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Abstract: Forecasting the motion of surrounding vehicles is necessary for an autonomous driving
system applied in complex traffic. Trajectory prediction helps vehicles make more sensible deci-
sions, which provides vehicles with foresight. However, traditional models consider the trajectory
prediction as a simple sequence prediction task. The ignorance of inter-vehicle interaction and
environment influence degrades these models in real-world datasets. To address this issue, we
propose a novel Dynamic and Static Context-aware Attention Network named DSCAN in this paper.
The DSCAN utilizes an attention mechanism to dynamically decide which surrounding vehicles are
more important at the moment. We also equip the DSCAN with a constraint network to consider the
static environment information. We conducted a series of experiments on a real-world dataset, and
the experimental results demonstrated the effectiveness of our model. Moreover, the present study
suggests that the attention mechanism and static constraints enhance the prediction results.

Keywords: trajectory prediction; attention mechanism; LSTM; autonomous driving

1. Introduction

Trajectory prediction is one of the core problems that need to be solved in autonomous
driving. Human drivers often predict the trajectory of surrounding vehicles by observing
the driving conditions of surrounding vehicles and road environments based on their
own experience. However, autonomous vehicles, which are able to move without drivers,
cannot follow this rule. Vehicles in motion encounter different road conditions and various
dynamic traffic participants, which may pose potential threats to safe driving. In au-
tonomous driving scenarios, perceiving the surrounding situation and predicting its trend
are crucial abilities to ensure the safety of vehicles. Based on the collected data, trajectory
prediction methods can help the system make more robust and stable decisions.

To achieve driving autonomously in complex traffic, it is necessary for vehicles to infer
the future movement of surrounding vehicles. Compared with general dynamic problems,
vehicle trajectory prediction usually occurs in an open random environment that increases
the difficulty and complexity of modeling. On the one hand, the vehicle is subject to many
constraints, such as road conditions and surrounding moving targets. On the other hand,
affected by the driver’s driving intention and style [1], the trajectory tends to be highly
nonlinear over time. These challenges have caused the degradation of both traditional
dynamic models and machine learning models

Therefore, trajectory prediction methods based on deep learning have become a
current research hotspot. Recurrent Neural Network (RNN), especially Long Short-Term
Memory (LSTM) model, is widely favored for its excellent performance in time series
data analysis. Some studies [2,3] show that the Sequence to Sequence (Encoder–Decoder)
Network, which is commonly used in machine translation, has a good performance in
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multistep trajectory prediction scenarios. Increasing research emphasizes interaction-
aware modeling, such as Convolutional Social LSTM (CS-LSTM) [4], proposed using
Convolutional Neural Network (CNN) to model the motion state of surrounding vehicles
to introduce multi-vehicle interaction factors to optimize trajectory prediction. Due to its
high accuracy and feasibility, CS-LSTM has been widely concerned by scholars. However,
CS-LSTM lacks consideration of interaction changes and environmental constraints. In
this paper, we propose a dynamic and static context-aware attention network (DSCAN)
for vehicle trajectory prediction. Our model uses the attention mechanism to model the
inter-vehicle interaction information dynamically and uses feature embedding learning
to strengthen the constraint effect of a static environment. In particular, our model can be
characterized by the following:

(1) Attentional decoder: We use an attention-based LSTM to generate intermediate
vectors at different prediction time steps to solve the problem that social pooling [5] leads
to the same weight of surrounding vehicles. Our decoder can assign reasonable weights to
surrouding vehicles and adaptively selects the most noteworthy vehicles at each time-step.

(2) Constraint net: We propose a shallow neural network, a constraint net, to extract
and model surrounding environmental constraints. It has the advantages of convenient
computation and high scalability. Combined with the representations of vehicles’ trajecto-
ries, it makes trajectory prediction results closer to the reality.

2. Literature Review

According to the motion of vehicles, trajectory prediction methods can generally
be divided into four types: physical-based, maneuver-based, interaction-aware, and
environment-aware methods.

