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Abstract: 3D scene classification has become an important research field in photogrammetry, remote
sensing, computer vision and robotics with the widespread usage of 3D point clouds. Point cloud
classification, called semantic labeling, semantic segmentation, or semantic classification of point
clouds is a challenging topic. Machine learning, on the other hand, is a powerful mathematical
tool used to classify 3D point clouds whose content can be significantly complex. In this study, the
classification performance of different machine learning algorithms in multiple scales was evaluated.
The feature spaces of the points in the point cloud were created using the geometric features generated
based on the eigenvalues of the covariance matrix. Eight supervised classification algorithms were
tested in four different areas from three datasets (the Dublin City dataset, Vaihingen dataset and
Oakland3D dataset). The algorithms were evaluated in terms of overall accuracy, precision, recall,
F1 score and process time. The best overall results were obtained for four test areas with different
algorithms. Dublin City Area 1 was obtained with Random Forest as 93.12%, Dublin City Area 2 was
obtained with a Multilayer Perceptron algorithm as 92.78%, Vaihingen was obtained as 79.71% with
Support Vector Machines and Oakland3D with Linear Discriminant Analysis as 97.30%.

Keywords: machine learning; point cloud; geometric features; multiscale; classification; LiDAR

1. Introduction

Information extraction from 3D data has become an important field of research in
photogrammetry, remote sensing, computer vision and robotics, with the increasing utility
of 3-dimensional (3D) point clouds [1]. Scanning an object with a laser generates 3D
information about the shape of the object. This is the basic principle of creating depth
perception for machines or 3D machine vision [2]. Point clouds contain information such
as 3D position information, density and color. The grouping of points with similar singular
properties under a meaningful cluster is called classification. Problems of point cloud
classification are insufficiency of existing databases, high hardware requirements for data
processing and insufficient methods in terms of accuracy and speed.

Traditionally, point cloud classification relies on defining a set of discriminatory
rules to distinguish points for each class [3]. Although discriminatory rules are effective
for controlled environments, methods still have inherent limitations when dealing with
complex data involving uncertainty and complex relationships between classes. Therefore,
point cloud classification for these complex data cannot be handled by combining simple
decision rules. Machine learning is a powerful mathematical tool that can be used to classify
complex point clouds. In machine learning algorithms, classification rules are learned
automatically using training data instead of pre-determined arbitrary parameters. Machine
learning and automatic feature selection avoid most of the tedious design and programming
work involved in a traditional classification methodology. Thus, these methods are more
convenient than traditional classification methods due to their effectiveness for complex
data consisting of multiple object types [4]. To accurately predict the semantic classification
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algorithms, the label of each point in the 3-dimensional point cloud and the geometry of
the point cloud must be correctly defined [5].

This study aims to examine the effects of geometric properties produced at different
scales from point clouds on classification accuracy. A comprehensive examination has
been realized to determine the support area size and to select the appropriate geometric
features. It is aimed to better understand the classification performance of machine learning
methods on point clouds of different densities and scales. The significance of geometric
properties depending on the data and scale was examined. The datasets used in the study
are the ISPRS 3D Semantic Labeling Contest Dataset of Vaihingen [6], Dublin City [7] and
Oakland3D [8] datasets. The support areas of each point of the point clouds were calculated
in five different scales as 0.5 m, 1 m, 1.5 m, 2 m and 3 m, respectively. Two regions with
different sizes of the Dublin dataset were selected for testing, whereas the entire test part
of the Vaihingen dataset and Oakland3D dataset were used. In addition to the overall
accuracy of the methods, precision, recall and F1 score values were also calculated for each
class. Therefore, the effect of different support radii on the extraction of the classes has been
examined in detail and the machine learning methods were compared. Algorithms chosen
for comparison and evaluation are Random Forest (RF), Linear Discriminant Analysis
(LDA), Gaussian Naïve Bayes (GNB), Logistic Regression (LR), Multi-Layer Perceptron
(MLP), decision tree (DT), Support Vector Machines (SVM) and k-nearest neighbors (KNN).
The effects of geometric features change depending on the support radius. To determine
this change, feature importance was calculated with the RF method. The Python pro-
gramming language and open-source Cloud Compare software were used in the study.
Multi-scale point cloud classification has been carried out using popular machine learning
algorithms cited in the literature. The utility of geometric features in point cloud supervised
classification was investigated. The results obtained are presented in the form of tables and
images. The flowchart of this applied approach is shown in Figure 1.
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2. Related Works

