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Abstract: Evaluation of the vegetation and agricultural-management factor (C-factor) is an important
task, the solution of which affects the correct assessment of the intensity of soil erosion. For the
vast area of the European part of Russia (EPR), this task is particularly relevant since no products
allow taking into account the C-factor. An approach based on automated interpretation of the main
crop groups based on MODIS satellite imaging data from Terra and Aqua satellites with the LSTM
machine-learning method was used to achieve this goal. The accuracy of crop group recognition
compared to the open data of the Federal State Statistics Service of Russia was 94%. The resulting
crop maps were used to calculate the C-factor for each month of a particular year from 2014 to 2019.
After that, summaries were made at the regional and landscape levels. The average C-factor value
for the EPR was 0.401, for the forest landscape zone 0.262, for the forest-steppe zone 0.362, and for
the steppe zone 0.454. The obtained results are in good correlation with the results of previous field
studies and provide up-to-date (based on 2014–2019 data) estimates of C-factor for rainfall erosion
(monthly, annual) with high spatial detail (250 m).

Keywords: soil erosion; C-factor; European part of Russia; arable land; crops; MODIS; FCover

1. Introduction

In recent decades, due to the changes in the climate in the study area, the contribution
of snowmelt runoff to soil erosion has significantly decreased. Therefore, an important
task is the assessment of the soil losses due to rainfall runoff [1]. The vegetation and
agricultural-management factor (C-factor) is a key parameter in soil erosion models. The
methods of vegetation factor (C-factor) estimation used in the erosion equations have
been considered in many Russian and foreign publications concerning soil erosion models.
A complete review of existing methods for assessing vegetation cover and management
factors for various erosion models was carried out in the works of G.A. Larionov [2],
L.F. Litvin [3], F.N. Lisetsky et al. [4], monographs “Catchment erosion-fluvial systems”
ed. R.S. Chalov et al. [5] and the article by Q. Feng et al. [6]. In addition to the USLE [7]
and RUSLE [8], the C-factor is also applied in other erosion models, such as ANSWERS
(Areal Nonpoint SourceWatershed Environment Response Simulation) [9], SWAT (Soil
and Water Assessment Tool) [10], and SEMMED (Soil Erosion Model for Mediterranean
Regions) [11]. Soil erosion assessments are conducted at various scales. They may cover
particular slopes [12], small [13] and large watersheds [14], regions [15], countries, and
continents [16,17]. C-factor estimation methods that are appropriate for one scale are
usually not appropriate for other scales.

Two standard empirical methods exist to obtain C-factor values in the USLE/RUSLE
models. The first one–the C-factor, is defined as the soil loss ratio from the land under
specified vegetation cover to the corresponding loss from clean-tilled, continuous fallow.
The second one-the C-factor, is calculated as a product of five sub-factors described in
the RUSLE handbook [8]. Researchers in different countries have adopted the calculation
methods to local conditions, but the method, in general, has not changed. The US Soil
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Conservation Service uses the values of agricultural management factors, summarized
within particular regions of the United States [4]. A quantitative assessment of the soil-
protective properties of crops for the USLE equation for the territory of the USSR was
carried out at Moscow State University [18]. In the absence of a sufficient number of unified
measurements of soil washout, the soil-protective properties of crops were determined
using a projective coverage monthly for the forest and steppe zones [18,19]. In the work of
Morgun et al. [20], the values and dynamics of C- factor (calculated based on generalized
field data of various authors) for the main crops (winter, spring, maize and sunflower, beets
and potatoes, perennial herbs) for the forest-steppe zone of Ukraine are presented. The
monograph “Catchment erosion-fluvial systems” [5] contains particular erosion indices of
crops combined into four groups:

1. Thick cover (winter and spring crops, leguminous crops, annual grasses)
2. Tilled high-stem (corn, sunflower)
3. Tilled low-stem (potatoes, sugar beet)
4. Perennial grasses (second-third years of vegetation)

The data are presented for six periods of the year’s warm season, determined by the
main stages of cultivation and phases of crop vegetation.

Annual soil loss by erosion was determined for the European territory of Russia.
In these estimations, very generalized regional values of soil-protective properties of
vegetation were taken into account. The average soil erosion in the study area amounts to
4.04 t ha−1 year−1, considering the soil-protective coefficients of crops [21].

Estimation of the C-factor using empirical methods based on field experiments is very
laborious and expensive to perform. Therefore, alternative methods to assess the C-factor
at the regional and national levels are used. Currently, there are three main groups of
such methods.

(1) C-factor values from literature or field data are assigned to corresponding vegeta-
tion types [13,22–29]. The enhanced method is used on the territory of the European Union,
where European land cover databases (for example, CORINE Land Cover), biophysical
parameters obtained by remote sensing data, and statistical data on crops and practices
are used as source data. The C-factor was estimated using crop statistics (% of land per
crop) and data on management practices such as conservation tillage, plant residues, and
winter crop cover in arable lands. The C-factor in non-arable lands was estimated using
the vegetation cover dataset FCover [16,17]. In some works, the vegetation factor’s lack
of a seasonal component is noted as a disadvantage of this approach. Even in Europe in
neighbor countries, the seasons with the most intense rainfall belong to different periods of
the year, when soil vegetation (especially crops) is completely different [30].

(2) Calculation of linear and non-linear regressions between the values of vegetation
indices and the values of C-factor obtained in the field to consider spatial and seasonal
variability [31–36]. The most commonly used index is NDVI (Normalized Difference
Vegetation Index) and EVI (Enhanced Vegetation Index). The main problems associated
with NDVI are soil reflectance (especially in the case of sparse vegetation) and the variability
of vegetation period. Several soil-adjusted indices, such as TSAVI (Transformed Soil-
Adjusted Vegetation Index) [37] and PVI (Perpendicular Vegetation Index) [38], have been
developed to consider soil reflectance. The main effects of vegetation phases occur during
earlier growth stages when the NDVI often overestimates thin vegetation cover due to
intense chlorophyll activity and vegetation senescence when vegetation indices typically
decrease even when the cover remains the same [39]. Along with this, many studies using
vegetation indices analyze the seasonal effect when estimating C- factor, including both
monthly and annual periods [40–42].

