improved [37]. Examining what Tianjin has experienced
in the past three decades would help reveal the change of eco-environment in a typical
Chinese city.

3. Data and Methods
3.1. Remote-Sensing Data

A total of 42 Landsat 5 and Landsat 8 satellite images for each season of 1992, 2005,
and 2018 (Table 2) were collected for extracting different measures for RSEI in this study.
They were acquired mostly in March for spring, in late May and early June for summer,
mostly in September for autumn, and all in December for winter. It would be ideal if
images were acquired on the same or very similar dates in different years, but it is not
realistic because insufficient good-quality images are available for a vast region like Tianjin.
Meanwhile, Landsat 7 image data were not considered in this study because they have had
data gaps since May 2003 due to a technical issue. The images listed in Table 2 were the
best selection that could be made at the time of the study.

Table 2. Landsat image data used in the study.

Year Season Path Row Imaging Date

1991/
1992/
1993

Spring 122 32/33 22 March 1991
123 32/33 13 March 1991

Summer 122 32/33 27 May 1992

Autumn
122 32/33 3 September 1993
123 32/33 25 August 1993

Winter
122 32/33 21 December 1992
123 32/33 28 December 1992

2004/
2005/
2006

Spring 122 32/33 28 March 2005
123 32/33 19 March 2005

Summer
122 32/33 28 May 2004
123 32/33 19 May 2004

Autumn 122 32/33 4 September 2005

Winter 122 32/33 28 December 2006
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Table 2. Cont.

Year Season Path Row Imaging Date

2018

Spring 122 32/33 16 March 2018
123 32/33 8 April 2018

Summer
122 32/33 4 June 2018
123 32/33 27 June 2018

Autumn
122 32/33 24 September 2018
123 32/33 1 October 2018

Winter
122 32/33 13 December 2018
123 32/33 4 December 2018

Before extracting the measures required for constructing RSEI, these images were
pre-processed for atmospheric correction (FLAASH), geo-referencing (image-to-image),
and seamless mosaic, and image clipping [28,38,39]. Although different Landsat im-
age data were used in this study, it is believed that this has a minimal effect on index
calculation [38,39].

3.2. Remote-Sensing Ecological Index (RSEI) Indicators

The remote-sensing ecological index (RSEI) is a comprehensive index for rapidly
detecting the eco-environmental conditions of a geographical region solely using remote-
sensing data. It involves greenness, moisture, dryness, and heat, each indicating different
aspects of the eco-environment, namely green vegetation, soil moisture, built-up areas
and ambient temperature, respectively [14]. Each of the indicators is quantified by a
measure that can be derived from remote-sensing images. Greenness, moisture, and
dryness are represented by the normalized vegetation index (NDVI), the wet component
of a tasseled cap transformation (wetness), and the normalized difference building-soil
index (NDBSI), which is the average of the index-based built-up index (IBI) and soil index
(SI) [16] respectively. Meanwhile, heat is characterized by land surface temperature (LST).
Each measure is explained below.

3.2.1. Greenness—Normalized Difference Vegetation Index (NDVI)

The normalized difference vegetation index (NDVI) was proposed by Rouse et al.
(1974) [40] and has become the most widely used vegetation index in remote sensing for
detecting the existence and amount of green vegetation on land surfaces [41–43]. It was
used by [17] here to characterize greenness in the remote sensing ecological index, given
by following Equation (1):

NDVI = (ρNIR − ρred)/(ρNIR + ρred). (1)

where ρNIR and ρred are the reflectance in the near-infrared (NIR) and red bands of Landsat
image data, respectively.

3.2.2. Moisture—Wetness (Wet Component)

Moisture can be extracted from Landsat image data by tasseled cap transformation
and represented by the resultant wet component [17]; however, the coefficients of such
component vary with the sensor. The wet component (hereinafter as Wetness) was calcu-
lated for Landsat TM data using Equation (2) by Crist, Eric P. [44] and Equation (3) by Baig
MHA et al. [45]. for Landsat OLI data:

WetTM = ρblue × 0.0315 + ρgreen × 0.2021 + ρred × 0.3102 + ρNIR × 0.1594− ρSWIR1 × 0.6806− ρSWIR2 × 0.6109 (2)

WetOLI = ρblue × 0.1511 + ρgreen × 0.1973 + ρred × 0.3283 + ρNIR × 0.3407− ρSWIR1 × 0.7117− ρSWIR2 × 0.4559 (3)
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where ρi is the reflectance in different bands of TM and OLI data (SWIR stands for short-
wave infrared).