Supervised learning approaches that assign labels individually to each point in the
point cloud can often be chosen. Weinmann et al. [9] examined the use of different features
for point cloud classification and the most appropriate support selection and different
classifiers. The features that mostly affect the accuracy among produced features were
determined by using feature selection methods. The Oakland 3D Point Cloud Dataset and
Paris-rue-Lille Dataset, which are mobile laser scanning data, were used as the dataset.
Random Forest was found to be the most effective classifier as a result of the evaluation.
Vosselman et al. [10] used 19 geometric features that were extracted from the point cloud
in the study. In the proposed method, the point cloud was divided into certain groups and
classified. The Vaihingen and Rotterdam datasets of International Society for Photogram-
metry and Remote Sensing were used as the dataset. Conditional Random Field algorithm
was selected as the classification method. Resultantly, group-based classification exerted
better results than point-based classification. The landslide was investigated by using point
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clouds in [11]. Objects were specified in the point cloud for object-based classification.
Features were extracted from the point cloud to identify these objects. Classification was
conducted via Support Vector Machines (SVM) and Random Forest (RO) methods using
the extracted features. Seven classes were classified: landslide slope, eroded area, sediment,
medium and high vegetation, small grasses, high grasses and rocks. In the study conducted
by Belgui et al. [12], the buildings were detected from the point cloud which was divided
into three sub-classes; small buildings, apartment buildings and industrial buildings. In the
study, the RF algorithm was trained using the features extracted from the point cloud.
The extracted features were more related to height. Guo et al. [4] proposed an ensemble-
learning algorithm named JointBoost for point cloud classification. Ensemble methods
aim to create a strong classifier by combining more than one weak classifier. In this study,
five classes were classified as building, land, vegetation, power line and power line poles.
26 features were extracted from the point cloud for each point. The proposed approach
had two stages. In the first stage, classification was realized with the JointBoost method by
using the 17 most effective features. In the next stage, unreliable or misclassified points
were again classified by the k-NN method. Landslide regions were determined in the point
cloud in [13]. For this purpose, Digital Terrain Model (DTM) produced the point cloud
and aerial photographs were used. Firstly, 52 pixel-based features such as slope gradient,
plan curvature, roughness and sky view factor were determined on DTM. These features
were then transferred to the objects determined by Object-Based Image Analysis (OBIA).
An RF-based feature selection algorithm was performed prior to classification because of
the large number of features. RF and SVM algorithms were used as classifiers. The study
proposed by Plaza-Leiva et al. [14] focused on the efficiency of the spatial shape features ob-
tained from the covariance analysis for improving computational load and accuracy of the
supervised learning classification. For this purpose, eigenvalues were calculated for each
point from the point cloud. The classification was based on three classes: city buildings,
natural vegetation and artificial vegetation. Four different supervised learning algorithms
were compared: SVM, artificial neural network, Gaussian operation and Gaussian mixing
models. In [15], a supervised classification was performed in both residential areas and
forest areas. Five geometric properties were used from the point cloud: linearity, planarity,
sphericity, horizontality and height change. SV machines, RF, logistic regression and linear
discriminant analysis were chosen as classification algorithms. As a result of classifications
with different support radius, an accuracy of approximately 80% for the residential area
and 93% for the forest area has been obtained by using RF. In another study [16], super-
vised classification of point clouds was done using geometric properties. In the study, four
different datasets, including color information of points besides 15 geometric features, were
used. Ground, high vegetation, building, road, car and human-made objects classes were
extracted with RF and Boosted Tress methods. A photogrammetric point cloud was used
for training and testing. In the Lin et al. [3] study, the aerial point cloud was classified
according to three geometric properties, namely linearity, planarity and sphericity, by using
SVM. In the method proposed, it was aimed to increase the classification accuracy by
weighting the covariance matrix. The targeted classes were divided into buildings and
non-building structures.

As a powerful controlled statistical method, machine learning is the method that can be
used to classify point clouds. When a point is defined by distinctive geometric properties,
machine learning is used to predict the class of a point. Since the distinctiveness of
geometric features is strongly dependent on the support areas of these 3D points considered
for feature extraction, support area size and feature selection are important problems. With
this study, it is evaluated that it can contribute to the gap about scale and feature selection
in the literature. The effects of geometric properties obtained from different scales on
current datasets were investigated. Some criteria based on results have been proposed for
the choice of geometric feature and optimum support size.



ISPRS Int. J. Geo-Inf. 2021, 10, 187 4 of 23

3. Data and Methodology
3.1. Data Used

The proposed approach was evaluated for three different point cloud datasets of
Dublin City, Vaihingen and Oakland3D that included urban areas. The Dublin data set was
produced in 2015 by the Urban Modeling Group at University College Dublin (UCD) by
scanning with ALS in Dublin City Center. 260 million out of 1.4 billion points have been
labeled. The density of the point cloud varied from 250 to 348 points/m2. The point cloud
consisted of 13 regions in total. In this study, since it was not possible to use the whole
dataset due to hardware deficiencies, only two regions were selected and used. These
two study regions covered approximately 20 million points. A training area (Figure 2)
that covered approximately 12 million points was selected. In this area, points labeled
as “undefined” were eliminated and for the rest of this process, 970,000 points were
selected randomly from the dataset used for training to provide an advantage in efficiency
and speed. Two test sites of Dublin City Area 1 and Dublin City Area 2 (Figure 2) with
approximately 1.6 million points and 7 million points were defined for testing. While
selecting Dublin City Area 2, attention was paid to cover Dublin City Area 1 as well.
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Figure 2. Training and test samples from the Dublin City dataset.