(3) Calculation of regressions between C-factor and projective coverage. Projective
coverage, usually used in such models, cannot reflect contributions from different vegeta-
tion layers to soil conservation. The effects of vegetation structures on soil erosion control
are ignored. For example, the mixed forest is more effective than pure forest at reducing
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soil erosion, although both types of forests exhibit the same level of cover. The leaf area
index (LAI) has been used as a vegetation structure index to replace projective coverage [6].

In general, none of the methods discussed above is ideal because they do not allow to
carry out a comprehensive assessment of the effect of vegetation on reducing erosion. There
are two main directions of research in this area: maximum consideration of all the soil-
protective properties of vegetation, including biophysical properties, projective coverage,
vegetation structure, seasonal vegetation features, etc., and extrapolation of values over
large areas, taking into account spatial variability. So, there is no unified methodology
for assessing this factor, and this topic is still actual and open to discussion. Also, the
relevance is largely determined by the variety of landscape conditions and features of
land-use systems in different countries.

For the first time for this vast region of the Earth, the results of estimating the veg-
etation factor for calculating soil erosion are presented. They are relevant both in time,
spatial detail, and used methods, in contrast to previous small-scale assessments provided
on the study area. The huge area of Russia and the inaccessibility of many regions for field
research makes it necessary to use remote sensing data. In addition, the assessment for
such large areas was previously carried out only for the European Union territory [16].
Using the actual climatic data, Copernicus FCover data (vegetation projective cover), and
VNP22Q2 data from the VIIRS satellite (data allow determining the beginning and end of
the growing season), the phenological phases of vegetation and the seasonality of precipi-
tation were taken into account. This allowed to obtain not fixed values of the C-factor for
specific types of vegetation, but also to obtain monthly estimates taking into account the
latitudinal landscape zoning. Thus, the proposed study contributes to solving the problem
of assessing C-factor for the eastern part of Europe. Also, it should be noted that the study
is largely methodological in fact.

The main aim of this study is to assess C-factor for the European Russia territory. To
achieve this aim, several tasks were solved:

• The seasonality of precipitation has been determined, i.e., areas with rainfalls in a
particular month are identified;

• Due to the lack of government statistical and spatial data on the structure of culti-
vated areas and crop rotation, crop recognition was carried out using data from peer
territories (Canada);

• Using free products of biophysical parameters calculated on the basis of remote
sensing data, the phenological phases of vegetation were determined;

• The annual and monthly mean values of C-factor for the study area were calculated.

2. Materials and Methods
2.1. Study Area

The European part of Russia (EPR) covers approximately 4 million km2 and is situated
over several landscape zones, from tundra to temperate zone deserts. According to the
Land Cover Map obtained in 2014 from satellite data from TerraNorte RLC v.3 [43], which
was designed by the Space Research Institute of the Russian Academy of Science (RAS), the
total area of arable lands in the EPR comprises approximately 600,000 km2. Approximately
95 million people live in this region, which is the majority of Russia’s population. The
environmental conditions that accompany soil erosion in this vast territory are diverse.
We created and published a dedicated online geoportal called ‘The River Basins of the
European Territory of Russia’ (http://bassepr.kpfu.ru/ accessed on 15 September 2021)
that displays the environmental conditions of the territory (terrain, climate, hydrology,
soils, land use, human-induced impact) [44].

2.2. Input Data

The assessment of the C-factor for the territory of European Russia was carried out us-
ing data from remote sensing of the Earth from space. The extensive spatial coverage caused
the choice of the source data. The spatial and temporal resolution of the data was consid-

http://bassepr.kpfu.ru/
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ered. We used products obtained from satellite data and available on the USGS/NASA
(USA) and Copernicus websites (a joint program of the European Commission and the
European Space Agency):

• Products MOD13Q1, MYD13Q1 obtained from the MODIS satellite imagery data from
Terra and Aqua satellites-16-day composites of NDVI and EVI vegetation indices with
a spatial resolution of 250 m;

• VNP22Q2 products obtained from VIIRS satellite imagery data from the Suomi NPP
satellite-annual indicators of the phenology of the land surface with a spatial resolution
of 500 m. The product contains six phenological transition dates: onset of greenness
increase, the onset of greenness maximum, the onset of greenness decrease, the onset
of greenness minimum, dates of mid-green, and senescence phases;

• FCover product obtained from PROBA-V satellite imagery data. 10-day composites of
the biophysical parameter FCover-the fraction of the surface covered by any green
vegetation type, with a spatial resolution of 300 m.

The Russian product was also used-the annual map of terrestrial ecosystems of Russia
TerraNorte RLC created by the Space Research Institute of the Russian Academy of Sci-
ences [43,45] based on MODIS satellite data. It represents the spatial distribution of the
main types of land cover with a spatial resolution of 230 m.

The total volume of satellite data obtained from open archives is about 370 GB.

2.3. C-Factor Assessment Method

The contemporary assessment of the soil-protective role of vegetation (including
agrocenoses) was performed based on the above mentioned RS data for the 2014–2019
observation period. The value of the C-factor in rainfall runoff was assessed. The general
scheme of the process of C factor assessment is shown in Figure 1.

The C-factor was estimated monthly for “warm” months. “Warm months” -are months
when liquid forms of precipitation fall. For such a large area as the EPR, “warm” months
were determined in each pixel. In order to do this the average monthly temperatures
at 204 meteorological stations of EPR were calculated based on daily air temperature
observations at Roshydromet. Spatial interpolation was done for the entire study region
using the Multilevel B-spline Approximation method [46], and “indicator” rasters were
built for each month, I(i), i = 1,...,12, where 1 or 0 in pixel indicated i-th month as “warm”
or “cold”, respectively (Figure 2).

Assessment of soil-protective properties of vegetation in the i-th month of the j-th year
was carried out separately (by different methods) on arable lands and on all other types of
lands (non-arable).

2.3.1. C-Factor Assessment on Arable Land

Arable land (pixels) was identified using the TerraNorte RLC annual map. In each
pixel, the C-factor changes from month to month depending on the agrotechnical manage-
ment and growing season phases of crops. It also changes from year to year due to crop
rotation and differences in soil-protective properties of crops. The C(i,j) (C-factor in the i-th
month of the j-th year) on arable land were calculated.