Physics-based motion model: These models only take the vehicle’s control (e.g.,
steering and acceleration) and properties (e.g., weight) data [6]. The simplest models are
the Constant Velocity (CV) and Constant Acceleration (CA) models [7,8]. References [9,10]
used a normal distribution to handle the uncertainty on the vehicle state. Furthermore,
Reference [11] used Monte Carlo simulation to remove the generated trajectories that
exceed physical limits. These original models depend on a vehicle’s representation of the
dynamics and kinematics, in which the results are up to the laws of physics. Therefore,
they can only be applied to short-term (less than 1 s) vehicle trajectory prediction.

Maneuver-based motion model: They predict trajectory by recognizing in advance
the maneuvers that drivers intend to perform. These methods assume that the motion
of the vehicle matches its previous maneuver. Atev et al. [12] calculated the Hausdorff
distance between two trajectories to measure their similarity. Based on Support Vector
Machine (SVM) and Bayesian filtering, Kumar et al. [13] implemented online lane-change
intention prediction. Qiao et al. [14] abstracted trajectory as a series of discrete motions
and used Hidden Markov Model (HMM) to predict moving objects’ trajectories. Moreover,
heuristic-based classifiers [15], random forest classifiers [16], and RNNs have been adopted
for maneuver recognition. These methods are more advanced and reliable, but they still
regard vehicles as independent entities and ignore vehicles’ impact.

Interaction-aware motion model: The research object and its surrounding vehicles are
interactive motion entities. Compared with the previous two methods, these methods are
more in line with the real traffic scenarios and more complex. Alahi et al. [5] proposed social
pooling for pedestrian trajectory prediction in crowded public spaces. They meshed the
space and preserved the spatial information through grid-based pooling. As a continuation,
Deo et al. [4] proposed CS-LSTM. The authors used social pooling [5] for vehicle trajectory
prediction and considered the impact of surrounding vehicles. Recent research [17] showed
that besides behavior prediction, an important issue is to take inter-vehicle interaction
into account. However, the social pooling methods resulted in the same impact weight for
each entity around the research object. Thus, Xu et al. [18] proposed an exclusion equation
to calculate the impact of pedestrians at different distances on the research object and
weighted the historical trajectory encoding results accordingly. Generative Adversarial
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Networks (GANs) are also used in trajectory prediction. Reference [19] proposed Social-
GAN with a generator composed of an LSTM-based encoder, context-pooling module,
and an LSTM-based decoder. Its discriminator also used LSTMs. However, GANs have a
flaw. They are challenging to achieve the Nash equilibrium, consuming much time.

Considering the interaction between vehicles, interaction-aware motion models are
closer to the real driving scenario, and their prediction results are more reliable. A vehicle’s
motion is affected by the surrounding vehicles on the road, and the impact constantly
changes. Some existing models focus on vehicles’ track history to learn the surrounding
dynamic information but ignore the impact of static environment constraints on the road.
In terms of this issue, some studies began to concern road constraints.

Environment-aware model: These methods add environmental information to the
models mentioned above, making the generalization ability stronger. The experiment
in [20], which took lanes and signs into account, used the state consists of vehicle status and
environment information. For each expert trajectory, they synthesized one trajectory based
on the associated environment. Reference [21] realized a constrained MRN (Maneuver
Recognition Network), in which the output of the GRU encoder was concatenated with
the road’s structural constraints vector. However, these works only consider the specific
environment structure or limited data types, which are difficult to extend.

Both dynamic and static context factors affect the final prediction accuracy and must
be considered in driving.

3. Methodology

A reliable driving trajectory should be generated by multiple factors such as surround-
ing vehicles and environment constraints. Therefore, a robust vehicle trajectory prediction
model needs to take these factors into account. Figure 1 shows the architecture of our
proposed model, DSCAN. It mainly consists of an LSTM encoder, a constraint net, and an
attentional decoder. DSCAN takes vehicles’ historical trajectories and environmental con-
straints as input. The LSTM encoder and the constraint net, respectively, model them. Our
proposed attentional decoder then concatenates the representations at the previous step to
obtain the final trajectory prediction result.

Figure 1. Architecture of the proposed dynamic and static context-aware attention network (DSCAN). Track history and
environmental constraint are considered by the modules, and the attentional decoder uses the concatenated representation
to predict the vehicle’s trajectory.