The Vaihingen dataset (Figure 3) consisted of training that had 753,859 points and
testing parts that had 411,722 points. The Vaihingen dataset included 9 classes, namely pow-
erline, low vegetation, impervious surface, car, fence/hedge, roof, façade, shrub and tree.
The classes were reduced into three classes to simulate this dataset to the Dublin dataset
for an accurate comparison. Power line, car and fence/hedge classes were eliminated as
they had few points. The ground surface class was created by combining low vegetation
and impervious surface. Building class was formed by combining roof and façade. The
vegetation class was created by combining tree and shrub.

The Oakland dataset, one of the most used MLS datasets, was also selected for the
application. This dataset was obtained with a mobile platform and covers the urban
environment. The Oakland dataset consists of 36,932 training points, 91,579 validation
points and 1.3 million testing points, which include 5 classes, namely ground, vegetation,
façade, wire and pole/trunk. The wire and pole/trunk classes were removed, so they
contain a few points. The façade class was renamed as building. Training (Figure 4)
and testing (Figure 5) parts were used in the study. All datasets had ground truth. The
distribution of the training and test data of the datasets are given in Table 1.
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Table 1. Class distribution of the used datasets.

Dataset Class Training Test

Dublin City Area 1

Building 400,000 485,355
Vegetation 70,000 360,618

Ground 500,000 734,055
Total 970,000 1,580,028

Dublin City Area 2

Building 400,000 2,876,063
Vegetation 70,000 881,150

Ground 500,000 3,245,362
Total 970,000 7,002,575

Vaihingen

Building 179,295 120,272
Vegetation 182,778 79,044

Ground 374,573 200,676
Total 736,646 399,992

Oakland 3D

Building (Façade) 4713 111,112
Vegetation 14,441 267,328

Ground 14,121 934,146
Total 33,275 1,312,583

The Dublin City and Vaihingen datasets had relabeled land-use types consisting of
3 classes; building, vegetation and ground surface. Firstly, support (S) areas of 0.5 m, 1 m,
1.5 m, 2 m and 3 m were created for each point. 13 geometric features were calculated in
each support created. Geometric features were expressed as functions of the eigenvalues of
the covariance matrix of the set of points located in a certain support area. Feature space
was prepared for each point with the calculated geometric features and z coordinate values
of the points. Thus, it was used as input data for machine learning algorithms.

3.2. Random Forest (RF)

RF [17] is an improved version of bagging that creates a large collection of uncorrelated
trees and then averages them. It is quite similar to boosting the performance of random
forests in many problems and is easier to train and adjust [18]. Each tree in the random
forest gives a class estimate, and the top voted class becomes the model’s prediction. In the
bagging algorithm, multiple bootstrap training data sets are created from the original
training data set to train a classifier, and a training data set is assigned to each tree. There
are two reasons to use bagging. First, the use of bagging appears to increase accuracy
while using random features. Second, bagging can be used to give estimates of power
and correlation as well as estimates of the generalized error (PE*) of the combined tree
community [17].

Two parameters are required to generate a tree with the RF classifier. These parameters
are the number of variables used in each node and the number of trees to develop to
determine the best split. Boot samples are created from 2/3 of the training data set.
The remaining 1/3 of the training data set, also called out-of-bag (OOB) data, is issued to
test errors. The error obtained from this process is called the generalized error. Generalized
error calculation is shown in Equation (1):

PE∗ = PX,Y(mg(X, Y) < 0) (1)

where mg() refers to the margin function. Margin measures how much the average number
of votes in (X, Y) for the correct class exceeds the average rating for any other class.
The more reliably the classification can be performed, the larger the margin [17].

3.3. Naïve Bayes (NB)

Classifiers work by computing one separator function for each class and assigning a
sample to the class in which the function takes its largest value [19]. For example, assume
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that a is a vector of attributes, as in typical classification practices. In the example, let
vjk be the value of the attribute Aj, P (X) represents the probability of X and P (Y|X) the
conditional probability of X given Y. Then, a possible set of separator functions can be
expressed as Equation (2):

fi(E) = P(Ci)
a

∏
j=1

P(Aj = vjk|Ci) (2)

The classifier obtained using this set of discriminant functions and predicting the
related probabilities in the training set is usually called the Naïve Bayes classifier [20].
Naïve Bayes ‘classifier is a probabilistic classifier based on Bayes’ theorem. Its starting point
is Bayes’ conditional probability theorem and it examines the probabilistic relationship
between a particular data point x and class C [21].

P(C |x ) = P(x |C )

P(x)
(3)

Although it has different types, it is the most widely used Gauss Naïve Bayes classi-
fier. Gauss Naïve Bayes (GNB) applies classification by assuming the probability of the
properties to be Gauss [22]. The formulation is as Equation (4):

P(xi |C ) =
1√

2πσ2
C

exp

(
− (xi − µC)

2

2πσ2
C

)
(4)

3.4. Multilayer Perceptron (MLP)

MLP is a sensor with a single weight layer that can only operate on linear functions of
the input. It cannot give successful results on nonlinear functions. Multi-layer perceptron
can solve such nonlinear problems if used for classification [23]. Multi-layer Sensor is
a supervised learning algorithm that learns a function by training on a dataset. MLP
can learn a nonlinear function approach for classification or regression. There may be
one or more nonlinear layers, called hidden layers, between the input and output layer.
Therefore, it is different from logistic regression [24]. In MLP, there are transitions between
layers called forward and backward propagation. In the forward propagation phase, the
output of the network and the error value are calculated. In the backpropagation phase,
the connection weight values between the layers are updated to minimize the calculated
error value.

