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Marko Bizjak and Wolfgang Kainz

Received: 1 September 2021

Accepted: 11 October 2021

Published: 13 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Transportation, Southeast University, Nanjing 211189, China; geodesic_y_yan@seu.edu.cn (Y.Y.);
fylong1990@seu.edu.cn (F.L.); yanfengdong@seu.edu.cn (Y.D.)
* Correspondence: yuxianwen@seu.edu.cn

Abstract: The urban ecological environment is related to human health and is one of the most
concerned issues nowadays. Hence, it is essential to detect and then evaluate the urban ecological
environment. However, the conventional manual detection methods have many limitations, such
as the high cost of labor, time, and capital. The aim of this paper is to evaluate the urban ecological
environment more conveniently and reasonably, thus this paper proposed an ecological environment
evaluation method based on remote sensing and a projection pursuit model. Firstly, a series of
criteria for the urban ecological environment in Shanghai City are obtained through remote sensing
technology. Then, the ecological environment is comprehensively evaluated using the projection
pursuit model. Lastly, the ecological environment changes of Shanghai City are analyzed. The results
show that the average remote sensing ecological index of Shanghai in 2020 increased obviously
compared with that in 2016. In addition, Jinshan District, Songjiang District, and Qingpu District have
higher ecological environment quality, while Hongkou District, Jingan District, and Huangpu District
have lower ecological environment quality. In addition, the ecological environment of all districts has
a significant positive spatial autocorrelation. These findings suggest that the ecological environment
of Shanghai has improved overall in the past five years. In addition, Hongkou District, Jingan District,
and Huangpu District should put more effort into improving the ecological environment in future,
and the improvement of ecological environment should consider the impact of surrounding districts.
Moreover, the proposed weight setting method is more reasonable, and the proposed evaluation
method is convenient and practical.

Keywords: ecological environment; remote sensing; projection pursuit; multi-criteria evaluation

1. Introduction

Urbanization is a worldwide trend and causes changes to the urban ecological envi-
ronment. Currently, the urban ecological environment faces a series of problems, such as
urban heat island effect, deforestation, and land degradation [1]. These problems have
a connection with human health and may even induce life-threatening diseases [2]. The
public has an urgent need to know the conditions of the urban ecological environment.
Thus, it is crucial to detect and then evaluate the urban ecological environment.

The detection of ecological environment is carried out by manual investigation typi-
cally [3,4], which has many limitations. For example, it is unlikely to conduct the detection
frequently on a large scale because of the high cost of labor, time, and capital [5]. In addi-
tion, the spatial resolution and temporal resolution are also low. As a result, the evaluation
of ecological environment lacks convenience. However, the remote sensing (RS) is an
advanced means of detecting the ecological environment [6]. Through remote sensing
technology, the imagery of Earth’s surface is obtained from satellite sensors. The satellite
imagery provides multispectral information for estimating ecological criteria, such as the
normalized difference vegetation index (NDVI) [6,7] and land surface temperature (LST)
[8,9]. A major advantage of remote sensing is that it can be used to automatically detect
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the ecological environment, saving time and effort. The remote sensing method has several
practical applications. Qureshi et al. [5] modeled the ecological conditions in wetland by
means of remote sensing. Yue et al. [7] studied the ecological changes in 35 cities using
remote sensing. Zhu et al. [10] monitored the ecological effects of open pits in mining areas
using remote sensing. Bi et al. [11] studied the ecological environment in an arid region
according to remote sensing data. The above studies have proved the feasibility and practi-
cability of detecting ecological environment by remote sensing. Some researchers evaluate
the ecological environment according to a single criterion. Zhang et al. [12] concentrated on
evaluating the change of natural ecological land through the land use data. Jiang et al. [9]
focused on the land surface temperature (LST) retrieving according to remote sensing data.
Peng et al. [13] focused on studying the urban heat island effect through anthropogenic
heat flux. However, the evaluation of ecological environment based on a single criterion is
biased and lacks comprehensiveness. There are some studies that evaluate the ecological
environment according to a number of criteria. Zhang et al. [1] assessed the urban eco-
environment quality through greenness, moisture, dryness, and heat. Firozjaei et al. [14]
modeled the land surface ecological status by biophysical composition index (BCI) infor-
mation, land surface temperature (LST), and remote sensing-based ecological index (RSEI).
Hu et al. [15] assessed the urban ecological quality by integrating the primary land surface
components and the climate using the pressure-state-response framework. In these studies,
the ecological environment monitored by remote sensing satellites contains a number of
criteria. How to make a comprehensive evaluation of these criteria is a problem we need
to study. Mathematically speaking, this is a multi-criteria evaluation problem, and some
efforts have been made to solve this one. The principal component analysis (PCA) is most
commonly used, and a lot of researchers also adopt this method for integrating remote
sensing ecological criteria [10,15–17]. For example, Xu et al. [6] studied the combination of
different ecological criteria using the principal component analysis (PCA). There are also
many studies using other methods. Yue et al. [7] adopted the analytic hierarchy process
(AHP) to integrate ecological criteria. Liu et al. [18] developed a visibility graph power
geometric aggregation operator for integration. Liao et al. [19] proposed a comprehensive
evaluation model based on knowledge granulation entropy. Wang et al. [20] adopted the
analytic hierarchy process (AHP) and the technique for order preference by similarity to
an ideal solution (TOPSIS) Method. However, the methods proposed by previous studies
are somewhat complicated in practical operation. For instance, there still exists an unclear
issue about how many components to select in the PCA method. In addition, previous
research gives one ecological criterion to different weights at different times and neglects
the importance of consistency in weighting.