The developed approach to assess C(i,j) on arable land consisted in the recognition
of crops by multi-temporal remote sensing data of the j-th year and the assessment of
the C-factor in the i-th month of this year, and taking into account phenological metrics,
FCover, and values of soil protection coefficients of crops in 6 periods of the warm part of
the year.

For automated crops recognition, MODIS composites (MOD13Q1, MYD13Q1) were
used, including time series of NDVI and EVI for the growing season of each year. Data in
the peer territories were used as training samples.
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As peer territories, several Canadian regions that are located in the temperate climate
zone of humid plains and their landscape and climatic conditions are close to the conditions
of the ETR were considered. For these territories, data from the Annual Crop Inventory
project of the Ministry of Agriculture and Food of Canada for 2011–2018 are publicly
available [47]. These are land use/land cover rasters with a spatial resolution of 30 m,
including the classification of various crops.

The list of recognizable crops and groups of crops included crops represented both in
the territories of analogs and in the studied territory-legumes, corn, spring cereals, winter
cereals, sunflower, sugar beet, potatoes, buckwheat, fallow lands, perennial grasses, as
well as nurseries and gardens. Pixels of MODIS data, covered more than 80% by one crop
according to the Annual Crop Inventory data were chosen for training. The created training
samples are subsets of MODIS rasters on the territory of Canada for the vegetative seasons
of 2015–2017. They contain the values of NDVI, EVI, and the QA (quality assesment) layer
in sample pixels with a temporal step of 8 days. A total of 30 NDVI, EVI, and QA rasters
were used for each year. The index value was considered acceptable if the pixel value on
the reliability raster equaled 0 (“Good data”) or 1 (“Marginal data”). The preprocessing
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included filling missing data using Cubic Spline interpolation (in individual pixels for
particular dates), plotting, generalizing, analyzing graphs of the seasonal variation of
indices for various crops, and studying their variability, etc. The NDVI and EVI series
of the current year (30-dimensional vectors in each pixel) were used as input data to the
recognition algorithm for training and classification.
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On the stage of development of the automated recognition technique, numerous
experiments were carried out to test different classification methods: feedforward neural
networks with deep learning (Deep Learning MultiLayer Perceptron, MLP) [48], Random
Forest (RF) [49], recurrent neural networks (Long short-term memory, LSTM) [50]. The
learning and classification algorithms that implement these methods were developed in
Python 3.7 using the Keras v.2.3.1 + Tensorflow v.2.2.0 framework, with a GPU (computation
on a video card). For data preprocessing, post-processing, and analysis, codes in R v.3.4.4
were developed. During the tests, the accuracy of recognition was assessed by different
methods (producers’s accuracy, user accuracy, commission and omission errors), including
cross-validation. MLP method showed the worst results; The RF method recognized
well the widely represented in the territories classes of crops (the per cent of correctly
recognized pixels was about 90%). Still, it poorly recognized the underrepresented crops,
despite attempts to balance the sample. The LSTM method showed the best recognition
quality (percent of correct recognition 94%). Its advantage can be explained by the fact
that it’s aimed at recognizing sequences, which is important in our case. Table 1 shows the
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recognition accuracy of the classes of crops by the above methods using the data in the
analogous territories.

Table 1. Accuracy of recognition of crops classes by time-series NDVI, EVI MODIS in peer territories
using three methods of automated classification based on the cross-validation results.

Crops
Methods MLP RF LSTM

Correct Recognition Percentage

Legumes 49.8 23.1 79.5

Corn 77.8 0.0 94.5

Spring cereals 37.1 97.9 96.4

Winter wheat 94.5 4.6 93.1

Fallow 42.4 40.4 87.0

Sunflower 18.0 0.0 95.4

Sugar beet 90.0 0.0 100.0

Perennial grasses 14.6 94.6 95.1

Potatoes 59.8 0.0 98.7

Buckwheat 34.8 0.0 100.0

Average percentage of correct
recognition (taking into account the
representativeness of crop classes)

40 90 94

The trained recognition algorithm using the LSTM method was applied for arable
land in the European Russia territory for 2014–2019. The input data to the algorithm was a
set of NDVI, EVI rasters, and MODIS quality layers for the study area for the vegetative
season of each year. The result was six raster layers, where codes of crops (or groups of
crops) in a particular year were assigned in the pixels of the arable land.

At the next stage, the quality of crop recognition was assessed. For this aim, we
used open data from the Federal State Statistics Service (Rosstat), namely the Database
of indicators of municipalities (https://rosstat.gov.ru/dbscripts/munst/ accessed on
15 September 2021). Information about the sown areas of crops in the municipal districts
of the European part of Russia was obtained by queries to this Database. This data was
geocoded using the vector layer of the district’s boundaries. Next, for the 1120 districts
where arable land is present, the areas covered by a particular crop were estimated accord-
ing to the recognition results, after which a comparison with Rosstat data for 2014–2019. The
Table 2 shows the generalized results of comparisons by groups of main crops presented in
government statistics.

As we can observe, the correlation between the obtained results and the Rosstat
data is quite high. Mean values and medians of area differences are about zero. The
frequency histograms of the difference values demonstrate the degree of underestimation
or overestimation of certain categories of crops in more detail. The recognition quality was
assessed as quite acceptable for our purposes.

The next stage consisted of converting the raster of crops recognized for the j-th year
to the values of the C-factor in the i-th month of this year in pixels of arable land. For
this, the following procedure was performed. The basis was the soil protection coefficients
(erosion indices) of crops for six periods of the warm part of the year determined using
literature [5,16,17] (Table 3). It was decided to realize the “pessimistic” scenario. Because
there is no information about the yield and agricultural techniques, the values of the erosion
indices of crops were assigned in the suggestion of using moldboard ploughing. Also,
using the sigmoid function a/(1 + exp ((b-X)/c)), a mathematical approximation of the
dependence of the erosion indices on the projective cover was performed for four periods
of the warm part of the year-from the beginning of the growing season to harvesting. The

https://rosstat.gov.ru/dbscripts/munst/
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results are shown in the Table 3 (values of the sigmoid parameters) and, in more detail, in
the Table 4.

