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Abstract: Geological disaster risk assessment can quantitatively assess the risk of disasters to hazard-
bearing bodies. Visualizing the risk of geological disasters can provide scientific references for
regional engineering construction, urban planning, and disaster prevention and mitigation. There are
some problems in the current binary classification landslide risk assessment model, such as a single
sample type, slow multiclass classification speed, large differences in the number of positive and
negative samples, and large errors in classification results. This paper introduces multilevel landslide
hazard scale samples, selects multiple types of samples according to the divided multilevel landslide
hazard scale grade, and proposes a landslide hazard assessment model based on a multiclass support
vector machine (SVM). Due to the objective limitations of the single weighting method, the combined
weights are used to determine the vulnerability of the landslide hazard-bearing body, and the analytic
hierarchy process (AHP) and entropy method are combined to construct a landslide vulnerability
assessment model that considers subjective and objective weights. This paper takes landslide
disasters in Xianyang City, Shaanxi Province, as the research object. Based on the landslide hazard
assessment model and the landslide vulnerability assessment model, a landslide risk assessment
experiment is carried out. It generates the landslide risk assessment zoning map and summarizes the
risk characteristics of landslides in various towns. The experimental results verify the feasibility and
effectiveness of the proposed model and provide important decision support for decision makers in
Xianyang City.

Keywords: landslide disaster; hazard assessment; risk assessment; multiclass SVM

1. Introduction

In recent years, disasters have occurred frequently worldwide, destroying human
property and socioeconomic activities [1–3]. The potential risks faced by human beings and
society are increasing, and disasters have gradually attracted much attention. As one of
the largest countries in the world, China has a complex and diverse topography. With the
expansion of the scope of human engineering activities, many natural disasters frequently
occur [4]. In 2020, according to statistics from the Geological Environment Monitoring
Institute of the Geological Survey of China, the number of perennial disaster-affected
people in China reached 200 million, and socioeconomic losses exceeded 1 trillion. There
were 7840 geological disasters nationwide with a direct economic loss of CNY 5.02 billion,
139 deaths or missing persons, and 58 injuries. Among the Chinese geological disasters,
there were 4810 landslides, 1797 collapses, 183 ground collapses, 899 mudslides, 8 instances
of ground subsidence, and 143 ground fissures events. The situation of geological disaster
prevention and control remains severe in China.
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Despite the increasingly severe disaster situation and the shortage of land resources [5,6],
disaster prevention and mitigation work are gradually progressing [7]. It is critical to
establish a correct and effective geological disaster risk assessment system and analyze the
magnitude of disaster risk for effective disaster prevention and mitigation. In 1991, the
United Nations Humanitarian Department defined the natural disaster risk calculation
and proposed the expression “risk = function (hazard, vulnerability)”. This calculation
method has been recognized by most researchers, marking the transformation of disaster
risk assessment from qualitative to quantitative research [8]. With the in-depth study of
geological disasters, machine learning has been widely used in landslide risk assessment.
In the selection of evaluation factors and calculation of weights [9–21], Lee et al. analyzed
the relationship between landslides and various influencing factors, and achieved the risk
zoning [22]. Zhao et al. used the Shannon entropy theory, a fuzzy comprehensive method,
and an analytic hierarchy process (AHP) to assess landslide sensitivity [23]. In the process
of landslide hazard assessment [24–32], Yu et al. combined the geographically weighted
regression, particle swarm optimization (PSO), and support vector machine (SVM) to map
the landslide sensitivity in the Three Gorges Reservoir of Wanzhou District [33]. Xu et al.
integrated the entropy index into an SVM to realize landslide susceptibility assessment
in Shaanxi Province [34]. In the process of landslide risk assessment [35–43], Xiao et al.
combined the random forest model and the deterministic coefficient model to evaluate
the risk of landslides in Wanzhou District [43]. Pradhan et al. discussed the application
of the BP neural network model in landslide risk assessment [44]. The research results
of geological disaster risk assessment are fruitful. The evaluation methods are being
increasingly perfected, and the accuracy of the evaluation is gradually improving.