The input layer is fed with the input x value. The “activation” propagates in the
forward direction and zh values are calculated in the hidden layers. Each hidden layer unit
is a detector on its own and applies the nonlinear sigmoid function to its weighted sum:

zh = sigmoid
(

wT
h x
)
=

1

1 + exp
[
−(∑d

j whjxj + wh0)
] (5)

To calculate yi values in the output layer, the sensors in this section use the values
calculated in hidden layers as input values [23].

yi = vT
i z =

H

∑
h=1

vihzh + vi0 (6)

3.5. Logistic Regression

In logistic regression, the probability that the output variable belongs to the appro-
priate class is calculated [25]. Logistic regression [26] establishes a linear transformation
between the output variable and input variables. However, a linear transformation is per-
formed between input variables and probabilities of the output categorical variable, instead



ISPRS Int. J. Geo-Inf. 2021, 10, 187 8 of 23

of between the output and the input variables. Input variables need not be continuous,
normally distributed or independent. The result is the probability of an observation for a
category, not a class. The mathematical model for the logistic regression classifier can be
expressed as:

ln
P(Y = i)
P(Y = C)

= αi +
p

∑
j=1

β jxj (7)

where Y is the output variable, αi and βj are the coefficients of the model, and x1, x2, . . . ,
xp are the covariates. The basic mathematical concept that defines logistic regression is
logit, which can be defined as the natural logarithm of a probability ratio. Each observation
is assigned to the class of maximum probability:

P(Y = i|X) = eαi+∑
j=p
i=1 β jXj

1 + eαi+∑
j=p
i=1 β jXj

(8)

In general, logistic regression is well suited for explaining and testing hypotheses
about relationships between a categorical output variable and one or more categorical
variables [27].

3.6. Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) [28] is the oldest classifier currently in use, is a
linear transformation that calculates the directions of the axis that best distinguishes
multiple classes. If we define this direction as w, the data is projected onto the defined
w direction. Thus, the sample data of the two classes are tried to be separated as much
as possible.

z = wtx (9)

z is the projection of data (x) onto w. After the projection, to separate the classes well, it is
aimed to keep the average of the samples belonging to the classes as far from each other as
possible and to distribute the class samples to as small an area as possible. In LDA, it is
aimed to have a maximum ratio of within-class (Si) and between-class (SB) scatter matrices
(R = Si/SB).

Si = ∑
t

rt
i
(
xt −mi

)(
xt −mi

)T (10)

SB =
K

∑
i=1

Ni(mi −m)(mi −m)T (11)

The algorithm tries to assign elements to each class, maximizing R [23]. The solution
is the largest eigenvectors of S−1

W SB, where Sw is the sum of the within-class scatter matrix.
LDA assumes that attributes (input or explanatory variables) are continuous and normally
distributed, while the dependent variable, which is the output value (such as a class),
is categorical [15].

3.7. Decision Tree (DT)

Decision tree (DT) is one of the algorithms that divides the input space into parts and
calculates parameters for each part. Decision tree is a non-parametric classification and
regression algorithm. Each node in the decision tree is associated with a part, and nodes
divide each part into sub-parts. If the size of the decision tree is not predetermined, it can
be considered as an algorithm that is non-parametric [29].

Besides being easy to apply, decision tree has some disadvantages. It can create a
complex tree on the data. Decision trees can be unstable because small changes in data can
result in producing a completely different tree. However, it is still a useful algorithm due
to computational limitations.
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3.8. Support Vector Machines (SVM)

Support Vector Machines (SVM) [30] is a supervised machine learning algorithm used
for both classification and regression. The aim of the support vector machine algorithm is
to find a hyperplane in an N-dimensional space that has the maximum distance between
data points of both classes and classifies the data points separately. The optimal hyperplane
can be obtained by using Equation (12). For a given set of a sample xi(i = 1, 2, . . . , N):

f (x) = wTx + b =
N

∑
j=1

wjxj + b = 0 (12)

where w is an N-dimensional vector and b is a scalar, and they are used to define the
hyperplane. There are two hyperplanes that separate the samples and are not points
between them, to separate samples in a dataset linearly [31]. In this study, a linear SVM
algorithm optimized with Stochastic Gradient Descent (SGD) is used. SGD is one of the
most popular optimization algorithms used in machine learning in large data sets due
to the ability to efficiently optimize the entire training set depending on the number of
data epochs [32]. It aims to approximate the gradient of the objective function using small
randomly selected subsets of training examples. SGD chooses a point in each iteration or a
set of points based on batch size to reduce a large processing load, rather than using all the
data for learning. Depending on the amount of data in SGD, a balance is struck between the
accuracy of the weight update and the time it takes to perform an update. In one iteration,
the weights are updated according to each random point or set of points selected. Thus,
the gradient of the sample i selected in t iteration∇E (Wt, xi, yi) is calculated instead of the
true gradient (∇E) [33].