With the purpose of dealing with the inadequacies of previous studies, this paper pro-
posed a remote sensing ecological environment evaluation method based on the projection
pursuit model. Firstly, a series of ecological criteria for the urban ecological environment
are obtained through remote sensing technology. Then, the ecological environment is
comprehensively evaluated using the projection pursuit model, which is a convenient
multi-criteria evaluation method. In addition, this paper handles remote sensing ecological
data as a whole, and once the weight of each ecological criterion is given, it remains fixed.
Lastly, the ecological environment changes of Shanghai City in the past five years are
analyzed based on the evaluation results. The main contributions of our work are that the
weight setting method is more reasonable and the proposed method is more convenient;
thus, the analysis is more meaningful.

The remaining part of this paper is organized in the following way: Section 2 explains
the processing methods; Section 4 explains the remote sensing data; Section 5 presents the
results of ecological environment evaluation; Section 6 discusses the findings. Lastly, the
conclusions are given.
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2. Methods

Remote sensing is a technology that uses satellite sensors to perform non-contact mea-
surements of Earth’s surface [21]. Radiations emitted or reflected from Earth’s surface are
detected by satellite sensors, and then we can process and analyze the radiation information.

2.1. Ecological Criteria

The remote sensing based ecological index (RSEI) was proposed by Xu [22]. Four
ecological criteria closely related to human activities were selected as the evaluation
indicators of urban ecological environment, namely greenness, wetness, dryness, and
heat. The RSEI has an advantage that it is convenient to use based on satellite remote
sensing technology and is widely used in the evaluation of urban ecological environment
currently [1,5,6]. The description of ecological criteria is shown in Table 1. The RSEI is
calculated as follows:

RSEI = f (Greenness, Wetness, Dryness, Heat) (1)

Table 1. Ecological criteria.

Criterion Indicator Description Type Reference

Greenness NDVI Vegetation cover The larger the better [5,6]
Wetness Wetness Moisture of soil and plants The larger the better [5,6]
Dryness NDBSI Buildings and bare soil The smaller the better [5,6]

Heat LST Land surface temperature The smaller the better [5,6]

Figure 1 shows a schematic view of detecting ecological criteria by remote sensing.

Figure 1. Schematic view of remote sensing.

It can be seen from Figure 1 that these ecological criteria are easily obtained through
remote sensing technology. The detailed meaning of these ecological criteria is explained
as follows.

(1) Greenness;

The Greenness [6] reflects the vegetation cover, and the higher the greenness, the better
the ecological environment. The normalized difference vegetation index (NDVI) [5] is often
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used to measure vegetation cover in remote sensing. Therefore, this paper uses NDVI to
characterize the greenness. The formula for calculating NDVI is as follows:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(2)

where ρNIR and ρRed denote reflectance of the near-infrared band and the red band, respec-
tively.

(2) Wetness;

The Wetness [6] reflects the moisture of soil and plants, and the higher the wetness, the
better the ecological environment. The formula for calculating wetness through Sentinel-2A
image [23] is given by:

Wetness = 0.1509ρ2 + 0.1973ρ3 + 0.3279ρ4 + 0.3406ρ8 − 0.7112ρ11 − 0.4572ρ12 (3)

where ρi represents the reflectance of corresponding band in Sentinel-2A image, and
i = 2, 3, 4, 8, 11, 12.