3.1. Encoder

An LSTM is a neural network that accounts for dependencies across observations in a
time series. It is controlled by three gates, of which the forget gate is the most important.
The forget gate uses a decay rate ft to make the LSTM with long-term memory [22,23] and
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it depends on the previous output ht−1 and current input xt. This step can be expressed by
Equation (1).

ft = σ
(

W f · [ht−1, xt] + b f

)
(1)

As such, they are commonly used for forecasting purposes. We adopt LSTM as our
encoder for its superior performance in time series problems. Since all historical trajectories
obey the same data distribution, we encode the vehicles’ trajectories to accelerate network
optimization, namely

ei = LSTM(traji), i ∈ {0, 1, 2 . . . , m}, (2)

where ei ∈ Rdenc denotes the encoding representation of the vehiclei’s historical trajectory
traji. As shown in Figure 1, the LSTM encoder models the target vehicle historical trajectory

traj0 = {(x1, y1), (x2, y2), . . . , (xT , yT)} (3)

and the surrounding vehicle historical trajectory {traj1, traj2, . . . , trajm} to learn the dy-
namics of vehicle motion.

As performed in [4], we also define an occupancy grid based on the lanes to set
up our social tensor. Using this social tensor and the LSTM state of the vehicle, the
prediction accuracy has been shown to improve [5,24]. Reference [4] pointed out that the
convolutional layer can expand the grid receptive field and can enhance grid information
fusion. We attach each surrounding vehicle’s representation (ei, i ∈ {1, 2, ..., m}) into a
3× 13 grid to preserve the spatial correlations and add a convolutional layer with the
kernel of 3× 3. Since the convolutional neural network retains identity mapping, it also
strengthens the model’s ability to learn and express. Finally, the encoder takes the target
vehicle representation e0 ∈ Rdenc and its convolution-processed surrounding vehicles’
representations C ∈ R3×13×dconv as output for further decoding.

3.2. Constraint Net

Even if surrounding vehicles’ motion and driving intention are similar, the vehicle’s
future trajectory may still be affected by environmental factors (such as lanes, weather,
and traffic policies). For example, vehicles driving in the rain tend to move slowly and
avoid overtaking [25,26]. Moreover, as the technology of V2I (Vehicle to Infrastructure)
evolves [27,28], the infrastructure can provide more environmental information to the
vehicle, which needs a network to process. Referring to Wide&Deep [29] and DeepFM [30],
we propose a shallow neural network (Constraint Net) to model environmental constraints.
As illustrated in Figure 2, we first collect and discretize raw environmental information
into a group of category features (e.g., “sunny” as 0 and “rainy” as 1), then the proposed
constraint net takes these extracted environmental features as input and calculate a concen-
trated representation as output.

Given a group of environmental features [ f1, f2, . . . , f I ], where I is the number of
feature fields, the embedding layer converts each of them to a dense continuous vector rep-
resentation f̃i with dimension dconv. To achieve a dimension reduction, the constraint net
applies a single-layer neural network upon the concentration of embedding vectors and out-
puts s with concentrated environmental information. This process can be expressed as
follows:

s = WsLeaky ReLU
([

f̃1; f̃2; . . . , f̃ I

])
+ bs, (4)

where s, bs ∈ Rdconv , Ws ∈ Rdconv×(I·dconv).
As discussed above, the constraint net is able to convert a variable number of features

[ f1, f2, . . . , f I ] into a fixed length vector s, which means it is convenient to introduce new en-
vironmental feature without modifying other network components of the complete model.
Moreover, the computational complexity of the constraint net is O(Id2

conv). Compared with
other components such as the LSTM encoder, the computational complexity of constraint
net is negligible and grows linearly with the number of feature fields.
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Figure 2. Process of the constraint net: this network is designed for extracting environmental con-
straints. The embedded features are concatenated and activated to form a tensor for next time-step.

However, limited by the public dataset’s feature collection, we mainly extract lane-
related environmental features in our experiment, including the following three aspects: the
target vehicle’s lane, whether it is driving in the left or right lane. We leave the exploration
of other environmental features as our future work. We also demonstrate the effectiveness
of the constraint net in Section 4.