Table 2. Agreement of crop areas estimated based on the recognition results and according to Rosstat data for 1120 municipalities.

Crops
Pearson

Correlation
Coefficient

Statistics of Area
Differences, (ha)

Frequency Histograms of the
Area Differences, (ha)

Agreement of Areas, (ha)
(Vertical Axis-Results of

Recognition;
Horizontal Axis–Rosstat

Data)

Entire sown
area

0.96

Median 98
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For the j-th year, in each pixel of arable land, according to the phenological metrics of
the VNP22Q2 product, the dates of the beginning and end of the vegetation season were
determined. They were taken as the beginning of the 2nd and the end of the 5th periods,
respectively. For the i-th “warm” month, the fractions (per cent of days) of three-time
intervals were calculated in the pixel: (1) before the beginning of the vegetation season,
(2) during the vegetation season, and (3) after its end. For example, in a pixel in the territory
of the Republic of Tatarstan for January, the first fraction is 100%, the second and third-0%,
and for May, the first fraction can be 20%, the second 80%, the third 0%. In the range
from the beginning of the vegetation season to harvesting (periods 2–5), the FCover data
was used as a parameter of the projective cover (step of 10 days). FCover values on these



ISPRS Int. J. Geo-Inf. 2021, 10, 645 9 of 18

days of the month were recalculated into C values using a sigmoid, the parameters of
which depended on the crop type in the pixel. Then average C values were calculated.
It was more difficult to calculate C in the 1st and 6th periods due to the lack of complete
information on the timing of the main tillage. In the “pessimistic” scenario, we chose the
main tillage option for all crops shortly after harvest. So, the 6th period (stubble) was
ignored (the properties of the 1st period were assigned).

Table 3. Values of erosion indices of crops in periods of the warm part of the year 1.

Crops, Groups of Crops
Periods Sigmoid Parameters

ID C1 C2 C3 C4 C5 C6 a b c

Legumes 1 0.55 0.74 0.64 0.35 0.08 0.20 0.74 0.62 −0.15

Corn 2 0.77 0.83 0.71 0.50 0.27 0.45 0.89 0.70 −0.26

Spring cereals and annual grasses 3 0.55 0.74 0.64 0.35 0.08 0.20 0.74 0.62 −0.15

Winter cereals 4 0.64 0.64 0.64 0.35 0.08 0.20 0.74 0.62 −0.15

Fallow 6 0.62 0.60 0.57 0.54 0.50 0.50 0.69 1.84 −0.94

Sunflower 7 0.77 0.83 0.71 0.50 0.27 0.45 0.89 0.70 −0.26

Sugar beet 8 0.77 0.83 0.76 0.63 0.40 0.60 0.84 0.88 −0.22

Potatoes 10 0.77 0.83 0.66 0.46 0.26 0.60 1.04 0.53 −0.36

Buckwheat 11 0.55 0.74 0.64 0.35 0.08 0.20 0.74 0.62 −0.15
1 C—erosion index value (the number indicates the period: 1—from the tillage to pre-sowing cultivation and sowing; 2—from sowing
to reaching by seedlings 10% of the projective cover; 3—reaching 50% of the projective cover; 4—reaching 80% of the projective cover;
5—harvesting; 6—from harvesting to the tillage).

Table 4. Results of mathematical approximation of the dependence of the erosion indices of crops on the projective cover
for 4 periods of the warm part of the year (from the beginning of the vegetation season to harvesting, 2–5 periods) using
the sigmoid.

Crops Model Plot Prameters Values Approximation Quality

Legumes
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Table 4. Cont.

Crops Model Plot Prameters Values Approximation Quality

Sugar beet
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Further, the C-factor in the i-th “warm” month in the pixel was estimated as a weighted
average of the obtained C values in three ranges of the month: (1) for days before the start
of the growing season, (2) for days during the vegetation season and (3) for days after
its end. The weights are the fraction of the corresponding ranges in the i-th month. A
slightly different approach has been taken for perennial grasses where there is no such
problem. Here, the assessment was carried out in the same way as for meadow vegetation
of non-arable lands.

2.3.2. C-Factor Assessment on Non-Arable Land

To estimate C(i,j) (C-factor in the i-th month of the j-th year) on non-arable lands,
the approach described in work by Panagos et al. [43] was applied. Following the most
cited literature data, ranges of C-factor values were assigned for the land cover classes of
non-arable lands in the annual map of TerraNorte RLC (Table 5).

Urban areas, wetlands, water bodies, permanent snow and ice, bare lands, and rocks
were not included in the assessment. The effect of vegetation density was quantified using
the FCover biophysical parameter, normalized in the 0–1 range. In each pixel of non-arable
land, the C-factor in the i-th “warm” month of the j-th year was estimated as (1):

C(i,j) = Cmax + (Cmin − Cmax)·FCover(i,j), (1)

where FCover(i,j) is the FCover value averaged over all days of the i-th month of the j-th
year; Cmin, Cmax—minimum and maximum values of the C-factor for the land cover class
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in a pixel (Table 5). C-factor reaches its maximum value when FCover is 0 and minimum
value when FCover is 1.

Table 5. C-factor for types of non-arable land cover according to literature data.

Code Land Cover Type
TerraNorte RLC Description C-Factor

Minimum
C-Factor

Maximum

1 Dark coniferous
evergreen forests

Forests, in the canopy of which at least 80% of the crown area
is shade-tolerant species of coniferous trees, including spruce,

fir, and Siberian pine (cedar).
0.0001 0.003

2 Light coniferous
evergreen forests

Forests, in the canopy of which at least 80% of the crown area
is Scots pine. 0.0001 0.003

3 Deciduous forests
In the canopy, at least 80% of the area is occupied by crowns of

birch and aspen, as well as broad-leaved species, including
oak, linden, ash, maple, elm, and some other species.