3.9. K-Nearest Neighbor (KNN)

K-nearest neighbor (KNN)-based classification is a type of sample-based learning
or non-generalized learning. It does not attempt to create a general internal model [34].
The nonparametric k-nearest neighbor algorithm is not constrained by a fixed number of
parameters. Since KNN does not contain parameters, it generates and applies a function
dependent on training data. For each data in an input data set X, k’s closest neighbors are
found. Neighboring points are weighted in inverse proportion to their distance from the
query point. Afterward, the most common class in the neighborhood is assigned as the
class x data [23].

3.10. Extraction of Geometric Features

Geometric properties are useful for explaining the local geometry of points. These ge-
ometric features are nowadays widely applied in LiDAR data processing. It is aimed to
improve the accuracy values by extracting these geometric features in multiple scales rather
than on a single scale. Geometric features are calculated by the eigenvalues (λ1, λ2, λ3)
of the eigenvectors (v1, v2, v3) derived from the covariance matrix of any point p of the
point cloud:

cov(S) =
1
S ∑

p∈S
(p− p )(p− p)T (13)

where p is the centroid of the support S. Many values are calculated using eigenvalues: the
sum of eigenvalues, omnivariance, eigenentropy, anisotropy, planarity, linearity, surface
variation, sphericity and verticality. Calculated values are normalized. Since the datasets
used contained only geometric information (3D coordinates), only geometric features were
used in the study (Table 2).
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Table 2. Geometric features used in the study.

Feature Explanation

Sum of eigenvalues λ1 + λ2 + λ3

Omnivariance 3
√

λ1λ2λ3

Eigenentropy 3
∑

i=1
λi ln λi

Anisotropy (λ1 − λ3)/λ1

Planarity (λ2 − λ3)/λ1

Linearity (λ1 − λ2)/λ1

Surface variation λ3/(λ1 + λ2 + λ3)

Sphericity λ3/λ1

Verticality 1− |〈[0 0 1], λ3〉|
Height value Zi

Roughness
Other featuresNormal change rate

Volume density

The relevant geometric properties of any point in the 3D point cloud were based on the
support of the point. Support selection is an important issue as the distinctiveness of the
geometric features depends on the relevant support considered for feature extraction [9].

3.11. Experiment

In the first step of the experiment, 13 different feature geometric features were calcu-
lated for each data set. Geometric properties were obtained by using spheres with radii of
0.5 m, 1 m, 1.5 m, 2 m and 3 mto apply the classification at different scales.

• R0.5; represents the support calculated with a radius of 0.5 m.
• R1; represents the support calculated with a radius of 1 m.
• R1.5; represents the support calculated with a radius of 1.5 m.
• R2; represents the support calculated with a radius of 2 m.
• R3; represents the support calculated with a radius of 3 m.

First, the classes of the data were arranged and were reformatted according to algo-
rithms. In the Vaihingen dataset, since there were few points in the power line, car and
fence/hedge classes, they were deleted from the dataset. However, wire and pole/trunk
classes also had fewer points in the Oakland3D dataset, so they were removed from
the dataset.

In the study, point clouds were classified using eight different machine-learning
algorithms: LDA, RF, GNB, LR, MLP, DT, SVM and KNN. Scikit-learn, a machine learning
library prepared for the Python programming language, was used to implement the
methods. The optimized parameters for all methods were determined and were unchanged
during the study. In the study, a computer was used with I7 7700HQ 2.8GHZ, 16GB RAM,
GTX1050Tİ 4GB graphics card.

Four metrics were used: precision, recall, F1 score for each class and overall accuracy
for evaluating of the methods. Precision measures the proportion of points classified as
positives (Equation (14)). Recall measures the proportion of positives that are true positives
(Equation (15)) [23]. F1 score is a function of precision and recall (Equation (16)) [35].
Overall accuracy measures the proportion of points correctly classified. Accuracy metrics
are obtained using confusion matrices generated as a result of classification. All accuracy
analyzes were carried out in the Python programming language.

Precision =
TP

TP + FP
(14)
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Recall =
TP

TP + FN
(15)

F1 score = 2
Precision . Recall

Precision + Recall
(16)

True positive (TP) is the number of points that have the same label in predicted and
ground truth. False positive (FP) refers to the number of points that are predicted positive
but their actual label is negative. False negative (FN) refers to the number of points that are
predicted negative and their actual label is positive [23].

4. Results

The proposed methodology was applied to the three different areas selected from two
different datasets. It was aimed to determine the most suitable support radius for each
method. The classification process was repeated in the same way for each case. Points that
did not have sufficient neighbor points for geometric properties were eliminated from the
point cloud.