3.3. Attentional Decoder

We propose an attentional decoder that handles the information in the previous step
to generate the predictive distribution for the future trajectory. Similar to the encoder, we
use an LSTM network as the primary decoder to achieve multistep trajectory prediction.
The attentional mechanism is widely used in series forecasting for its good performance,
such as machine translation [31], image annotation [32], speech recognition [33], text sum-
marization [34], and trajectory prediction [35]. For efficiently solving the high-dimensional
encoding representation C and dynamically paying attention to surrounding vehicles’
motion, we also apply the attention mechanism to the decoder so that our decoder can
adaptively select the most noteworthy surrounding vehicles at each time-step.

Precisely, according to the previous hidden state ht−1, the decoder computes the
attention weight of each grid Ci,j ∈ Rdconv in C at time step t and then weight them (as
shown in Equations (5)–(7)):

scoret
i,j = vT tanh

(
Whht−1 + WcCi,j

)
, (5)

αt
i,j =

exp
(

scoret
i,j

)
∑p,q exp

(
scoret

p,q

) , (6)

C̃t = ∑
i,j

αt
i,jCi,j, (7)

where i ∈ {1, 2, 3}, j ∈ {1, 2, ..., 13} are grid coordinates and C̃t ∈ Rdconv is weighted
attention representation. scoret

i,j and αt
i,j are the intermediate variable and attention weight

for Ci,j at time step t, respectively.
After computing the attention distribution and concatenating it with the representa-

tions of the target vehicle and constraints
([

e0, C̃t, s
])

, the decoder takes them as input
and deduces this high-dimensional tensor at this time step. Finally, it generates the future
trajectory prediction sequence as the output.
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4. Experimental Evaluation
4.1. Dataset

Our experiment used I-80 and US-101 data of the Next Generation Simulation (NGSIM)
(Data are obtained from the official website of Federal Highway Administration, U.S.
Department of Transportation (https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm,
accessed on 5 February 2019)). The trajectories were split into segments of 8 s, where we
used 3 s of track history and a 5 s prediction horizon. Additionally, the steps to eliminate
outliers and observation errors of the raw NGSIM dataset are as follows:

(i) Deleted outliers for which the acceleration exceeds the vehicle’s physical properties
or the human endurance limit [−8 m/s2, 5 m/s2] [36].

(ii) Used a Lagrange quintic polynomial (Equations (8) and (9)) to interpolate outliers’
coordinates.

lk(x) =
n

∏
j=0,j 6=i

x− xj

xk − xj
, (8)

Ln(x) =
n

∑
k=0

lk(x) f (k), (9)

where xj, xk are the interpolation joints, f (x) is the interpolated function, lk(x) is a
polynomial of degree n, and Ln(x) is the Lagrange polynomial interpolation result.

(iii) Used Kalman filter to eliminate the errors caused by observation and interpolation.
Figure 3 shows the processed data changes. After the preprocessing, these data are
more stable and practical.

(a) (b)

Figure 3. Comparison before and after data preprocessing: (a) instantaneous velocity comparison of No. 1882 vehicle in I-80
and (b) instantaneous acceleration comparison of No. 1882 vehicle in I-80.

4.2. Parameter Settings

(1) Evaluation metrics
We evaluate the results in terms of the root mean square error (RMSE) of the predicted

trajectories with respect to the actual future trajectories over a prediction horizon of 5 s.
A smaller RMSE value indicates higher prediction accuracy of the model. Specifically,
the prediction error at the future time-step t is as follows:

RMSEt =

√√√√∑m
p=1

(
x̂t

p − xt
p

)2
+
(

ŷt
p − yt

p

)2

m
, (10)

where m is the number of test samples, and
(

x̂t
p − ŷt

p

)
and

(
xt

p − yt
p

)
denote the predicted

and actual coordinates of vehicle p at time-step t, respectively.