However, the existing classification models used in landslide risk assessments are
mostly binary classification models. The impact of different landslide disaster scales on
disaster risk assessment is not considered, and there is a lack of multiclassification studies
on landslide disaster scales. When using the binary classification model for multiclassifica-
tion tasks, there is a problem of slow classification speed. The sample classification error is
large due to the large difference between the numbers of positive and negative samples.
Therefore, it is necessary to establish a geological disaster risk assessment system based on
the scale of landslide disasters, identify multicategory geological disaster risk assessment
models, and carry out quantitative research on the scale of various disasters [45].

This paper combines landslide hazard assessment based on multiclass SVM and
landslide vulnerability assessment with subjective and objective weights, and proposes a
landslide risk assessment that combines multiclass SVM and combined weights. The main
contributions are summarized as follows:

(1) Nine evaluation factors are selected from the four aspects of terrain features, meteoro-
logical features, human influence, and historical geological disasters to construct the
landslide hazard evaluation index system: elevation, slope, aspect, normalized differ-
ence vegetation index (NDVI), distance from rivers, accumulated rainfall, distance
from roads, lithology, and landforms. Using the idea of multiclassification, a landslide
hazard assessment model based on a multiclass SVM is proposed. This method selects
multitype samples according to the scale of divided multilevel landslide hazards,
improves the sample types of landslide classification and is beneficial to the hazard
assessment of multilevel landslide disasters.

(2) Four evaluation factors for landslide vulnerability are selected from the three aspects
of population vulnerability, economic vulnerability, and material vulnerability to
construct a landslide vulnerability evaluation index system: population density, arable
land density, GDP density, and road density. Combining the AHP and the entropy
method, a landslide vulnerability assessment model that considers the subjective and
objective weights is proposed. This paper evaluates the vulnerability of landslides
by combining subjective and objective weighting calculation methods, combines the
advantages of subjective and objective methods, and avoids the objective limitations
caused by a single weighting method.
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(3) Taking the landslide in Xianyang city of Shaanxi Province as the research object and
taking the towns as the evaluation unit, the landslide risk assessment is carried out
based on the landslide hazard assessment model and the landslide vulnerability
assessment model. This paper generates the landslide risk assessment zoning map of
the study area, analyzes the results by using the existing risk levels of landslide points,
summarizes the risk characteristics of landslides in various towns, and provides a
scientific basis for the implementation of regional disaster prevention and mitigation.

2. Research Area and Data
2.1. Research Area

Xianyang City, Shaanxi Province is located between 107◦38′ E–109◦10′ E and
34◦9′ N–35◦34′ N. It is in the central part of the Guanzhong Basin, with a total area
of approximately 9543.6 km2. The terrain is higher in the north and lower in the south,
leaning from north to south in a stepped shape. The northwest is the Weibei Loess Plateau,
with an altitude of 1000–1800 m, and the terrain is mostly a semiarid gully area. The
southeast is the Weihe Basin, and the terrain is flat and open, with an altitude of 400–800 m.
The annual rainfall is mainly concentrated between July and October. The average annual
precipitation is 537–650 mm. The river level is greatly affected by precipitation. There are
more than 5400 large and small rivers and channels, and the river network density reaches
0.86 km/km2. The rainfall in the territory is more in the south and less in the north, with
obvious monsoon characteristics, and the annual average rainfall changes greatly. As a
result, the seasonal changes in river runoff are great, and the changes in flood and dry
flow are obvious. The remote sensing image of Xianyang City, Shaanxi Province is shown
in Figure 1.
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Xianyang City has complex geological and geomorphic conditions and strong new
geological tectonic activities. It belongs to an area prone to geological disasters. With the
development of the social economy, the scale of human engineering activities has gradually
expanded, and the hidden dangers of geological disasters have increased significantly.
There are six major types of geological disasters in the city: landslides, mudslides, collapses,
ground fissures, unstable slopes, and ground subsidence [46,47].