(3) Dryness;

The Dryness [6] reflects the soil drying, and the smaller the dryness, the better the
ecological environment. The dryness indicator called NDBSI is a combination of built-up
index (BI) and bare soil index (SI). The formula for calculating NDBSI through Sentinel-2A
image [23] is given below:

NDBSI =
SI + BI

2
(4)

where

SI =
(ρ11 + ρ4)− (ρ8 + ρ2)

(ρ11 + ρ4) + (ρ8 + ρ2)
(5)

BI =

2ρ11
ρ11+ρ8

−
(

ρ8
ρ8+ρ4

+ ρ3
ρ3+ρ11

)
2ρ11

ρ11+ρ8
+
(

ρ8
ρ8+ρ4

+ ρ3
ρ3+ρ11

) (6)

where ρi represents the reflectance of corresponding band in Sentinel-2A image, and
i = 2, 3, 4, 8, 11.

(4) Heat

The Heat [6] reflects the land surface temperature related to urban thermal island
effect, and the smaller the heat, the better the ecological environment. The formula for
obtaining land surface temperature by means of remote sensing is derived below.

According to the Planck’s law, the land surface temperature Ts [24] can be expressed as:

Ts =
K2

ln(K1
B + 1)

(7)

where B is the black body spectral radiance at temperature Ts. K1 and K2 are constants.
However, the B can be calculated by means of the Radiative Transfer Equation.

Figure 2 shows an illustration of the Radiative Transfer Equation.
According to Figure 2 , the Radiative Transfer Equation [24] can be written as:

Lλ = τ
[
εB + (1− ε)L↓

]
+ L↑ (8)

where Lλ is the total radiance received by the satellite, L↑ is upwelling radiance, L↓ is
downwelling radiance, and ε is emissivity and τ is atmospheric transmission.
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Figure 2. Schematic view of the Radiative Transfer Equation.

Equation (8) can be rewritten as:

B =
Lλ − L↑ − τ(1− ε)L↓

τε
(9)

By substituting Equation (9) into Equation (7), we get:

Ts =
K2

ln( K1τε
Lλ−L↑−τ(1−ε)L↓

+ 1)
(10)

The unit of Ts in Equation (10) is Kelvin, which can be converted to Celsius as follows:

Ts[
◦C] = Ts − 273.15 =

K2

ln( K1τε
Lλ−L↑−τ(1−ε)L↓

+ 1)
− 273.15 (11)

where Ts[◦C] denotes the land surface temperature in Celsius.

2.2. Multi-Criteria Evaluation Model

The ecological environment monitored by remote sensing satellites contains a number
of criteria. Making a comprehensive evaluation of these criteria belongs to a multi-criteria
evaluation problem. In the multi-criteria evaluation problem, each sample to be evaluated
is composed of n criteria. Then, each sample can be regarded as a point in the Rn linear
space. The basic idea of projection pursuit model is to project these points onto an appro-
priate direction vector [25–27]. Figure 3 shows the process, and each step is described in
detail below.
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Start

Normalization

Constructing projection pursuit index

Finding the optimal direction vector

Calculating projection value

Calculating RSEI

End

Figure 3. Flow chart of projection pursuit model of calculating RSEI.

Step 1: Normalization.

In order to eliminate the influence caused by different criteria units, each criterion
variable needs to be normalized. Define {x1, x2, . . . , xm} as a real number sequence com-
posed of the values of all samples corresponding to a certain criterion. The normalization
method is introduced below [26–28].

(1) When the larger the criterion, the better the ecological environment:

ri =
xi − xmin

xmax − xmin
(12)

where i ∈ {1, 2, . . . , m}, xmin = min{x1, x2, . . . , xm}, xmax = max{x1, x2, . . . , xm}, ri is the
value of j-th sample corresponding to a certain criterion after normalization.

(2) When the smaller the criterion, the better the ecological environment:

ri = 1− xi − xmin

xmax − xmin
(13)

in the usual notation.

Step 2: Constructing projection pursuit index.