According to results in Dublin City Area 1, the highest overall accuracy in algorithms
other than GNB, KNN and DT was obtained when using a support radius R3 (Table 3).
The RF method had the highest accuracy of 93.12% (Figure 6). The second-highest accuracy
belonged to the MLP method with an overall accuracy of 93.07% with R3. The SVM
method has the lowest overall accuracy at 83.27% with R0.5 in Dublin City Area 1 (Figure 6).
According to the results in different scales, the lowest accuracies were obtained in cases
where the support radius of 0.5 m was used. The reason for determining a maximum
radius of 3 m is that the calculation load and the time spent increase as the radius increases
for the calculation of geometric properties.

Table 3. The overall accuracy of the methods in Dublin City Area 1. The highest-obtained accuracies
are shown as bold.

Support LDA RF GNB LR MLP DT SVM KNN

R0.5 84.65 90.76 89.70 83.43 85.85 85.79 83.27 85.58
R1 86.12 92.33 87.90 88.41 91.45 89.50 89.06 89.42

R1.5 86.46 92.03 84.36 89.12 91.71 89.50 90.61 91.51
R2 87.00 92.45 88.87 88.67 91.54 89.65 89.26 89.53
R3 90.33 93.12 86.97 90.00 93.07 89.16 90.62 87.01

In Dublin City Area 2, 6 out of 8 methods presented the best results when using a
support radius of 3 m. The GNB and KNN methods achieved the highest overall accuracy
using supports R05 and R1.5, respectively. In the Dublin dataset, GNB and KNN methods
were successful with a smaller support radius. MLP and SVM had better overall accuracy
with 92.78% (Figure 7) and 91.59%, respectively. The least accurate method was the LDA
method with 84.79% overall accuracy (Figure 8). The overall accuracy of the all methods in
Dublin City Area 2 was represented in Table 4.
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Table 4. The overall accuracy of the methods in Dublin City Area 2. The highest-obtained accuracies
are shown as bold.

Support LDA RF GNB LR MLP DT SVM KNN

R0.5 81.61 84.18 89.79 88.14 88.70 81.07 88.03 86.91
R1 81.58 85.15 88.65 90.29 90.65 82.82 88.49 88.65

R1.5 81.54 85.84 86.88 90.24 92.14 83.51 87.01 88.49
R2 82.41 86.32 87.07 90.57 91.62 83.14 90.49 85.66
R3 84.79 88.92 88.61 91.10 92.78 86.54 91.59 83.53

The Vaihingen dataset covered a comparatively smaller area than Dublin City Area
1 and Dublin City Area 2. Geometric features could not be calculated since most of the
points in the support of R05 did not have sufficient neighboring points. For this reason,
R0.5 support was not evaluated for the Vaihingen dataset. All methods except KNN had
their best results in the R15 support. Unlike the Dublin City dataset, the accuracy of all
methods decreased with the larger supports (R2 and R3) in the Vaihingen data. The two
most accurate methods, SVM and MLP, had an overall accuracy of 79.71% and 77.68%,
respectively. RF had the lowest accuracy with 68.26% accuracy (Figure 9). The overall
accuracy of the all methods in the Vaihingen dataset is represented in Table 5.
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Table 5. The overall accuracy of the methods in Vaihingen. The highest-obtained accuracies are
shown as bold.

Support LDA RF GNB LR MLP DT SVM KNN

R0.5 - - - - - - - -
R1 69.81 67.07 72.59 69.51 77.21 61.82 77.57 74.76

R1.5 70.17 68.26 75.47 70.65 77.68 62.88 79.71 74.46
R2 67.39 67.55 74.23 67.53 77.29 62.15 77.78 74.31
R3 67.24 64.58 71.29 68.66 73.05 60.31 75.35 70.32

The Oakland3D dataset had a similar size to Vaihingen. The highest accuracy val-
ues were obtained in R1 and R1.5 supports for all methods except SVM and KNN meth-
ods. The highest accuracy was achieved as 97.30% with the LDA method in R1 support
(Figure 10). The LDA and RF methods provided sufficient accuracy for all support sizes.
Although the accuracy values decreased slightly as the support size increased, accuracy
of around 90% was obtained. The DT method has low accuracy in support sizes except
for R1.5. 94.12% general accuracy was obtained with the DT method in R1.5 support. The
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method with the lowest accuracy of 66.78% is the GNB method in R3 support (Figure 11).
General accuracy values of the Oakland version are presented in Table 6.
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Table 6. The overall accuracy of the methods in Oakland3D. The highest-obtained accuracies are
shown as bold.