2.2. Data

Landslide risk assessment is jointly determined by natural and social attributes. Nat-
ural attributes can reflect disaster intensity, activity scale, incubation conditions, and
predisposing factors, which are mainly reflected in the hazard of geological disasters.
Social attributes refer to the degree of loss related to social characteristics such as life, engi-
neering activities, and economic level, which are closely related to geological disasters [9];
that is, the vulnerability of disaster-bearing bodies. Therefore, in this paper, based on the
“Spatial Distribution Data of Geological Disaster Points”, “Spatial Distribution Data of
Geological Lithology in China”, and “Spatial Interpolation Dataset of Annual Precipitation
in China since 1980” from the Chinese Academy of Sciences’ Data Center for Resource
and Environmental Sciences, DEM data from China’s first national geoinformation survey,
public road data and water system data provided by OSM, considering three aspects of
basic environmental factors, predisposing factors and historical geological disasters, a
total of nine evaluation factors in four categories were selected as natural attribute data
for landslide hazard assessment. They were terrain characteristic factors (elevation slope,
aspect, NDVI, distance from rivers), meteorological characteristic factors (accumulated
rainfall), human influence factors (distance from roads), and historical geological disasters
(lithology, landforms). The details are shown in Figures 2 and 3. According to “China’s
geographical situation monitoring data”, from the three aspects of population vulnerability,
economic vulnerability, and material vulnerability, four types of spatial distribution maps
were extracted from Xianyang City in 2018 as social attribute data. They were population
density, arable land density, GDP density, and road density, as shown in Figure 4. To
facilitate statistics and analysis, regular grid units were selected as the risk assessment units
of the study area, and the study area was divided into 30 m × 30 m grid units, including
5639 columns, 6098 rows, and 17,059,135 grid units.

The disaster data in this paper were derived from the “Spatial Distribution Data of
Geological Hazard Points” from the Data Center for Resources and Environmental Science
of the Chinese Academy of Sciences. The data format was Microsoft Excel and vector
shape files, including landslides, mudslides, collapses, ground fissures, unstable slopes,
and ground subsidence, with a total of 637 disaster points.
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3. Landslide Risk Assessment Method

This section shows the classification standard of the geological disaster scale and
classification standard of geological disasters, and introduces the multiclass SVM landslide
hazard assessment model and landslide vulnerability assessment model, which consider
the subjective and objective weights to carry out landslide risk assessment.

3.1. Classification of Geological Disaster Scale

According to the “Basic Requirements for Geological Disaster Investigation and Zon-
ing of Counties (Cities)” compiled by the Ministry of Land and Resources of China, the
disaster scale and risk level of Xianyang City are divided. The geological disaster scale
grade is a classification of geological disasters according to indicators such as geological
disaster intensity or influence range [48,49]. Generally, the larger the disaster intensity, the
greater the hazard of geological disasters and the more disaster-affected objects. According
to China’s geological disaster prevention and management measures, the scale of geological
disasters is generally divided into four levels: low, medium, high, and extremely high
hazard. The classification standards of different geological disasters are shown in Table 1.
According to the loss or potential threat caused by geological disasters, the risk degree of
geological disasters was divided into four levels: low risk, medium risk, high risk, and
extremely high risk, as shown in Table 2.

Table 1. Classification standards of geological disaster scale.

Level Landslide (104 m3) Collapse (104 m3) Mudslide (104 m3) Ground Collapse (km2)

Extremely high hazard ≥1000 ≥100 ≥50 ≥10
High hazard 100~1000 10~100 20~50 1~10

Medium hazard 10~100 1~10 2~20 0.1~1
Low hazard <10 <1 <2 <0.1

Table 2. Classification standards of geological disasters.