Let a = (a1, a2, ..., an) be a unit direction vector, and let y(i) = (y(i)1 , y(i)2 , ..., y(i)n ) be a
vector composed of the values of all criteria corresponding to a certain sample. Then, the
scalar projection z(i) of y(i) onto a is given by:

z(i) = < y(i), a > =
n

∑
j=1

y(i)j aj (14)

where < · > denotes inner product.
Let {y(1), y(2), . . . , y(m)} be a vector sequence composed of m samples, and let {z(1), z(2),

..., z(m)} be a real number sequence formed by the projection of y(i) onto a, i = 1, 2, . . . , m.
Define the projection pursuit index function Q(a) as follows [25–27]:

Q(a) = S · D (15)

where
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S = std({z(1), z(2), . . . , z(m)}), in other words, the standard deviation of
the sequence {z(1), z(2), . . . , z(m)};

D = ∑m
i=1 ∑m

j=1(R− rij)u(R− rij), represents local density;
rij = |z(i) − z(j)|, i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , m}, represents the dis-

tance between samples;
R = rmax +

n
2 , represents the window radius of local density [29];

rmax = max{rij};

u(x) =

{
1, x ≥ 0
0, x ≤ 0

, denotes the step function.

Step 3: Finding the optimal direction vector.

Finding the optimal direction vector a by maximizing Q(a):

max Q(a)

subject to: ‖a‖ = 1 and ai ∈ [0, 1]
(16)

where ‖·‖ denotes the length of a vector, i ∈ {1, 2, . . . , n}.
This is a nonlinear optimization problem, and there are many ways to solve such a

problem. For example, swarm intelligence algorithms have been used to find the optimal
solution [26,27].

Step 4: Calculating projection value.

Once the optimal direction vector â is obtained, the optimal projection value sequence
{ẑ(1), ẑ(2), . . . , ẑ(m)} can be acquired according to Equation (14).

Step 5: Calculating RSEI.

Let ẑmin = min{ẑ(1), ẑ(2), . . . , ẑ(m)} and ẑmax = max{ẑ(1), ẑ(2), . . . , ẑ(m)}. Then, the
RSEI is defined as

RSEI(i) =
ẑ(i) − ẑmin

ẑmax − ẑmin
(17)

where i ∈ {1, 2, . . . , m}.
Subsequently, a comprehensive evaluation analysis can be performed based on the

RSEI values, and a larger RSEI value means a better ecological environment quality.

2.3. Spatial Autocorrelation

This study also conducted an analysis of spatial autocorrelation, and the analysis
involves a spatial weights matrix. Contiguity weights matrix [30,31] is a classic one and
composed of three types, namely Rook, Bishop, and Queen, which can be seen in Figure 4.
Rook contiguity means that the matrix element wij = 1 if two cities share a common border,
and wij = 0 if not. Bishop contiguity means that the matrix element wij = 1 if two cities
share a common vertex, and wij = 0 if not. Queen contiguity means that the matrix element
wij = 1 if two cities share a common border or vertex, and wij = 0 if not. In this study, the
spatial weights matrix is set to a row-normalized Queen contiguity weights matrix.

Rook Bishop Queen

Figure 4. Spatial contiguity matrix.
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The Moran’s I statistic [30] for RSEI can be written as:

MRSEI =
∑15

i=1 ∑15
j=1(RSEIi − RSEI)wij(RSEI j − RSEI)/15

∑15
i=1(RSEIi − RSEI)2/15

=
∑15

i=1 ∑15
j=1(RSEIi − RSEI)wij(RSEI j − ¯RSEI)

∑15
i=1(RSEIi − RSEI)2

(18)

where RSEI = (∑15
i=1 RSEIi)/15, wij is the entry of a row-standardized Queen contiguity

weights matrix.

2.4. Technical Route

The process of calculating RSEI from remote sensing images is shown in Figure 5, and
it can be seen that the process consists mainly of the following steps.

1. Acquiring remote sensing images of the relevant study area.
2. Data preprocessing, such as layer stacking, radiometric calibration, making a subset, etc.
3. Based on the methods in Section 2.1, the remote sensing images are processed to

obtain the four ecological criteria.
4. The zonal statistics are conducted to obtain the average values of ecological criteria in

each district.
5. The projection pursuit model is used to comprehensively evaluate the four ecological

criteria, and the RSEI is obtained.
6. Analyzing the RSEI results.