3.2.3. Dryness—Normalized Difference Building-Soil Index (NDBSI)

The normalized difference building-soil index (NDBSI), which has been reported
effective in measuring dryness [16], is computed by averaging the index-based built-up
index (IBI) and soil index (SI) [46,47], each characterizing the conditions of built-up areas
and bare land. The three indices are given by:

IBI =
2ρSWI1

ρSWI1+ρNIR
− ρNIR

ρNIR+ρRed
− ρGreen

ρGreen+ρSWI1
2ρSWI1

ρSWI1+ρNIR
+ ρNIR

ρNIR+ρRed
+ ρGreen

ρGreen+ρSWI1

. (4)

SI =
(ρSWI1 + ρRed)− (ρNIR + ρBlue)

(ρSWI1 + ρRed) + (ρNIR + ρBlue)
(5)

NDBSI =
IBI + SI

2
(6)

where ρ is the reflectance in different bands of Landsat image data.

3.2.4. Heat—Land Surface Temperature (LST)

Land surface temperature (LST), representing the heat indictor, can be estimated by
the method proposed by Jiménez-Muñoz et al. [48], which has been used in many studies
for deriving land surface temperature from Landsat image data [27,29]. The formula is as
Equation (7):

T =
TB

1 + λTB
ρ ln ε

(7)

where T is LST in K, TB is brightness temperature in K at the sensor, λ. is the effective
wavelength of the thermal infrared band, ε is land surface emissivity (LSE) [49], and
ρ = 1.438 × 10−2 mK. For the details of this method, readers are referred to Sobrino
et al. [49–51] and Hu and Xu [17].

3.3. RSEI Model
3.3.1. Normalization of the Measures

Since each of the four measures was acquired in different units (e.g., LST in Celsius),
it is advisable to normalize them to avoid dimensional inconsistency. In this study, the
min-max normalization method [14] was adopted where all the normalized values range
between 0 and 1. While Equation (8) was applied to positive contributors to the urban
eco-environment quality, Equation (9) was applied to negative contributors:

Yi =
Xi −Mini

Maxi −Mini
(8)

Yi =
Maxi − Xi

Maxi −Mini
(9)

where Xi and Yi are the original and normalized values of the measures respectively and
Maxi and Mini are the maximum and minimum values of the measures, respectively.
This method was used in previous studies for normalizing different measures [22,52]. As
Yang et al. [53] have shown that greenness is both a positive contributor and the largest
contributor to the urban eco-environment quality, the greenness measure was treated as a
benchmark here and its correlation with the other measures helped to determine the nature
of their contributions to the urban eco-environment quality. For this reason, a correlation
analysis was conducted among the measures. Measures that are positively correlated
with greenness are considered to contribute positively to urban ecological quality using
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Equation (8), and measures that are negatively correlated with greenness are considered to
contribute negatively to urban ecological quality using Equation (9).

3.3.2. Water Masking

Because the wet component obtained by tasseled cap transformation is mainly asso-
ciated with the humidity of vegetation and soil [54] and because RSEI is more suitable
for land surfaces than for large water areas, water bodies should be masked out from
the images of the study area. Considering that official water boundaries are not always
available for historical water bodies and mostly do not contain small water bodies but large
ones such as rivers and lakes, it was decided to apply the modified normalized difference
water index (MNDWI) [14] to mask out water bodies in the study area.

MNDWI =
ρgreen − ρSWIR1

ρgreen + ρSWIR1
(10)

where ρgreen and ρSWIR1 are the reflectance in the green and SWIR1 bands of Landsat
image respectively.