Level Death Toll (People) Number of Threats
(People)

Direct Economic Loss
(Ten Thousand)

Potential Economic
Loss (Ten Thousand)

Extremely high risk ≥30 ≥1000 ≥1000 ≥10,000
High risk 10~30 100~1000 500~1000 5000~10,000

Medium risk 3~10 10~100 100~500 500~5000
Low risk <3 <10 <100 <500

3.2. Landslide Hazard Assessment Model Based on Multiclass SVM
3.2.1. Multiclass SVM

SVM is based on the principle of structured risk minimization, and was proposed by a
Bell Labs research group led by Vapnik in 1963. It has two types: linear and nonlinear [24].
Its basic idea is to find the optimal hyperplane in the sample or feature space to maximize
the space between different categories, especially in solving the more common nonlinear
high-dimensional multiclassification problems in practical applications. Multiclassification
is a given dataset containing N samples, X = {(x1, y1), (x2, y2), . . . . . . (xN , yN)}, and class
labels yn = (1, 2, . . . . . . , M), n = 1, 2, . . . . . . N, and the dataset has a total of M classes.
According to the decision function y = f (x), we predicted the categories of N sample
data. The multiclass SVM could convert the nonlinear problem in the multiclass samples
into the linear separable problem in the high-dimensional feature space, find an optimal
hyperplane between every two classes, and divide the N samples into M classes for output.

In the sample space, hyperplane h can be expressed as:

wTx + b = 0 (1)
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where w is the normal vector, which determines the direction of hyperplane h; x is the
training sample; and b is the displacement term, which is the distance between the hyper-
plane and the origin. When w and b are optimal, it means that the optimal hyperplane is
found so that the distance between positive and negative samples is the largest.

For the nonlinear classification problem, it is necessary to transform the nonlinear
problem in the multiclass samples into the high-dimensional feature space [25] and to
find the linear hyperplane in the high-dimensional space to classify the samples. φ(x)
represents the feature vector after sample x is transformed into a high-dimensional space;
then, the model corresponding to hyperplane h in the feature space is:

f (x) = wTφ(x) + b (2)

The corresponding objective function is:

min(
‖w‖

2

2

) (3)

s.t.yi(wTφ(x) + b) ≥ 1, i = 1, 2, 3, . . . n (4)

By using the Lagrangian multiplier αi, under the constraints of ∑
i

aiyi = 0 and 0 ≤ αi ≤ C,

the following relationship is obtained:

max : ∑
i

αi −
1
2∑

i
∑

j
αiαjyiyjxT

i xj (5)

s.t.
n

∑
i=1

αiyi = 0, i = 1, 2, 3, . . . n (6)

where j = 1, 2, 3, . . . m, and i 6= j; to calculate the above formula, a kernel function K(xi, yj)
is introduced to reduce the error rate of sample classification. Sample x is converted from
low-dimensional space to φ(x) in high-dimensional space.

K(xi, yj) = φ(xi)
Tφ(yj) (7)

By inserting K(xi, yj) into Equation (5), and after solving, the decision function of the
SVM model is obtained:

f (x) = wTφ(x) + b = sign(
n

∑
i=1

yiαiK(xi, yj) + b) (8)

The classification accuracy of SVM depends on the selection of the kernel function
and the setting of related parameters. The kernel function can be selected according to
application conditions and sample characteristics. At present, the commonly used kernel
functions are the linear kernel function (LN), polynomial kernel function (PL), radial basis
function (RBF), and sigmoid kernel function (SIG).

3.2.2. Algorithm Flow

Multitype sample selection based on divided multilevel landslide hazard scale grade
can increase the number of disaster classification samples, solve the problem of a single
sample type, and improve the classification accuracy of multilevel landslide disasters.
Therefore, a multiclass SVM landslide risk assessment model was proposed by combining
with the multilevel landslide hazard scale grade. Therefore, the accuracy and reliability
of landslide hazard assessment results could be improved. The specific algorithm flow is
shown in Figure 5.
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The algorithm process was as follows:

(1) Construction of the landslide hazard assessment index: nine index factors were
selected from three aspects to construct the landslide hazard assessment index system
in the study area.

(2) Construction of the sample dataset: units with the same number of landslide hazard
points were randomly selected as nongeological hazard units, and the two were
combined as the sample dataset.