Sentinel-2A images

Layer stacking

Radiometric calibration

Making a subset

WetnessGreeness Dryness Heat

Making a subset

Radiometric calibration

MODIS images

Zonal statisticsZonal statistics Zonal statistics Zonal statistics

NormalizationNormalization Normalization Normalization

Projection pursuit model

RSEI

Analysis

Figure 5. Technical route.
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3. Study Area

This research studied the ecological environment of 15 districts in Shanghai. Shanghai
is located in the east coast of China, adjacent to Jiangsu and Zhejiang provinces. The
longitude range is 120◦52′ E ∼ 122◦12′ E, and the latitude range is 30◦40′ N ∼ 31◦53′ N.
Shanghai has a subtropical monsoon climate, with an annual average temperature of about
17 ◦C and a land area of about 6340.5 km2 [32]. There are many enterprises in Shanghai,
and the business is highly developed. It is an important economically developed area in
China, and the gross regional product in 2020 is about 3870× 109 Yuan [32]. Figure 6 shows
the map of study area.

Figure 6. Study area.

Shanghai governs 16 districts, and Figure 6 shows that this paper just studied 15 of
them. The reason why Chongming District is not included in this study is that Chongming
District is an outlying island and has inconvenient land transportation with surrounding districts.

4. Data
4.1. Data Sources

The remote sensing images of Sentinel-2A and MODIS were used in this work, and the
information about Sentinel-2A and MODIS is available on https://scihub.copernicus.eu/,
accessed on 8 May 2021 and https://ladsweb.modaps.eosdis.nasa.gov/ accessed on 8 May
2021. The Sentinel-2 contains two satellites, Sentinel-2A and Sentinel-2B, which can obtain
high-resolution multispectral satellite images. The number of spectral bands in Sentinel-2A
satellite is 13, including visible band, near infrared band, short wave infrared band, etc.
There are three kinds of spatial resolutions, namely 10 m, 20 m, and 60 m. Table 2 shows
a part of band information on the Sentinel-2A satellite. MODIS (Moderate Resolution
Imaging Spectroradiometer) is a radiometer carried by the Terra and Aqua satellites which
are synchronized with the sun. There are 36 spectral bands in MODIS, and the MOD11A2,
which is a product of MODIS, provides a spatial resolution of one kilometer for land surface
temperature and emissivity. MODIS products are suitable for the research of ecological
environment, climate, land, etc.

Table 3 shows the basic information about raw data we used in this paper. The sensing
dates of Sentinel-2A images are 23 July 2016, 18 July 2017, 23 July 2018, 18 July 2019, and 22
July 2020, respectively, and the sensing dates of MODIS images are almost the same. The
DOY (day of year) of these remote sensing images are similar, and observing the ecological
environment changes on the similar DOY every year makes the experiment results more
convincing. The Sentinel-2A images are downloaded from https://scihub.copernicus.eu/

https://scihub.copernicus.eu/
https://ladsweb.modaps.eosdis.nasa.gov/
https://scihub.copernicus.eu/
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accessed on 8 May 2021, and the MODIS images are available on https://ladsweb.modaps.
eosdis.nasa.gov/ accessed on 8 May 2021. Some software (e.g., ENVI, Geoda, MATLAB,
QGIS) is also used in this experiment.

Table 2. The partial band information on Sentinel-2A.

Band Central Wavelength
(nm)

Bandwidth
(nm)

Spatial Resolution
(m) Description

2 492.4 66 10 Blue
3 559.8 36 10 Green
4 664.6 31 10 Red
8 832.8 106 10 Near infrared
11 1613.7 91 20 Short wave infrared
12 2202.4 175 20 Short wave infrared

Table 3. The information on raw data.

Sensor Product Tile Number Temporal Resolution Sensing Date

Sentinel-2A S2A_MSIL1C T51RUQ 1 d

23 July 2016
18 July 2017
23 July 2018
18 July 2019
22 July 2020

MODIS MOD11A2 H28V5 8 d

19 July 2016–26 July 2016
20 July 2017–27 July 2018
20 July 2018–27 July 2018
20 July 2019–20 July 2019
19 July 2020–26 July 2020

4.2. Data Preprocessing

The raw images must be preprocessed, such as layer stacking, making a subset and
radiometric calibration. Layer stacking is to combine different band images into a multi-
band file, which is convenient for subsequent band mathematical operation [6,21]. Making
a subset refers to selecting a smaller image only containing the study area according to
Figure 6. Radiometric calibration is to convert the DN (digital number) value into radiance,
reflectance, etc.