(2) Main parameters

https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
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The models involved in our experiment are all set up with the same hyperparameters
for ensuring reliability. The encoder and decoder both have a 128-dimensional state, while
the sizes of the convolutional layer and constraint representation are both 32. we adopt
Leaky ReLU activation with α = 0.1 for all layers. In training, all models use an Adam
optimizer with η = 0.001, β1 = 0.9, and β2 = 0.999. The epoch and batch size are set as 128
and 8, respectively.

4.3. Compared Models

We compare the following models and system settings:

• Vanilla LSTM (V-LSTM) : The V-LSTM is built on the seq2seq structure with an LSTM
encoder and an LSTM decoder. As a basic model, it only takes the historical trajectory
of target vehicle as input without considering other factors.

• LSTM with fully connected social pooling (S-LSTM): We implement this baseline
according to [5]. Different from V-LSTM, the S-LSTM also incorporates historical
trajectories of surrounding vehicles. The encoded representation of target vehicle
and surrounding vehicles are fused with a fully connected layer before being sent to
the decoder.

• LSTM with convolutional social pooling (CS-LSTM): Similar to S-LSTM, the CS-LSTM
also incorporates historical trajectories of the target vehicle and surrounding vehicles.
However, the CS-LSTM utilizes convolutional neural network to learn the interaction
between target vehicle and surrounding vehicles. More details about CS-LSTM can be
found in [4].

• Dynamic Context-aware Attention Network (DCAN): DCAN is implemented with an
LSTM encoder and an attentional decoder described in Section 3, which are the same
as our proposed DSCAN. It adds the attention mechanism to assign different weights
to surrounding vehicles. We set this baseline model to demonstrate the effectiveness
of constraint net.

• DSCAN: This is the complete model described in this paper, which is composed of
the LSTM encoder, constraint net, and attentional decoder. Different from DCAN,
DSCAN considers not only historical trajectories of the target vehicle and surrounding
vehicles but also environment information.

4.4. Results

Table 1 shows the RMSE values for the models being compared. Over the prediction
horizon of 5 s, DSCAN outperforms the other models in terms of RMSE values, showing
the effectiveness of our proposed model.

Table 1. Results: root mean squared prediction error (RMSE) values over a 5 s prediction horizon for
the models compared.

Model
RMSE (m)

1 s 2 s 3 s 4 s 5 s

V-LSTM 0.672 1.702 3.039 4.603 6.310
S-LSTM 0.628 1.365 2.226 3.249 4.516

CS-LSTM 0.63 1.366 2.211 3.244 4.489
DCAN 0.582 1.266 2.041 3.001 4.175

DSCAN 0.579 1.259 2.034 2.982 4.134

We note that the V-LSTM model produces higher RMSE values than other models
at each time step. This model simply uses ego vehicle’s track history, while S-LSTM and
CS-LSTM use information about the surrounding vehicles’ motion. This suggests that
inter-vehicle interactions have a significant impact on trajectory prediction.

We also note that the RMSE value of the DCAN model is significantly reduced com-
pared with that of the S-LSTM and CS-LSTM at each time step. In long-time prediction
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(5 s), DCAN improves the prediction accuracy by 7% compared to CS-LSTM. This shows
that it is helpful to pay attention to the change of interaction over time. The attention
mechanism provides different intermediate vectors during the prediction period instead of
the same ones in CS-LSTM, which reduces information loss and is conducive to improving
the trajectory prediction accuracy.

Finally, DSCAN, which uses both dynamic and static context information, further
reduces the RMSE value. In particular, the prediction accuracy of DSCAN improves by 1%
on top of that of DCAN at 5 s. This suggests that the static context information introduced
through the constraint net also is a valuable cue for trajectory prediction. Vehicles on the
highway can change the lane in the same direction but cannot cross the road boundary.
Thus, the predicted trajectory should be constrained by lane boundaries, especially when
the vehicle drives on both sides of the lanes. The constraint net makes the prediction tend
toward the inside of the road rather than crossing the boundary to help DSCAN’s result be
closer to the actual vehicle trajectory.

5. Discussion

One of the advantages of the attention mechanism is that the generated weights are
interpretable. In this section, we analyze the prediction results made by our model to
further understand its behavior.