(3) Sample point classification: according to the classification standard of the landslide
disaster scale, the landslide hazard sample points in the study area were classified by
hazard level, and 80% of all samples were selected as the training sample and 20% as
the test sample.

(4) Parameter optimization: the radial basis function was selected for multiclassification
of nonlinear samples, and the optimal parameters c and g were selected by the
cross-validation method.

(5) Landslide hazard zoning map: the natural discontinuity method was used to divide
landslide hazard grades into four categories.
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3.3. Landslide Vulnerability Assessment Model Considering Subjective and Objective Weights
3.3.1. Combined Weights

There are three main methods for calculating the weights of evaluation factors: the
subjective weighting method, objective weighting method, and combined weights [10]. The
subjective weighting method is mainly obtained by experts based on subjective judgments
and experience, with strong subjectivity. The objective weighting method is obtained
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through a mathematical model by quantitatively calculate the relationship between the
research index value and the geological hazard. The accuracy of the calculation results
is mostly determined by the measured data and is too dependent on the data. The com-
bined weights integrate the advantages of subjective and objective methods and avoid the
objective limitations of a single weighting method, so they are widely used in many fields.

(1) Subjective weighting method

AHP is a combination of quantitative and qualitative analysis. Experts subjectively
analyze the relative importance of each evaluation index based on experience and give the
relative index value. The operation is simple and convenient; however, the subjectivity is
strong. The specific process is shown in Figure 6. Among them, the method of constructing
the judgment matrix is the 1–9 scale method proposed by Saaty [13]. As shown in Table 3,
this method could avoid the difficulty of comparing different qualitative evaluation factors,
and it had strong operability. The consistency test is usually measured by the consistency
ratio (CR). It is generally believed that when the CR < 0.1, the inconsistency degree of the
matrix is within the allowable range, and the consistency of the judgment matrix meets
the requirements.
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Table 3. Standards and meanings of judgment matrix.

Standards Meanings

1 When two factors are compared, they have the same importance

3 When two factors are compared, the former is slightly more
important than the latter

5 When two factors are compared, the former is obviously more
important than the latter

7 When two factors are compared, the former is more important
than the latter

9 When two factors are compared, the former is extremely more
important than the latter

2,4,6,8 The adjacent middle value of the above
1/i (i = 1, 2 . . . 9) The above situation is reversed

(2) Objective weighting method

The entropy method is one of the methods for calculating objective weights. Its
principle is to calculate the indicator weights according to the information provided by
the indicator data. The calculation result entirely depends on the objective data, and the
objectivity is strong. In the entropy method, the size of entropy is negatively related to the
amount of information provided by objective data. There is no specific requirement for the
number of evaluation indicators, and it is widely used and easy to understand. Compared
with the AHP, although it cannot reflect the evaluator’s understanding of the importance of
each index, it can guarantee the objectivity of the evaluation and reduce the shortcomings
of the excessive subjectivity of the AHP. The entropy method process is shown in Figure 7.
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(3) Combined weights

This study applied combined weights in the landslide vulnerability assessment. This
could combine the advantages of subjective and objective evaluations to make the evalua-
tion results more accurate. In this paper, the distance function [11,12] was used to combine
subjective and objective weights to achieve ideal and reasonable weights. The formula is:

W = µW1 + γW2 (9)

where µ is the subjective weighting coefficient, and γ is the objective weighting coefficient.
From Formula (9), determining the subjective and objective weighting coefficients is

the key to calculating the comprehensive weight. This study completed the distribution of
subjective and objective weighting coefficients according to the calculation principle of the
distance function [14,35]. The specific method is as follows.

Suppose the subjective and objective weights are W1 and W2, respectively. The distance
function of W1,W2 is d(W1, W2):

d(W1, W2) =

√√√√√ n
∑

i=1
(W1 −W2)

2

2
, i = 1, 2, 3, 4; (10)

d(W1, W2)
2 = (µ− γ)2 (11)

µ + γ = 1 (12)

According to the above formula, the subjective and objective weighting coefficients µ
and γ were calculated. Finally, the comprehensive weight was calculated according to the
distance function formula.