0.0001 0.003

10
Mixed forests with a

predominance of
conifers

Crowns of coniferous trees occupy from 60 to 80%, deciduous
trees from 20% to 40% of the canopy area. 0.0001 0.003

11 Mixed forests Crown areas of coniferous and deciduous trees are presented
in approximately equal proportions (40–60%) in the canopy. 0.0001 0.003

12
Mixed forests with a

predominance of
deciduous

Crowns of deciduous trees occupy from 60–80%, conifers from
20% to 40% of the canopy area. 0.0001 0.003

4 Coniferous deciduous
(larch) forests

In the canopy of forests, the crowns of larch trees occupy more
than 80% of the area. 0.0001 0.003

23 Sparse coniferous
deciduous (larch)

Areas occupied by detached trees or sparse plantations of
larch with a projective crown cover of less than 20%. 0.003 0.05

8 Natural grasslands

Grass vegetation with a growing season of more than
5 months. The species composition is characterized by the
predominance of perennial grasses, mainly grasses, and

sedges, in conditions of sufficient moisture. The area of the
projection of crowns of trees and shrubs is less than 20%.

0.01 0.15

14 Steppe

The grass cover is formed mainly by drought-resistant
perennial sod grasses (feather grass, fescue, wormwood,

wheatgrass, etc.). There is a wide variety of species of steppe
shrubs and semi-shrubs, as well as short-flowering

ephemeroids and ephemerals.

0.01 0.45

5 Coniferous evergreen
shrubs Shrubs or low-stemmed dwarf cedar forests. 0.003 0.1

9 Deciduous shrubs A community of low-growing or creeping shrubs (shrub or
dwarf birches, polar willows, etc.). 0.003 0.1

16 Subshrub tundra
Dry tundra with rare fragmented vegetation, dominated by
species of Alp-Arctic shrub communities less than 15 cm in
height. Moss-lichen cover and forbs are also widespread.

0.1 0.45

17 Grassy tundra
The tundra is represented mainly by various species of grasses
and mosses growing on moist soils and forming a continuous
vegetation cover. Shrubs up to 40 cm in height are often found.

0.1 0.45

18 Subshrub tundra 2
Shrubs (dwarf birch and various species of willow) dominate

with a height of more than 40 cm, sometimes with an
admixture of juniper, alder, or dwarf pine.

0.1 0.45

24 Recent burnt area Forests and tundra vegetation destroyed or damaged by fire. 0.1 0.55
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At the final step, the rasters C(i,j) of arable land and C(i,j) of non-arable land were
combined into single rasters (mosaics) C(i,j), representing the spatial distribution of the
C-factor for the “warm” months of 2014–2019 in the European territory of Russia.

3. Results and Discussion

According to the developed approach, the C-factor was calculated for the agrocenoses
of European Russia for each “warm” month of 2014–2019. The Figure 3 shows fragments
of the results for June, August, and October 2016.
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Using the obtained estimates of C(i,j) for arable and non-arable lands, various gener-
alizations were made. Raster layers representing the spatial distribution of generalized
estimates were calculated:

(1) C-factor of the j-th year (warm period) - annual estimates of the C-factor for rainfall
runoff for 2014–2019. The values were averaged in the “warm” months in a pixel, taking
into account the erosion potential of rainfall (fractions of the annual) (2):

C(j) = (R(1,j)·C(1,j)·I(1) + R(2,j)·C(2,j)·I(2) + . . . + R(12,j) ·C(12,j) ·I(12))/R(j), (2)

where I(i)—indicator function “warm”/“cold” in the i-th month, and R(1,j) · I(i)-erosion
potential of precipitation in the i-th month of the j-th year;

(2) C-factor in the i-th month, the long-term average (3):

Ccp(i) = (C(i,2014) ·I(i) + . . . + C(i,2019) ·I(i))/N, (3)



ISPRS Int. J. Geo-Inf. 2021, 10, 645 13 of 18

where N = 6 years;
(3) C-factor average long-term annual (in a warm period, with rainfall) (4):

Cmean = (C2014 + . . . + C2019)/N, (4)

where N = 6 years.
The Figure 4 shows thematic maps of the average long-term C-factor for each month

(on a small scale) and the long-term annual C-factor for the study area. In Figure 5
individual fragments of these maps are shown in more detail.
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For the territory of European Russia, the obtained values of the average long-term
annual C-factor vary in the range from 0.0006 to 0.808, the mean value is 0.1264, and the
standard deviation is 0.1796. For agrocenoses, these values are 0.0199, 0.808, 0.401, 0.1686,
respectively. The results obtained earlier for the European Union [16]: mean C-factor 0.1043,
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standard deviation 0.1046, range 0.0001 to 0.526. At the same time, on arable land, the
mean is 0.233, and without considering soil protection management 0.287.

To assess the reliability of the results, their agreement with the results of the 2010
studies [5] was checked. The data on the soil-protective capacity of agrocenoses (erosion
indices), weighted over crop areas and generalized for the main natural agricultural zones,
are presented here. In addition, the results were compared with the data obtained for
the landscape zones of European Russia in the studies of 2012–2014 [51]. These data are
obtained from field observations. The Table 6 presented C-factor values on the agrocenoses
of European Russia in previous studies and the results of our study.

Table 6. C-factor on arable land according to literature data [5,51] and according to the results of the study.

C-Factor,
2010

C-Factor,
2012–2014

C-Factor According
to the Research

Results

% Change from
2010

% Change from
2012–2014

European part of Russia 0.4 - 0.401 0 -

Landscape zones:

Northern and middle taiga 0.19 0.18 0.171 −10 −5

South taiga 0.22 0.23 0.265 20 15

Forest area 0.22 0.23 0.262 19 14

Forest-steppe 0.40 0.38 0.362 −10 −5

Steppe 0.45 0.43 0.454 1 5

We can see that for the entire European part of Russia, the average value of the annual
C-factor is absolutely the same. For landscape zones, the difference in the values of the
C-factor on agrocenoses compared with the 2010 data ranges from −10% to 20%, and with
2012–2014 from −5 to 15%. Such values demonstrate a high degree of agreement, which
indicates the adequacy of our approach and the reliability of the obtained results. It makes
no sense to discuss the difference or dynamics of the C-factor estimates considering the
difference in the used methods and their accuracy.