3.3.3. Integration of the Measures

Regarding how the RSEI model was constructed, Xu et al. [14] excluded traditional
weight-based methods such as the analytic hierarchy process (AHP) because bias based on
the researcher’s own knowledge background might be introduced and proposed the use
of principal component analysis (PCA). Through PCA, most of the normalized measures
are explained by the first principal component (PC1). For this reason, PC1 can be used
to represent the RSEI. The importance of each normalized measure is weighted by their
respective loadings to PC1:

RSEI = PC1 = a× nNDVI + b× nWetness + c× nNDBSI + d× nLSI (11)

where a, b, c, and d, are the loadings of the normalized measures to PC1 obtained by
decomposing the covariance matrix, which could be used as their corresponding weights
for calculating RSEI. PC1 is the largest contributing eigenvector obtained by integrating
multidimensional measures through principal component analysis, and its contribution
can often reach over 80% [14]. However, it is noted that the above weights vary with
imagery, which does not allow a direct comparison of multitemporal RSEI [22]. To address
this concern, we utilized a simple method to determine the weights for seasonal RSEI [22].
For example, the weights for spring are given by:

aspring =
a1992 spring + a2005 spring + a2018 spring

3
(12)

aspring is the average of the spring nNDVI weights over the 3 years. The weights for
summer, autumn, and winter can be obtained similarly.

The resultant RSEI was also normalized to the 0–1 range. As such, a higher RSEI value
indicates better eco-environment quality and vice versa. After the generation of seasonal
RSEI maps, annual RSEI maps were produced by averaging four respective seasonal RSEI
maps. For a comparative analysis, RSEI was classified into five levels, namely 0.0–0.2
(Poor), 0.2–0.4 (Fair), 0.4–0.6 (Moderate), 0.6–0.8 (Good) and 0.8–1.0 (Excellent) using the
equal interval classification method like [14,27,55]. This method allows data produced in
different years to be directly compared for a multitemporal analysis [14,27].

4. Results and Discussion

Before analyzing the results, it is still important to emphasis that the data used in
this study are not perfect and not very representative, but it is the best solution given
various constraints.
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4.1. RSEI Indicators

With the methods described in Section 3.2, RSEI indicators were derived and their
mean values of the entire study area in each season of each year are shown in Figure 3. The
seasonal variability of these measures is clear from Figure 3. While NDVI, wetness, and
LST initially increased and then decreased over the season, NDBSI showed an opposite
trend. Autumn saw the highest NDVI and wetness but the lowest NDBSI. Not surprisingly,
the highest LST occurred in summer. Annually, these measures did not show a simple
increasing or decreasing trend but, obviously, the measures in 2018 were mostly higher
than in earlier years.
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Figure 3. Average normalized difference vegetation index (NDVI), Wetness, normalized difference building-soil index
(NDBSI), and land surface temperature (LST) of the study area in each season of each year.

The results of the correlation analysis are shown in Table 3. Correlation between NDVI
and other measures differed between the four seasons. NDVI was positively correlated
with wetness in warm seasons (summer and autumn) but negatively in cool seasons (spring
and winter). However, NDVI was negatively correlated with NDBSI and LST in warm
seasons but positively in cool seasons. Obviously, the distribution of positive and negative
values in spring and winter is different from that in summer and autumn. This suggests
that the contributions of wetness, dryness, and heat to urban eco-environment quality vary
with the season. This finding is different from previous studies [14,17,55] that assumed a
fixed contribution.

Figure 4 illustrates the different distributions of the four normalized measures in
spring and winter compared with summer and autumn in Tianjin. As the normalization
method for the measures depends on the correlations shown in Table 3, to avoid repeating
such observations, autumn and winter 2005 were selected separately from the seasons in
which the same normalization method was applied for presentation.
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Table 3. Correlations between NDVI and other measures.

Year Measure Spring Summer Autumn Winter

1992
Wetness −0.297 0.391 0.231 −0.405
NDBSI 0.161 −0.660 −0.742 0.264

LST 0.062 −0.439 −0.624 0.251

2005
Wetness −0.276 0.503 0.327 −0.221
NDBSI 0.302 −0.826 −0.701 0.082

LST 0.140 −0.497 −0.357 0.177

2018
Wetness −0.339 0.617 0.322 −0.101
NDBSI 0.377 −0.808 −0.457 0.018

LST 0.024 −0.432 −0.518 0.221
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the application of different normalization processes the color representing the minimal or maximal values varies with the
season for nWetness, nNDBSI, and nLST.