3.3.2. Algorithm Flow

The subjective and objective combined weights were used to determine the weight of
the vulnerability evaluation factor of the hazard-bearing body. This method had the advan-
tage of considering decision makers’ subjective understanding of the degree of loss caused
by geological disasters. At the same time, the amount of information provided by objective
indicators on the vulnerability of geological disasters is considered, which increases the
reliability of the vulnerability of disaster-bearing bodies. Therefore, this study combined
the AHP and entropy method and adopted the comprehensive vulnerability evaluation
index model based on combined weights to evaluate the landslide vulnerability in the
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study area. The specific process is shown in Figure 8. The principle of the comprehensive
vulnerability index evaluation model is shown in Formula (13):

Fi =
m

∑
j=1

Pj ×Wj (13)

where Fi is the comprehensive vulnerability index of each evaluation unit, i represents the
evaluation unit, Pj represents the normalized weight of the j-th evaluation index of the
i-th evaluation unit, and Wj represents the weight of the j-th evaluation index of the i-th
evaluation unit.
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4. Experiment and Analysis

This section presents the classification of geological disaster types and levels, combined
with the methods introduced in Section 3, and tests and analyzes the hazard, vulnerability,
and risk of landslides.

4.1. Classification of Geological Disaster Types and Levels in the Study Area

According to the scale-grade standard of geological disasters, the scale of geological
disasters in Xianyang City was divided into four levels: low, medium, high and extremely
high hazards. Among them, there were two extremely high-hazard geological disaster
points, accounting for 0.314% of the total number of geological disaster points. There were
45 high-hazard geological disaster points, accounting for 7.064% of the total. There were
106 medium-hazard geological disaster points, accounting for 16.641% of the total, and
there were 484 low-hazard geological disaster points, accounting for 75.981% of the total.
The specific distribution is shown in Table 4. The distribution of disaster intensity levels in
each geological disaster type is shown in Table 5.

Table 4. Statistical table of geological disaster intensity level.

Disaster Intensity Level Count (Piece) Proportion (%)

Extremely high hazard 2 0.314
High hazard 45 7.064

Medium hazard 106 16.641
Low hazard 484 75.981

Table 5. Statistical table of disaster intensity level in different types of disasters.

Types of Disaster Extremely High Hazard High Hazard Medium Hazard Low Hazard

Landslide 2 27 67 119
Collapse 0 18 35 242

Surface collapse 0 0 4 36
Mudslide 0 0 0 3

Ground fissure 0 0 0 83
Unstable slope 0 0 0 1
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4.2. Landslide Hazard Assessment Based on Multiclass SVM

In this paper, the same number of units as the landslide disaster points in Xianyang
City was randomly selected as nongeological disaster units, and the two samples were
combined into one sample dataset, for a total of 415 sample points. In the selection of
nongeological disaster points, to improve the accuracy of nondisaster point extraction,
the distance from the disaster point was used as the constraint condition. The greater the
distance from the disaster point, the less affected the disaster, and the accuracy of nondis-
aster point selection in the area was relatively high. Therefore, based on comprehensive
factors such as the size of the area and the density of disaster points in Xianyang City, this
paper selected a distance of 2 km from the disaster points and a distance greater than 1 km
between nondisaster points as the constraint conditions, so the nondisaster units were
randomly selected. Subsequently, based on the divided multilevel landslide disaster points
in Xianyang City, the sample points were selected in the ratio of nondisaster points:low-risk
points:medium-risk points:high-risk points = 6:4:2:1.

The landslide hazard assessment model outputted four discrete values, representing
the four levels of extremely-low-hazard, low-hazard, medium-hazard and high-hazard
areas, and each output grid cell had a hazard degree value. Based on the predicted landslide
hazard values of Xianyang City, the zoning of each hazard level was carried out to obtain
the zoning map of landslide hazards in Xianyang City, as shown in Figure 9. The area and
proportion of each hazard area were statistically analyzed, as shown in Table 6.
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Table 6. Area and proportion of each dangerous zone.