Support LDA RF GNB LR MLP DT SVM KNN

R0.5 97.02 95.76 75.40 76.17 81.77 72.85 73.24 80.20
R1 97.30 96.80 77.59 78.29 83.65 75.38 72.72 80.61

R1.5 96.34 96.68 78.01 77.90 84.42 94.12 71.78 81.11
R2 95.24 93.59 72.77 74.49 80.54 76.21 71.13 82.05
R3 91.94 89.85 66.78 74.07 76.15 87.99 71.44 83.24

Precision, recall and F1 score values of each class were also calculated. It was found
that in Dublin City Area 1, all classes were detected better as the radius increased. Con-
sidering the F1 score, the RF method was the best method for the building class. RF was
slightly affected by radius change for the building class. It had an F1 score of 88% for R0.5
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and 89% for R3. The KNN method was the most unsuccessful method for the building class.
The vegetation class had lower accuracy values in a small support radius. The highest F1
score for vegetation was obtained for RF (91%) in the R3 support. It has been determined
that the KNN method was insufficient for the vegetation class regardless of the support
size. KNN generally had a high precision value and low recall value. The opposite was
true in the R3 support. It had a low recall value in the support of R0.5 in all methods. In
other words, although the methods correctly detected the majority of vegetation class in
small supports, most of the points labeled as vegetation belonged to different classes. The
ground surface class had been extracted with approximately 100% precision, recall and F1
score in all cases (Figure 12).
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In Dublin City Area 2, there were some differences from Dublin City Area 1. While
all values increased rapidly in support radius greater than R0.5 in Area 1, the values of
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metrics at a small radius in Area 2 did not increase in the same way. High metric values
were obtained in the support of R3 for almost all methods. Although precision was not
affected by the radius change, recall and F1 score had low values in the support of R0.5.
MLP and LR (in R3 support), the best methods for building class extraction, had 97% and
96% F1 scores, respectively. The method with the lowest F1 score was the LDA method
with 89% (in R3 support). Vegetation class was detected with lower success in all supports
than other classes. For the vegetation class, RF was the most successful method in terms of
F1 score (86% for R3). KNN was quite insufficient for extraction of vegetation. The highest
F1 score was obtained with 72% in R1.5 support. Although the ground surface class did not
have values close to 100% in Area 2 as in Area 1, because the test data was larger, precision,
recall and F1 scores were generally obtained above 90% for all methods (Figure 13).

ISPRS Int. J. Geo-Inf. 2021, 10, 187 17 of 24 
 

 

terms of F1 score (86% for R3). KNN was quite insufficient for extraction of vegetation. 
The highest F1 score was obtained with 72% in R1.5 support. Although the ground surface 
class did not have values close to 100% in Area 2 as in Area 1, because the test data was 
larger, precision, recall and F1 scores were generally obtained above 90% for all methods 
(Figure 13). 

 

 

 

 

 

 
Figure 13. Precision, recall and F1 score values of the algorithms for Dublin City Area 2. Figure 13. Precision, recall and F1 score values of the algorithms for Dublin City Area 2.



ISPRS Int. J. Geo-Inf. 2021, 10, 187 17 of 23

In the Vaihingen dataset, lower metrics were obtained for all methods compared
to the Dublin City dataset. In the Vaihingen dataset, recall values were higher than
precision values. In other words, although most of the labeled points were labeled correctly,
they could not find the points belonging to that class with the same success. For the
building class, the SVM method had the highest F1 score value (74% in R1.5 support), while
the lowest F1 score value was obtained in the DT method (54% in R3 support). Similar
results to the building class were obtained for the vegetation class. MLP (68% in R1.5
support) and SVM (68% in R1.5 support) have the highest F1 score value. The lowest F1
score (53% in R3 support) was obtained by the DT method. The methods again extracted
the ground surface class better than the other classes. For the ground surface class, SVM
(87% F1 score in R1.5 support) was the best method while the worst method was DT (68%
F1 score in R3 support). When using large supports (R2 and R3) in the Vaihingen dataset,
a decrease was observed in all metrics (Figure 14).
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In the Oakland3D dataset, it was determined that better results were obtained in R1
and R1.5 supports. As with the Vaihingen dataset, recall values were higher than precision
values at all scales. Especially in R2 and R3 supports, a decrease was observed in all
accuracy metrics. Similar to other datasets, insufficient accuracy was obtained in R05
support. For building class, while the highest F1 score was obtained with LDA (88% in R1
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support), the lowest F1 score was obtained with KNN (36% in R0.5 support). For vegetation
class, LDA has the highest F1 score (94% in R1 support), SVM has the lowest F1 score (45%
in R0.5). The ground surface class was extracted with higher accuracy compared to other
classes. When RF has the highest F1 score (%99 in R1 support), GNB has the lowest F1
score (76% in R3). The precision, recall and F1 scores of the Oakland3D dataset were shown
in Figure 15.
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method to obtain an ordered list of them. The most important feature in both datasets was
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the Z coordinates of the points. Other important features for the Dublin City dataset were
verticality and volume density. The least important feature was linearity. The roughness
feature was also of low importance except for the R3 support. In the Vaihingen dataset,
verticality was the second most important feature. While the least important feature was
Linearity, the importance of roughness increased as the support radius grew. Since most of
the values were obtained as NaN, no evaluation was made for R0.5 in the Vaihingen dataset.
Feature importance values calculated for each study area were presented in Figure 16.
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5. Discussion