On the normalized NDVI maps (Figure 4a,c), nNDVI values were relatively low in
the Central Urban Area regardless of period, which could be attributed to less vegetation
in that area. The entire study area was greener in September than in December. This
is consistent with seasonal climatic variability in Tianjin: the September climate is more
suitable for vegetation growth while a dry and cold December is usually detrimental to
plants and, therefore, causes a remarkable reduction in vegetation. Interestingly, the lower
nWetness values in the Central Urban Area show that it was moister than most of the other
areas in December (Figure 4f). As for dryness (Figure 4c) and heat (Figure 4d), they were
higher in the Central Urban Area than in other areas in September, which agrees with
previous studies [16,55]. However, that is not the case for December when the other areas
were drier and warmer than the Central Urban Area. We believe that this might be related
to the dry farmland in the suburban areas of the city in spring and winter. Although there
was wheat coverage in the two seasons, they did not help to cool and moisturize. In the
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heat image of September 2005 (Figure 4d), there was a lower temperature zone in southern
Tianjin because of a thin layer of clouds.

4.2. RSEI Distribution

By using the method described in Section 3.3.3 for integrating the measures, we
calculated the annual RSEI values of the study area. The RSEI level maps were generated
(Figure 5) and statistical analysis was also performed (Table 4). Overall, most of Tianjin
were at the moderate (0.4–0.6) and good (0.6–0.8) RSEI levels with only small portions
(all <1%) at the poor (0.0–0.2) and excellent (0.8–1.0) levels. It is interesting to notice that
the Central Urban Area remained at the moderate level (0.4–0.6) throughout the 26 years.
These results are similar to an assessment of ecological security in the Beijing–Tianjin–Hebei
region for the period 2000–2015 using the ecological security index, which concluded that
Tianjin’s security coefficient was above 0.8 per year, the highest level in the region, and that
Tianjin has maintained a high level of ecological quality [14].
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Figure 5. The RSEI level maps of 1992 (a), 2005 (b), and 2018 (c). The Binhai New Area in the 2018 image has a large amount
of area that is not covered by water compared to the other two images, which is due to the reclamation of the sea in recent
years to. Land areas close the sea particularly in the Binhai New Area were covered by water in 1992 and 2005 but appeared
in 2018 because of dock construction completed in recent years.

Table 4. The area of each RSEI grade. Note that the total area varied with years because water areas
changed over time and were removed by water masking (Section 3.3.2).

RSEI Grade
1992 2005 2018

Area/km2 % Area/km2 % Area/km2 %

Poor (0–0.2) 36.5 0.380 24.6 0.271 30.9 0.328
Fair (0.2–0.4) 256.9 2.670 205.9 2.264 189.1 2.007

Moderate (0.4–0.6) 5124.7 53.271 4057.5 44.613 4501.9 47.773
Good (0.6–0.8) 4199.9 43.658 4806.6 52.850 4671.4 49.571

Excellent (0.8–1) 2.0 0.022 0.2 0.002 30.3 0.321
Total 9620.03 100 9094.79 100 9423.66 100

In 1992, the moderate RSEI level areas (53.271%) were mostly concentrated in Baodi
and Wuqing, 9.613% more than the good level areas. The red area means the worst eco-
environmental quality area, which is evident in the center of the Baodi district, and we
believe this is related to the mining activity in the district during this period, which is
shown on the original image as an area covered in bare soil. The poor-level area was also
found in Baodi, which we believe might be associated with the then mining activity in that
district. In 2005, the entire study area was dominated by the good level (52.850%), 8.237%
higher than the moderate level, which was largely found in the Around-Center Area. This
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suggests that the urban expansion in this area began in the 2000s. In addition, the red
areas of the period are not obvious and are mostly scattered and difficult to analyze. In
2018, the percentage difference between the moderate- and the good-level areas declined to
only 1.798%. Meanwhile, in the southern part of the Binhai New Area there is a distinctly
clustered red area, which, as seen through the original image, originates from a bare patch
of land that had just been created by the completion of reclamation. Despite the continued
urban expansion and sea reclamation the local government’s relentless efforts to protect
the environment in the meanwhile helped moderate the difference.