Thus, for the European part of Russia, as a result of the study, modern (2014–2019)
estimates of the C-factor for rain erosion (monthly, annual) with high spatial detail (250 m)
were obtained.

4. Conclusions

Approaches to studying the dependence of the C-factor from the vegetation indices
obtained from the remote sensing data and modeling such dependencies are widely used
now [32,36,52–54]. But in most cases, such models are obtained for small regions and, if
applied without calibration for other territories, they give wrong results. The developed
method uses climatic, biophysical, and phenological parameters. It allowed obtaining
adequate results for such a large study area, considering latitudinal zonality.

The developed model needs to consider all the features of crop rotations on arable land,
land cultivation methods, etc. However, the methodology provides results for different
scenarios by adjusting the values and the timing of the main tillage in pixels of arable land.
The most feasible is correcting the C-factor values based on crop rotations according to the
data of long-term recognition of crop types. As a rule, for agricultural land specializing
in cereals and leguminous crops, 5–6 field crop rotations are used. Therefore, accounting
for these crop rotations types is a solvable task. However, the problem is assessing land
plowing methods, which is the most significant adjusting to the C-factor value. To consider
the plowing techniques, analyzing the historical methods of tillage in a particular area or
recommended plowing for a particular crop could be carried out.

The model gives results that are most similar to the data obtained from field obser-
vations of previous years. We should note that the results were obtained in one scenario.
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The most reliable results can be obtained considering data about the structure of sown
areas and the methods of soil cultivation, which, unfortunately, are currently unavailable in
Russia. As noted earlier, it is possible to take into account these parameters using indirect
data. This approach will be tested in further studies.

Nevertheless, we can say that the data obtained as a result of the study already
take into account the maximum possible set of open resources currently available for the
territory of Russia. The obtained data could significantly improve the assessment and
modelling of modern erosion-accumulative processes. The developed methodology makes
it possible to assess the C-factor in the European territory of Russia. The results also
have practical importance. Now, within the framework of the project, they are used to
calculate soil erosion losses in the study area, along with estimates of the factors R, K, etc.
In the future, the applicability of the developed methodology to the eastern part of Russia
will be assessed, which has regional conditions that differ from the European part and
analogous territories.

Author Contributions: Conceptualization, Oleg Yermolaev and Svetlana Mukharamova; method-
ology, Svetlana Mukharamova, Anatoly Saveliev, Artur Gafurov and Maxim Ivanov; software,
Svetlana Mukharamova and Anatoly Saveliev, validation, Svetlana Mukharamova, Artur Gafurov,
Anatoly Saveliev and Maxim Ivanov; formal analysis, Svetlana Mukharamova, Maxim Ivanov
and Artur Gafurov; investigation, Svetlana Mukharamova, Anatoly Saveliev, Artur Gafurov and
Maxim Ivanov; resources, Anatoly Saveliev and Svetlana Mukharamova; data curation,
Svetlana Mukharamova and Maxim Ivanov; writing—original draft preparation, Maxim Ivanov
and Svetlana Mukharamova; writing—review and editing, Anatoly Saveliev, Artur Gafurov and
Oleg Yermolaev; visualization, Maxim Ivanov and Svetlana Mukharamova; supervision, Oleg Yermolaev;
project administration, Oleg Yermolaev; funding acquisition, Oleg Yermolaev All authors have read
and agreed to the published version of the manuscript.

Funding: The work was supported by the Russian Science Foundation (project №19-17-00064).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corre-
sponding author and partially available on the http://bassepr.kpfu.ru/ accessed on 15 September 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Golosov, V.; Yermolaev, O.; Rysin, I.; Vanmaercke, M.; Medvedeva, R.; Zaytseva, M. Mapping and spatial-temporal assessment of

gully density in the Middle Volga region, Russia. Earth Surf. Process. Landforms 2018, 43, 2818–2834. [CrossRef]
2. Larionov, G.A. Soil Erosion and Deflation; Moscow State University Publishing House: Moscow, Russia, 1993; p. 200. (In Russian)
3. Litvin, L.F. Geography of Soil Erosion of Agricultural Lands in Russia; Akademkniga: Moscow, Russia, 2002; p. 256. (In Russian)
4. Lisetskiy, F.N.; Svetlichnyi, A.A.; Chornyy, S.G. Recent Developments in Erosion Science; Konstanta: Belgorod, Russia, 2012; p. 456.

(In Russian)
5. Catchment Erosion-Fluvial Systems: Monograph; Chalov, R.S.; Sidorchuk, A.Y.; Golosov, V.N. (Eds.) INFRA-M: Moscow, Russia,

2017; p. 702. (In Russian)
6. Feng, Q.; Zhao, W.; Ding, J.; Fang, X.; Zhang, X. Estimation of the cover and management factor based on stratified coverage and

remote sensing indices: A case study in the Loess Plateau of China. J. Soils Sediments 2017, 18, 775–790. [CrossRef]
7. Wischmeier, W.H.; Smith, D.D. Predicting rainfall erosion losses: A guide to conservation planning with Universal Soil Loss

Equation (USLE). In Agriculture Handbook; Department of Agriculture: Washington, DC, USA, 1978.
8. Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation

Planning with the Revised Universal Soil Loss Equation (RUSLE). In Agriculture Handbook; USDA-ARS: Washington, DC,
USA, 1997.