The formula for radiometric calibration [33] is as follows:

y = G× D + b (19)

where G denotes gain parameter, D denotes digital number (DN) value, b denotes bias
parameter, and y is the reflectance or radiance after calibration.

For the S2A_MSIL1C image product of Sentinel-2A, we can know that the gain pa-
rameter is 0.0001, and the bias parameter is 0 according to ENVI software. Therefore, the
formula for converting the DN value into reflectance is as follows:

r = 0.0001× D (20)

where r denotes reflectance, and D denotes the digital number (DN) value.
For the MOD11A2 image product of MODIS, we can know that the gain parameter

is 0.02 according to ENVI software, and the unit of land surface temperature is Kelvin.
Therefore, the formula for converting DN value into land surface temperature in Celsius is
as follows:

Ts[
◦C] = Ts[K]− 273.15

= 0.02× D− 273.15
(21)

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
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where Ts[◦C] denotes the land surface temperature in Celsius, Ts[K] denotes the land
surface temperature in Kelvin, and D denotes the digital number (DN) value.

5. Results
5.1. Raw Ecological Criteria

The ecological criteria can be obtained by remote sensing image processing according
to the methods in Section 2.1. The Greenness, Wetness, and Dryness can be calculated
using the reflectance images of Sentinel-2A, and the Heat can be acquired from the MODIS
MOD11A2 product. Figures 7–10 display the results of Greenness, Wetness, Dryness, and
Heat, respectively. When calculating the ecological criteria using the reflectance images of
Sentinel-2A, a threshold was also set for smoothing, and the results are rounded to three
decimal places.

Figure 7. Greenness.

Figure 8. Cont.
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Figure 8. Wetness.

Figure 9. Dryness.

Figure 10. Heat.
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5.2. Zonal Statistics

This study is to evaluate and analyze the ecological environment of 15 districts in
Shanghai, and so it is necessary to obtain the average values of ecological criteria in each
district. The zonal statistics are conducted, and Figures 11–14 present the average values of
Greenness, Wetness, Dryness, and Heat, respectively, in each district.

2016 2017 2018

2019 2020

0.00 - 0.08
0.08 - 0.16
0.16 - 0.24
0.24 - 0.32
0.32 - 0.40

Figure 11. Average value of Greenness in each district.

2016 2017 2018

2019 2020

-0.10 - -0.04
-0.04 - 0.02
0.02 - 0.08
0.08 - 0.14
0.14 - 0.20

Figure 12. Average value of Wetness in each district.

2016 2017 2018

Figure 13. Cont.
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2019 2020

-0.20 - -0.16
-0.16 - -0.12
-0.12 - -0.08
-0.08 - -0.04
-0.04 - 0.00

Figure 13. Average value of Dryness in each district.

2016 2017 2018

2019 2020

29.00 - 31.40
31.40 - 33.80
33.80 - 36.20
36.20 - 38.60
38.60 - 41.00

Figure 14. Average value of Heat in each district.

5.3. Normalization

Table 4 reports the descriptive statistics for all ecological criteria. From Table 4, it can
be seen that the mean value of each criterion varies considerably. Therefore, there is a
strong need for normalization. The data are normalized using the method described in
Section 2.2, and Table 5 reports the descriptive statistics for data after normalization.

Table 4. Descriptive statistics for ecological criteria.

Criterion Sample Size Mean Std. Dev Minimum Maximum

Greenness 75 0.156 0.097 0.008 0.375
Wetness 75 0.002 0.033 −0.04 0.115
Dryness 75 −0.077 0.034 −0.148 −0.016

Heat 75 37.065 2.188 29.298 40.528

Table 5. Descriptive statistics for ecological criteria after normalization.

Criterion Sample Size Mean Std. Dev Minimum Maximum

Greenness 75 0.403 0.265 0.000 1.000
Wetness 75 0.269 0.214 0.000 1.000
Dryness 75 0.461 0.258 0.000 1.000

Heat 75 0.308 0.195 0.000 1.000

5.4. RSEI

According to the projection pursuit model described in Figure 3, the optimal direction
vector â is calculated, and â = [0.5666, 0.0800, 0.6819, 0.4556]. Then, the comprehensive
evaluation value RSEI of ecological criteria can be calculated, and the results are shown in
Figure 15.
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Figure 15. RSEI.