5.1. Attention Distribution Analysis

The weights calculated at each time-step can be regarded as the normalization of the
inter-vehicle interaction correlation. Over any predicted horizon t (t ≤ 5 s), the greater
the weight of a grid, the more significant the vehicle’s impact on the research object’s
motion. We visualize the attention weight in the reasoning process to further analyze the
mechanism of our model (Figure 4). The findings are as follows:

(a) (b)

Figure 4. Visualization results of average weights of test samples: (a) attention distribution when prediction time is 1 s, 3 s,
and 5 s (the darker grid indicates the greater weight); (b) attention weight (middle lane) in the horizon of 5 s (the black
dotted line is the research object’s position).

(1) Weight value decays with distance: Overall, the weight of surrounding vehicles
decreases as the distance to the research vehicle increases (Figure 4a). This feature is more
prominent in the rear of the vehicle, but the local weight distribution in the front does
not conform to it. It might be explained that, when driving forward, a safe distance is
reserved ahead, and some farther vehicles in the front range have a greater impact on the
research object. Beyond this range, the weight distribution fits the rule again. We also note
that the neighborhood weights of the research object are negligible. This low probability
distribution is also caused by safe driving distance.
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(2) Weight distribution is directional: The most prominent finding that emerges from
the analysis is that the front grids’ weight is greater than the rear grids’ weight. This is
consistent with real scenarios. Drivers usually focus on the front to adjust themselves
according to the motion of the front vehicles.

(3) The same-lane weight value is greater: Another finding is that the same lane’s grid
weight is always greater than the adjacent lanes’ weight at the same distance. A possible
explanation for this might be that a vehicle usually drives straight instead of changing
lanes frequently. Since we average the values here, some great-weight instances of adjacent
lanes are not displayed.

(4) The surrounding weight value tends toward an average as time increases: Over
the predicted horizon, the most critical finding is that the weight values of great-weight
grids decrease with time while small-weight grids are the opposite (Figure 4b). This result
may be explained by the fact that the surrounding vehicles’ motion is uncertain in the
future, and this uncertainty is accumulated over time. To reduce the cumulative impact of
this uncertainty in long-term prediction, the attentional decoder pays attention to a larger
vision. This leads to relatively decreased weight in a small range and relatively increased
weight in a large range.

5.2. Scenario Analysis

Figure 5 shows the attention weight distribution with the predicted time under dif-
ferent scenarios, including left and right lane changes and driving straight. It is apparent
that the attention weight is mainly distributed in the grids with vehicles. In the predic-
tion process, DSCAN adaptively adjusts the distribution according to the vehicle motion.
We note that the attention mechanism constantly adjusts to assign greater weight to the
target lane as the lateral position changes. In particular, when changing to the right lane
(scenario 2), the weight of the vehicle in the right front keeps getting larger. This incon-
sistency is due to the attentional decoder, which believes that the farther vehicle should
be noticed after a few seconds. Our model with the attention is interaction-aware and can
generate the corresponding different intermediate vectors, reducing information loss in the
prediction process.

Figure 5. Attention weight distribution under different scenarios. Rows 1, 2, and 3 correspond to
three different driving scenarios. Column “a” presents the groundtruth trajectories, while columns
“b”, “c”, and “d”, respectively, visualize the attention distribution of 1 s, 3 s, and 5 s in the future.

6. Conclusions

Considering the dynamic and static informaton encountered by vehicles in motion,
this paper proposes a dynamic and static context-aware attention network (DSCAN) for
trajectory prediction. We introduce the attention mechanism to adjust the weight distribu-
tion of inter-vehicle interaction during the prediction period. Moreover, we propose an
extensible constraint net to extract multiple road structures. DSCAN is a multi-information
fusion network in which the predicted results are close to real driving scenarios. Through
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the experiments on the real-world dataset, we demonstrate that DSCAN outperforms some
existing LSTM-based trajectory prediction methods. Our proposed model provides insights
for vehicle trajectory prediction and might be applied in autonomous driving system.

The generalizability of our results is subject to certain limitations. For instance,
the dataset consists of only highway sections while the structure and traffic participants
of common roads are more complex than ours. Further work needs to be conducted to
incorporate these cues into the model. We believe that the DSCAN model will perform
better with more information.
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