9. Beasley, D.B.; Huggins, L.F.; Monke, E.J. ANSWERS: A Model for Watershed Planning. Trans. ASAE 1980, 23, 0938–0944.
[CrossRef]

10. Palazón, L.; Navas, A. Sediment production of an alpine catchment with SWAT. Z. Für Geomorphol. Suppl. Issues 2013, 57, 69–85.
[CrossRef]

11. De Jong, S.; Paracchini, M.; Bertolo, F.; Folving, S.; Megier, J.; de Roo, A. Regional assessment of soil erosion using the distributed
model SEMMED and remotely sensed data. Catena 1999, 37, 291–308. [CrossRef]

http://bassepr.kpfu.ru/
http://doi.org/10.1002/esp.4435
http://doi.org/10.1007/s11368-017-1783-4
http://doi.org/10.13031/2013.34692
http://doi.org/10.1127/0372-8854/2013/S-00136
http://doi.org/10.1016/S0341-8162(99)00038-7


ISPRS Int. J. Geo-Inf. 2021, 10, 645 17 of 18

12. Fernández, C.; Vega, J.A.; Vieira, D. Assessing soil erosion after fire and rehabilitation treatments in NW Spain: Performance of
rusle and revised Morgan-Morgan-Finney models. Land Degrad. Dev. 2010, 21, 58–67. [CrossRef]

13. Cohen, M.J.; Shepherd, K.; Walsh, M.G. Empirical reformulation of the universal soil loss equation for erosion risk assessment in
a tropical watershed. Geoderma 2005, 124, 235–252. [CrossRef]

14. Fu, B.J.; Zhao, W.; Chen, L.D.; Zhang, Q.J.; Lü, Y.H.; Gulinck, H.; Poesen, J. Assessment of soil erosion at large watershed scale
using RUSLE and GIS: A case study in the Loess Plateau of China. Land Degrad. Dev. 2005, 16, 73–85. [CrossRef]

15. Lu, D.; Li, G.; Valladares, G.S.; Batistella, M. Mapping soil erosion risk in Rondônia, Brazilian Amazonia: Using RUSLE, remote
sensing and GIS. Land Degrad. Dev. 2004, 15, 499–512. [CrossRef]

16. Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management
factor at the European scale. Land Use Policy 2015, 48, 38–50. [CrossRef]

17. Panagos, P.; Borrelli, P.; Poesen, J.; Meusburger, K.; Ballabio, C.; Lugato, E.; Montanarella, L.; Alewell, C. Reply to the comment
on “The new assessment of soil loss by water erosion in Europe” by Fiener & Auerswald. Environ. Sci. Policy 2016, 57, 143–150.
[CrossRef]

18. Zharkova, Y.G. Soil-Protective Properties of Agrocenoses. In Proceedings of the Conference “Working of Water Streams”; MSU
Publishing House: Moscow, Russia, 1987; pp. 39–51. (In Russian)

19. Zaslavsky, M.N. Erosion Study; Vysshaya shkola: Moscow, Russia, 1983; p. 320. (In Russian)
20. Morgun, F.T.; Shikula, N.K.; Tararico, A.G. Conservation Agriculture; Urozhay: Kiev, Ukraine, 1988; p. 256. (In Russian)
21. Maltsev, K.; Yermolaev, O. Assessment of soil loss by water erosion in small river basins in Russia. Catena 2020, 195, 104726.

[CrossRef]
22. Bartsch, K.; Miegroet, H.; Boettinger, J.; Dobrowolski, J. Using Empirical Erosion Models and GIS to Determine Erosion Risk at

Camp Williams, Utah. J. Soil Water Conserv. 2002, 57, 29–37.
23. Bhuyan, S.J.; Kalita, P.K.; A. Janssen, K.; Barnes, P.L. Soil loss predictions with three erosion simulation models. Environ. Model.

Softw. 2002, 17, 135–144. [CrossRef]
24. Fu, G.; Chen, S.; McCool, D.K. Modeling the impacts of no-till practice on soil erosion and sediment yield with RUSLE, SEDD,

and ArcView GIS. Soil Tillage Res. 2006, 85, 38–49. [CrossRef]
25. Beskow, S.; de Mello, C.; Norton, L.; Curi, N.; Viola, M.R.; Avanzi, J. Soil erosion prediction in the Grande River Basin, Brazil

using distributed modeling. Catena 2009, 79, 49–59. [CrossRef]
26. Terranova, O.; Antronico, L.; Coscarelli, R.; Iaquinta, P. Soil erosion risk scenarios in the Mediterranean environment using RUSLE

and GIS: An application model for Calabria (southern Italy). Geomorphology 2009, 112, 228–245. [CrossRef]
27. Park, S.; Oh, C.; Jeon, S.; Jung, H.; Choi, C. Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss

equation. J. Hydrol. 2011, 399, 263–273. [CrossRef]
28. Ranzi, R.; Le, T.H.; Rulli, M.C. A RUSLE approach to model suspended sediment load in the Lo river (Vietnam): Effects of

reservoirs and land use changes. J. Hydrol. 2012, 422–423, 17–29. [CrossRef]
29. Zhao, W.; Fu, B.; Qiu, Y. An Upscaling Method for Cover-Management Factor and Its Application in the Loess Plateau of China.

Int. J. Environ. Res. Public Health 2013, 10, 4752–4766. [CrossRef]
30. Fiener, P.; Auerswald, K. Comment on The new assessment of soil loss by water erosion in Europe. Panagos P. et al., 2015

Environmental Science & Policy 54, 438–447—A response. Environ. Sci. Policy 2016, 57, 140–142. [CrossRef]
31. De Jong, S.M. Derivation of vegetative variables from a landsat tm image for modelling soil erosion. Earth Surf. Process. Landforms

1994, 19, 165–178. [CrossRef]
32. Knijff, J.; Jones, R.; Montanarella, L. Soil Erosion Risk Assessment in Europe; JRC, European Soil Bureau. 2000, p. 36. Available

online: https://esdac.jrc.ec.europa.eu/content/soil-erosion-risk-assessment-europe (accessed on 15 September 2021).
33. Wang, G.; Wente, S.; Gertner, G.Z.; Anderson, A. Improvement in mapping vegetation cover factor for the universal soil loss

equation by geostatistical methods with Landsat Thematic Mapper images. Int. J. Remote Sens. 2002, 23, 3649–3667. [CrossRef]
34. Warren, S.D.; Mitasova, H.; Hohmann, M.G.; Landsberger, S.; Iskander, F.Y.; Ruzycki, T.S.; Senseman, G.M. Validation of a 3-D

enhancement of the Universal Soil Loss Equation for prediction of soil erosion and sediment deposition. Catena 2005, 64, 281–296.
[CrossRef]

35. De Asis, A.M.; Omasa, K. Estimation of vegetation parameter for modeling soil erosion using linear Spectral Mixture Analysis of
Landsat ETM data. ISPRS J. Photogramm. Remote Sens. 2007, 62, 309–324. [CrossRef]

36. Suriyaprasita, M.; Shrestha, D.P. Deriving Land Use and Canopy Cover Factor from Remote Sensing and Field Data in Inaccessible
Mountainous Terrain for Use in Soil Erosion Modeling. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 1747–1750.

37. Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35,
161–173. [CrossRef]

38. Richardsons, A.J.; Wiegand, A. Distinguishing Vegetation from Soil Background Information. Photogramm. Eng. Remote Sens.
1977, 43, 1541–1552.

39. Cyr, L.; Bonn, F.; Pesant, A. Vegetation indices derived from remote sensing for an estimation of soil protection against water
erosion. Ecol. Model. 1995, 79, 277–285. [CrossRef]

40. Cartagena, D.F. Remotely Sensed Land Cover Parameter Extraction for Watershed Erosion Modeling; International Institute for Geo-
Information and Earth Observation: Enschede, The Netherlands, 2004; p. 104.

http://doi.org/10.1002/ldr.965
http://doi.org/10.1016/j.geoderma.2004.05.003
http://doi.org/10.1002/ldr.646
http://doi.org/10.1002/ldr.634
http://doi.org/10.1016/j.landusepol.2015.05.021
http://doi.org/10.1016/j.envsci.2015.12.011
http://doi.org/10.1016/j.catena.2020.104726
http://doi.org/10.1016/S1364-8152(01)00046-9
http://doi.org/10.1016/j.still.2004.11.009
http://doi.org/10.1016/j.catena.2009.05.010
http://doi.org/10.1016/j.geomorph.2009.06.009
http://doi.org/10.1016/j.jhydrol.2011.01.004
http://doi.org/10.1016/j.jhydrol.2011.12.009
http://doi.org/10.3390/ijerph10104752
http://doi.org/10.1016/j.envsci.2015.12.012
http://doi.org/10.1002/esp.3290190207
https://esdac.jrc.ec.europa.eu/content/soil-erosion-risk-assessment-europe
http://doi.org/10.1080/01431160110114538
http://doi.org/10.1016/j.catena.2005.08.010
http://doi.org/10.1016/j.isprsjprs.2007.05.013
http://doi.org/10.1016/0034-4257(91)90009-U
http://doi.org/10.1016/0304-3800(94)00182-H


ISPRS Int. J. Geo-Inf. 2021, 10, 645 18 of 18

41. Kefi, M.; Yoshino, K.; Setiawan, Y. Assessment and mapping of soil erosion risk by water in Tunisia using time series MODIS data.
Paddy Water Environ. 2012, 10, 59–73. [CrossRef]

42. Alexandridis, T.; Sotiropoulou, A.M.; Bilas, G.; Karapetsas, N.; Silleos, N.G. The Effects of Seasonality in Estimating the C-Factor
of Soil Erosion Studies. Land Degrad. Dev. 2013, 26, 596–603. [CrossRef]

43. Bartalev, S.A.; Egorov, V.A.; Zharko, V.O.; Loupian, E.A.; Plotnikov, D.E.; Khvostikov, S.A. State and Per-Spectives of the
Development of Methods for Satellite Mapping of Vegetation Cover in Russia. Sovremennye Problemy Distantsionnogo Zondirovaniya
Zemli Kosmosa 2015, 12, 203–221. (In Russian)

44. Yermolaev, O.; Mukharamova, S.; Vedeneeva, E. River runoff modeling in the European territory of Russia. Catena 2021,
203, 105327. [CrossRef]

45. Bartalev, S.; Egorov, V.; Zharko, V.; Loupian, E.; Plotnikov, D.; Khvostikov, S.; Shabanov, N. Land Cover Mapping over Russia Using
Earth Observation Data; Russian Academy of Sciences’ Space Research Institute: Moscow, Russia, 2016.

46. Saveliev, A.; Romanov, A.V.; Mukharamova, S.S. Automated Mapping using Multilevel B-Splines. Appl. GIS 2005, 1. [CrossRef]
47. Fisette, T.; Rollin, P.; Aly, Z.; Campbell, L.; Daneshfar, B.; Filyer, P.; Smith, A.; Davidson, A.; Shang, J.; Jarvis, I. AAFC annual crop

inventory. In Proceedings of the 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics); Institute
of Electrical and Electronics Engineers (IEEE), Fairfax, VA, USA, 12–16 August 2013; pp. 270–274.

48. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
49. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
50. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
51. Litvin, L.F.; Kiryukhina, Z.P.; Krasnov, S.F.; Dobrovol’Skaya, N.G. Dynamics of agricultural soil erosion in European Russia.

Eurasian Soil Sci. 2017, 50, 1344–1353. [CrossRef]
52. De Jong, S.M.; Brouwer, L.C.; Riezebos, H.T. Erosion Hazard Assessment in the La Peyne Catchment, France; Department of Physical

Geography, University of Utrecht: Utrecht, The Netherlands, 1998.
53. Schmidt, S.; Alewell, C.; Meusburger, K. Mapping spatio-temporal dynamics of the cover and management factor (C-factor) for

grasslands in Switzerland. Remote Sens. Environ. 2018, 211, 89–104. [CrossRef]
54. Grauso, S.; Verrubbi, V.; Peloso, A.; Sciortino, M.; Zini, A. Estimating the C-Factor of USLE/RUSLE by Means of NDVI Time-Series in

Southern Latium. An Improved Correlation Model; Italian National Agency For New Technologies, Energy and Sustainable Economic
Development: Roma, Italy, 2018; p. 32.

http://doi.org/10.1007/s10333-011-0265-3
http://doi.org/10.1002/ldr.2223
http://doi.org/10.1016/j.catena.2021.105327
http://doi.org/10.2104/ag050017
http://doi.org/10.1016/j.neunet.2014.09.003
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://doi.org/10.1134/S1064229317110084
http://doi.org/10.1016/j.rse.2018.04.008

	Introduction 
	Materials and Methods 
	Study Area 
	Input Data 
	C-Factor Assessment Method 
	C-Factor Assessment on Arable Land 
	C-Factor Assessment on Non-Arable Land 


	Results and Discussion 
	Conclusions 
	References