Dangerousness Area (km2) Proportion

Extremely low-hazard area 8036.952 84.21%
Low-hazard area 1008.186 10.56%

Medium-hazard area 456.471 4.78%
High-hazard area 41.991 0.44%

4.3. Landslide Vulnerability Assessment Considering Subjective and Objective Weights

The combined weights of the vulnerability evaluation factors of Xianyang’s population
density, arable land density, GDP density, and road density were calculated, and the results
are shown in Tables 7–9:
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Table 7. Subjective weights and maximum eigenvalues of vulnerability assessment factors.

Evaluation Factor Population Density Road Density Arable Land Density GDP Density CR λmax

Weights 0.5860 0.2418 0.1149 0.0573 0.0804 4.217

Table 8. Calculation results of objective weights of vulnerability assessment factors.

Evaluation Factor Population Density Road Density Arable Land Density GDP Density

Weights 0.2467 0.2649 0.0850 0.4033

Table 9. Calculation results of objective weights of vulnerability assessment factors.

Evaluation Factor Population Density Road Density Arable land Density GDP Density

Comprehensive
weights 0.474703 0.24936 0.105094 0.170843

Based on the combined weights, the four vulnerability evaluation factors were nor-
malized, and the comprehensive vulnerability index of Xianyang City was using by
Formula (13). The calculation result is shown in Figure 10. According to the Jenks method,
this paper carried out the vulnerability zoning of Xianyang City, divides the vulnerability
degree of Xianyang City into four levels of extremely low vulnerability, low vulnerability,
medium vulnerability, and high vulnerability. The vulnerability assessment zoning map
of Xianyang City is shown in Figure 11. Since there are 149 towns in Xianyang City in
the study area, this paper used the administrative town as a unit to carry out quantitative
statistics of the carrier. It was convenient to provide a scientific basis for the implementa-
tion of disaster prevention and mitigation decision-making and engineering activities by
township governments.
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Figure 11. Landslide vulnerability assessment zoning map of Xianyang City.

The results showed that the vulnerability of the northern part of Xianyang City was
generally low, while the vulnerability of the southern part was relatively high, especially
the area around the Xianyang urban area. This was because the area is close to the Xianyang
urban area, with rapid economic development and densely distribution of population and
roads. If geological disasters occur, there will be many affected objects, and the vulnerability
of the bearing body will be large.

4.4. Landslide Risk Assessment

Risk emphasizes the threat of a certain hazard to an object, and has the characteristics
of uncertainty, objectivity, and sociality. Geological disaster risk assessment is a quantita-
tive assessment of the losses caused by geological disasters. Combining the topographic
and geological characteristics of Xianyang City and the development characteristics of
landslide disasters, this paper adopted the evaluation model method of “risk = function
(hazard, vulnerability)” proposed by the United Nations Humanitarian Business Depart-
ment (UNDHA) in 1991. The standardization treatment was carried out based on the
results of landslide hazard and vulnerability assessments in Xianyang City. It quantita-
tively represented four extremely low-risk (extremely low vulnerability), low-risk (low
vulnerability), medium-risk (medium vulnerability), and high-risk (high vulnerability) risk
levels or vulnerability levels in numerical form, and calculated the risk value of landslides
in Xianyang City. The results are shown in Figure 12. According to the calculation results,
the Jenks method was used to partition the landslide risk in Xianyang City. The partition
standards are shown in Table 10:

Xianyang City is divided into four research areas: lower-risk areas, low-risk areas,
medium-risk areas, and high-risk areas, according to the landslide risk using the Jenks
method. The area of each study area and the distribution characteristics of landslide
disaster points are summarized in Figure 13 and Table 11. The risk was researched and
analyzed by combining the various characteristics of each area.

Table 10. Risk zoning standards of the study area.

Risk Zoning Lower-Risk Area Low-Risk Area Medium-Risk Area High-Risk Area

Value at risk (0,1) (1,3) (3,4) (4,9)
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Table 11. Area and proportion of each risk area.