6. Discussion

The statistics for RSEI are presented as box plots in Figure 16, and we can see that the
average RSEI fluctuated from 2016 to 2020. The average RSEI of Shanghai decreased in
2017 and 2019, but the average RSEI of Shanghai increased in 2018 and 2020. In addition,
the average RSEI of Shanghai in 2020 increased obviously compared with that in 2016,
indicating that the ecological environment of Shanghai has improved overall.
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Figure 16. Box plots of RSEI.

Figure 17 shows the changes of RSEI in 15 districts of Shanghai, and we can see
that the fluctuation in most districts is similar, but some differences also exist. The RSEI
in Jingan District did not change significantly in 2017, while the RSEI in the remaining
districts showed an obvious decline. In 2018, the RSEI in Jingan District remained varied
slightly, while the RSEI in the remaining districts showed an obvious increase. In 2019,
the RSEI in nine districts such as Qingpu showed an obvious decline, while the RSEI
in five districts such as Fengxian showed an obvious increase. In addition, the RSEI
of Jinshan district changed slightly. In 2020, the RSEI in eight districts such as Qingpu
showed an obvious increase, while the RSEI in four districts such as Fengxian showed an
obvious decrease, and the RSEI in Jinshan District, Baoshan District, and Xuhui District
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varied a little. However, from the overall perspective, only the RSEI in Huangpu and
Yangpu districts did not increase, while the RSEI in the remaining districts all showed an
obvious increase, indicating that the ecological environment of most districts in Shanghai
improved significantly.
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Figure 17. Line chart of RSEI.

In order to compare the ecological environment more conveniently, Figure 18 shows
the rankings of each district by RSEI in 2016 and 2020. In 2016, the top three districts were
Jinshan District, Songjiang District, and Qingpu District, and the bottom three districts
were Hongkou District, Jing’an District, and Huangpu District. In 2020, the top three
districts were Qingpu District, Songjiang District, and Jinshan District, and the bottom
three districts were Hongkou District, Jingan District, and Huangpu District. It can be
seen that whether in 2016 or 2020, Jinshan District, Songjiang District and Qingpu District
ranked high in the ecological environment, while there is a lot of room for improvement
in the ecological environment of Hongkou District, Jingan District, and Huangpu District.
Therefore, Hongkou District, Jingan District, and Huangpu District need to put more effort
into enhancing the ecological environment in future.
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Figure 18. Rankings of each district.

In this paper, we also calculate the RSEI Moran’s I for each year. The Moran’s I results
are shown in Figure 19.
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Figure 19. Moran scatter plot.

From Figure 19, it can be seen that the Moran’s I values are all positive and the p-
values less than 1%, indicating that the RSEI has a statistically significant positive spatial
autocorrelation. Therefore, when improving the ecological environment, each district
should pay attention to the impact of surrounding districts. It is better to cooperate with
surrounding districts and develop relevant measures to achieve citywide overall planning.

7. Conclusions

The urban ecological environment is one of the most concerning issues at present.
In order to evaluate the urban ecological environment more objectively and conveniently,
we have carried out the detection based on remote sensing technology, and then proposed
a multi-criteria evaluation model to analyze the ecological environment. To begin with,
this paper introduces the basic methods for using remote sensing to detect the ecological
environment. Then, to make up for the shortcomings of evaluation methods in previous
studies, this paper has proposed a multi-criteria evaluation method based on a projection
pursuit model. Lastly, the ecological environment changes of Shanghai City in the past
five years have been comprehensively evaluated.

This study has found that, in Shanghai (excluding Chongming Island), the average
remote sensing ecological index (RSEI) in 2020 increased obviously compared with that in
2016. In addition, Jinshan District, Songjiang District, and Qingpu District have the higher
evaluation scores of the ecological environment, while Hongkou District, Jingan District,
and Huangpu District have the lower evaluation scores of the ecological environment. In
addition, there is significant positive spatial autocorrelation in the ecological environment
of all districts. The implications of our findings are as follows.

1. The ecological environment of Shanghai has improved overall in the past five years.
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2. Hongkou District, Jingan District, and Huangpu District should put more effort into
improving the ecological environment in the future.

3. The improvement of ecological environment should consider the impact of surround-
ing districts, and it is better to make an overall plan.

4. The proposed weight setting method is more reasonable, and the proposed evaluation
method is convenient and practical.

Future work should focus on the applications of our method in the ecological protection.
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