4.3. RSEI Change
4.3.1. Seasonal and Annual RSEI Change

Seasonal and annual RSEI values were calculated for temporal analysis (Figure 6).
Within each year, RSEI changed over season, initially declining sharply and then rising
gradually with the lowest values in summer and highest in winter. Seasonal RSEI did not
change much during the 26 years except for the summer RSEI—which increased grad-
ually from 0.456 in 1992 to 0.545 in 2018. Overall, the annual RSEI increased slightly
from 0.518 in 1992 to 0.597 in 2018, which indicates a steady improvement in the eco-
environmental conditions in Tianjin. This is consistent with the results reported by
Yue et al. [37] who assessed Tianjin’s ecosystem using a different index. This may be
related to Tianjin’s recent implementation of the two-city green space ecological barrier
project and the Sino-Singapore Tianjin Eco-city project. In addition to greening efforts in the
city, these projects also contributed to wetland restoration and improved water systems and
settlement environment. Although water bodies were masked out in the RSEI assessment,
the expansion of urban water bodies has been reported to effectively lower surrounding
temperatures [56], thereby improving the urban eco-environment.
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Figure 6. Changes in average seasonal and annual RSEI of the study area.

The interesting changes in the average seasonal and annual RSEI illustrated in Figure 6
highlight the importance of using more remote sensing images rather than less in RSEI-
based assessment. If only spring images were used, it would be concluded that the urban
eco-environment quality first improved and then deteriorated; if only summer images
were used, we might find a gradual improvement in the urban eco-environment quality; if
only autumn images were used, it would be easy to claim that the urban eco-environment
quality first declined and then improved; if only winter images were used, we might
believe that there was almost no change. However, when we examine the annual RSEI
change, the finding is similar to that in the case of summer images only. This implies that
the selection of remote-sensing images for representing the entire years’ eco-environmental
conditions could produce various results, thus confusing decision-makers. Performing
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a multitemporal analysis using satellite image data often requires us to consider how
frequently remotely sensed variables change over time [57]. For example, land-use/-
cover changes every 1–10 years and there is limited monthly or seasonal change except
for the phenological circles of vegetation) so it is acceptable to examine land-use/-cover
change with several (mosaicked) images acquired in the same or near dates but in different
years [58–60]. However, the remotely sensed variables (NDVI, Wetness, NDBSI, and LST)
for deriving RSEI can change seasonally, monthly, and even daily and a single day’s eco-
environmental condition is insufficient for representing an entire year’s. For this reason, it is
advisable to avoid such a practice, which is often found in many studies [14,17,55,61], and to
use as many remote-sensing images as possible to characterize a year’s eco-environmental
condition, which helps produce a more reliable assessment result.

4.3.2. Spatial Distribution of RSEI Change

The spatial distribution of RSEI change from 1992–2005, 2005–2018, and 1992–2018 is
shown in Figure 7 and statistical analysis was also performed (Table 5). In the three maps
of Figure 7, the Central Urban Area that remained mostly white and other districts such as
Jizhou, and Baodi, and Wuqing that had large white areas accounted for the majority of the
no-change area in Table 5.
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From 1992 to 2015 (Figure 7a), the improved areas (23.08%) were 10.47% more than the
degraded areas (12.61%) (Table 5). It is noted that most of Jinan and Dongli, which connect
the Central Urban Area and the Binhai New Area, saw an obvious eco-environmental
degradation, which resulted from urbanization in these areas during the period [62]. This
situation, however, seemed to have changed from 2015 to 2018 (Figure 7b). In particular,
most of Jinnan showed an eco-environmental improvement as a result of the construction
of Tianjin’s two-city green space ecological barrier project [63]. As available land resources
in the area between the Central Urban Area and the Binhai New Area became decreasingly
available, the demand for land then moved to southwestern Tianjin rose. Although eco-
environmental protection measures were in place in these areas, apparently they were not
as effective as a major project like the two-city green space ecological barrier project [62].
This explains why eco-environmental degradation was considerable in both Xiqing and
Jinghai. As a result, the recent 13 years saw a smaller difference between the improved area
(17.50%) and the degraded area (17.00%) (Table 5). The overall 26-year change (Figure 7c)
shows that the overall eco-environment quality of the Remote Suburbs Area was improving,
while most of the Around-Center Area was at the degradation level (−1), which indicates
that the occupation of the built-up urban areas in this area still caused a slight ecological
degradation in general, but without environmental protection measures, it is believed that
the eco-environmental quality of these areas would be even worse. This is evident in a
study examining urban sprawl in Beijing, Tianjin, and Shijiazhuang, which calculates a
normalized annual urban growth rate of 5.2 for Tianjin from 1990 to 2010, much greater
than Beijing’s 3.6 and Shijiazhuang’s 4.0 [62].