Degree of Risk Area (km2) Percentage

Lower-risk area 3693.954 38.706%
Low-risk area 4711.729 49.370%

Medium-risk area 896.870 9.398%
High-risk area 241.047 2.526%
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(1) Lower-risk areas were mainly distributed in Changwu County, Binzhou City, Xunyi
County, Yongshou County, Chunhua County, Liquan County, etc. There were three
landslide disaster points in this area, accounting for 1.40% of the total landslide
disaster points. There were few geological disasters in this area, a low density of
disaster points, and low landslide risk. In addition, the area had low urbanization,
sparse population, low economic development, and low landslide risk.

(2) Low-risk areas were mainly distributed in Wugong County, Jingyang County, Sanyuan
County, Qianxian County, Xingping City, and other parts of southern Xianyang City.
However, there were a small number of distributions in Changwu County, Binzhou
City, Xunyi County, Yongshou County, Liquan County, and Chunhua County. There
were 122 landslide disaster points in this area, accounting for 46.744% of the total.
There were many geological disasters in this area, but the disaster level was rela-
tively low. The economic development and population density of the area increased
compared with lower-risk areas, human activities were moderate, and the risk of
landslides was relatively low.

(3) Medium-risk areas were mainly distributed in Yongshou County, Yangling District,
Weicheng District, Qindu District, etc. There were 64 landslide disaster points, ac-
counting for 29.767% of the total. The density of disaster points in this area was
not high. However, most landslide hazard levels were medium-hazard points, the
urbanization in the area was relatively high, the population density was relatively
high, and the transportation network was relatively developed, so the landslide risk
was medium.

(4) High-risk areas were mainly distributed in Yongle Town, Tandian Town, Run Town,
Guanzhuang Town, Mafang Town, Jianjun Town, Ganjing Town, Dantou Town,
Fengyang Town, etc. There were 26 landslide disaster points, accounting for 12.093%
of the total number of landslide disaster points. The geological hazards of landslides
in this area were mostly high-risk points, and the risk was greatly affected by the
hazard level. In addition, the terrain in this area had a high slope, poor geological
stability, fully developed landslide hazards, a relatively high population density,
and strong human activities. The occurrence of landslide disasters caused greater
vulnerability and greater risk.

5. Conclusions

Landslide disasters have the characteristics of a large scope of influence, high threat
number, and serious disaster results. It is critical to perform landslide risk assessment and
analyze the magnitude of landslide risk to reduce disaster loss and effectively prevent
landslide disasters [50]. In August 2019, landslides occurred in Yiping Township, Ebian
County, Leshan City; and Fengyan Village, Shangzhou Town, Xuzhou District, Yibin City.
Due to real time monitoring of high-risk areas, a landslide was found at hidden points of
unstable slopes. The disaster-prevention plan was activated in time, and personnel in the
danger zone were transferred in advance, successfully avoiding casualties.

This paper took Xianyang City landslide geological disasters as the research object.
According to the arrangement and analysis of the collected multicategory landslide disaster
point scale and risk data, the disaster scale and risk level of Xianyang city were divided.
Based on the nine selected landslide hazard evaluation factors and four hazard-bearing-
body vulnerability evaluation factors, the landslide hazard assessment model of multiclass
SVM and the landslide vulnerability assessment model based on combined weights were
constructed to perform the landslide risk assessment of Xianyang City. Experimental
results provided a scientific reference for the disaster prevention and mitigation of various
landslide risk levels and improved the efficiency of landslide disaster monitoring in Xi-
anyang City. In this paper, exploratory landslide hazard, vulnerability and risk assessments
were carried out. In follow-up studies, to further improve the accuracy and reliability of
landslide risk assessments, landslide hazard assessments should consider factors such as
strata, soil moisture content, and river runoff. Landslide vulnerability assessments should
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be combined with accurate spatial data of disaster prevention and mitigation projects,
population, and economy in the study area.
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