The results of the study allow general inferences to be made regarding the selection
of some optimum parameters for point cloud classification. Determining the optimum
support size is one of the most important factors affecting the classification accuracy.
Considering the overall accuracy metrics, it was determined that the optimum support
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size may not be the same for different classes (Figures 12–15). Furthermore, the idea
that the optimum support size depends on the respective point density is meaningful
and is consistent with previous studies [9]. In both test sites of the Dublin City dataset
which had very high point density, generally, the highest accuracy results were obtained
at the R3 scale, a large support size (Tables 3 and 4). In the Vaihingen and Oakland3D
datasets that had less density, generally the highest accuracy results were obtained in R1
and R1.5 support sizes (Tables 5 and 6). Accordingly, it is appropriate to choose a larger
support size in denser point clouds and choose a smaller support size in low-density point
clouds. Additionally, it has been shown that the optimum support length can vary from
one algorithm to another. For classification methods, DT, a rule-based method, generally
did not give good results compared to other methods. Although higher classification
accuracies are obtained with the instance-based KNN method, it has a long test time.
It has been determined that the classification accuracy of LDA, GNB and LR (probabilistic
methods), RF (ensemble method), SVM and MLP (neural-network-based method) methods
are improved. However, the MLP method has a disadvantage with its long training time.
Even though LR, GNB and SVM could compete with other methods in the Dublin City
and Vaihingen datasets, they were insufficient in the Oakland3D dataset. The LDA and RF
methods also had high classification accuracy in the Dublin City and Oakland 3D datasets,
but showed lower performance in the Vaihingen dataset than other classifiers. It was
understood that choosing the appropriate classifier depends on the scale and data set. The
findings of this study were compared with previous studies with the same datasets. Since
the Dublin City dataset is a new dataset, there is no study in the literature comparable to
this study. Comparative results for the Vaihingen and Oakland3D datasets are presented
in Tables 7 and 8.

Table 7. Comparison with previous studies for the Vaihingen dataset. F1 score values were compared
for each class. All values are given in % (WhuY2, ISS_3, K_LDA results were taken from ISPRS
website). The highest-obtained accuracies are shown as bold.

Method Building Vegetation Ground Average F1 Overall Accuracy

This study 74.58 67.75 87.46 76.60 79.71
Özdemir
et al. [36]

87.70 71.10 91.70 79.40 84.10

WhuY2 [37] 93.10 77.30 88.90 86.43 81.00
IIS_3 [37] 83.80 53.20 86.90 74.63 72.50

K_LDA [37] 60.69 64.21 61.05 61.98 50.19

Table 8. Comparison with previous studies for the Oakland3D dataset. F1 score values were
compared for each class. All values are given in %. The highest-obtained accuracies are shown
as bold.

Method Building Vegetation Ground Average F1 Overall Accuracy

This study 88.08 93.54 99.48 93.70 97.30
Feng and
Guo [38] 89.62 86.89 100.0 92.17 97.08

Guo and
Feng [39] 94.42 94.74 97.91 95.62 96.89

Weinmann
et al. [9] 76.98 91.55 98.43 88.99 92.28

Algorithms were also evaluated in terms of test and train time. There are many factors,
such as the size of the dataset, the parameters selected and the hardware used, which
affect the time. Therefore, although the processing times of the algorithms were specific
to this study, they provided important information as they were evaluated under the
same conditions.
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As expected, algorithms needed more tests and train time for the larger dataset. GNB
had the shortest training time, while MLP training time was the longest. MLP as a neural
network, having hidden layers, took time for training. According to test times, DT was
the fastest algorithm while KNN was the slowest algorithm. KNN was slow because it
determined the closest neighbor points for each point individually. In all algorithms except
KNN, the training time was longer than the test time. The duration of the algorithms is
presented separately for each dataset in Table 9.

Table 9. Training and testing duration of the algorithms (seconds).

Support LDA RF GNB LR MLP DT SVM KNN

Traindublin 5.140 43.609 1.641 25.100 635.984 19.125 24.359 3.234
Trainvaihingen 4.250 29.063 1.438 64.141 454.641 15.578 10.361 2.703
Trainoakland 0.109 4.641 0.016 3.578 98.062 0.265 0.562 0.125
TestdublinA1 0.422 8.438 3.906 0.422 4.594 0.250 0.359 169.891
TestdublinA2 1.359 17.578 10.281 1.359 14.844 1.141 2.672 833.531
Testvaihingen 0.156 4.031 2.360 0.203 1.703 0.125 0.203 149.031
Testoakland 0.203 8.953 0.906 0.219 4.984 0.141 0.265 57.390

6. Conclusions

In this study, the performance of eight different machine-learning algorithms for the
supervised classification of LiDAR point clouds was investigated. Geometric features
of point clouds produced at multi scales were used for classification. Thus, point cloud
classification was realized without the need for any additional information other than 3D
coordinates. As a result of classification, three classes were selected: building, vegetation
and ground surface. The study was repeated in three different areas. In addition, the
importance of the geometric features based on the scale and the processing times of the
algorithms were examined.

Machine learning methods for point cloud classification have great potential. Ap-
propriate method and parameter selection are important for a correct classification with
machine learning. As shown in the results of the study, the appropriate method varies
according to the dataset. Due to classified point clouds containing a lot of geometric
information, they can be used as a base and reference data for many studies. For future
studies, the study can be applied to photogrammetric point clouds that have different
characteristics from the LiDAR point cloud.
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