To unravel the characteristics of RSEI change on a district scale, we plotted the RSEI
values of the 16 districts grouped in four categories (Figure 8). The RSEI value of the
Central Urban Area was always lower than the other three areas during the 26 years. This
is not surprising, considering the high-density impervious surfaces in this populated part
of the city. Despite the fluctuation, the RSEI of this area increased in recent years compared
with 1992. Among the districts in the Around-Center Area, RSEI changes were considerable
and generally positive except for Beichen. The districts in the Remote Suburb Area also
had overall increasing RSEI values from 1992–2018 but with some decreases in the recent
13 years. The change for the Binhai New Area was constantly negative through the 26 years.
We assume that urban expansion in the area and bare land created from sea reclamation
programs during the period were responsible for such eco-environmental degradation.
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4.4. Innovations and Limitations

The highlight of this study is improving the reliability of urban eco-environment
quality assessment by considering seasonal variability in both the contributions of RSEI
indicators to eco-environment quality and RSEI values. Although it is claimed that green-
ness and wetness positively and heat and dryness negatively impact eco-environmental
conditions [22], this study reveals that their impacts vary with the season. As such, this
helps determine how RSEI indicator measures should be normalized accordingly. Also,
previous RSEI studies [14,17,55] used the remote-sensing images acquired mostly between
April to October and assumed that RSEI from such a biased selection of images could be
sufficient for characterizing annual urban eco-environmental conditions. However, our
finding shows that this is not the case—RSEI varies from month to month and season to
season. More remote-sensing images are therefore needed for representing seasonal and
annual RSEI.

However, we also would like to note the limitations of the study. As mentioned in
Section 3.1, the selection of remote-sensing images in this study was not ideal. We believe
that the urban eco-environmental quality assessment would be improved if better (in terms
of timing) and more images (e.g., one image for every month) had been used. In addition,
like other RSEI studies [14,17,55], water bodies are masked out, limiting the assessment to
land surfaces. An avenue for future work might be including them to complete the area
examined in the assessment.

5. Conclusions

This study proposes a new RSEI-based urban eco-environment quality assessment
method by considering seasonal variability and tests it in Tianjin with remote-sensing
images acquired in four seasons of 1992, 2005, and 2018. The key findings and main
conclusions are summarized as follows:

• Both the contributions of RSEI indicators to eco-environment quality and RSEI values
vary with the season. Such seasonal variability should be considered normalizing
indicator measures differently and using more remote-sensing images respectively to
improve the assessment.

• Though with rapid urban expansion, Tianjin maintained a gradual urban eco-
environment quality improvement over the 26 years from 1992 to 2018. This could be
explained by the implementation of projects that increased urban green space.

• The most recent 13 years saw improved eco-environmental conditions in the joint area
between the Central Urban Area and the Binhai New Area from eco-environmental
restoration but these also gradually deteriorated in the Binhai New Area due to urban
expansion and sea reclamation.

The method proposed in this study proves to be a viable tool for environmental
researchers and managers that produces more reliable assessment, thus gaining a more
accurate understanding of the evolution of the urban eco-environment quality over time.
For a multi-temporal analysis, we encourage use of as many remote-sensing images as
possible that represent monthly or seasonal eco-environmental conditions. In the meantime,
we suggest that the decision makers in Tianjin pay attention to the ecological protection of
Xiqing District and Binhai New Area and that ecological planning should be incorporated
in land reclamation projects.
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