
robotics

Article

Real-Time Vertical Ground Reaction Force Estimation
in a Unified Simulation Framework Using Inertial
Measurement Unit Sensors

Elliot Recinos 1, John Abella 1, Shayan Riyaz 2 and Emel Demircan 1,3,*
1 Department of Mechanical and Aerospace Engineering, California State University, Long Beach,

CA 90840, USA; Elliot.Recinos@student.csulb.edu (E.R.); John.Richard.Abella@gmail.com (J.A.)
2 Department of Electrical Engineering, California State University, Long Beach, CA 90840, USA;

Shayan.Riyaz@student.csulb.edu
3 Department of Biomedical Engineering, California State University, Long Beach, CA 90840, USA
* Correspondence: Emel.Demircan@csulb.edu

Received: 30 August 2020; Accepted: 21 October 2020; Published: 25 October 2020
����������
�������

Abstract: Recent advances in computational technology have enabled the use of model-based
simulation with real-time motion tracking to estimate ground reaction forces during gait. We show
here that a biomechanical-based model including a foot-ground contact can reproduce measured
ground reaction forces using inertial measurement unit data during single-leg support, single-support
jump, side to side jump, jogging, and skipping. The framework is based on our previous work on
integrating the OpenSim musculoskeletal models with the Unity environment. The validation was
performed on a single subject performing several tasks that involve the lower extremity. The novelty
of this paper includes the integration and real-time tracking of inertial measurement unit data in the
current framework, as well as the estimation of contact forces using biologically based musculoskeletal
models. The RMS errors of tracking the vertical ground reaction forces are 0.027 bodyweight,
0.174 bodyweight, 0.173 bodyweight, 0.095 bodyweight, and 0.10 bodyweight for single-leg support,
single-support jump, side to side jump, jogging, and skipping, respectively. The average RMS error
for all tasks and trials is 0.112 bodyweight. This paper provides a computational framework for
further applications in whole-body human motion analysis.

Keywords: inertial measurement unit; ground reaction force; simulation

1. Introduction

Ground reaction forces (GRF) in human motion is an important factor to determine if a motion can
result in injuries, such as in running [1]. Until the further development of inertial measurement units
(IMUs), motion analysis and GRFs were limited to being measured in a motion laboratory setting with
the requirement of calibrated force plates or instrumented treadmills. Over the last decade, IMUs have
become popular and reliable sensors for biomechanical analysis as it provides researchers with the
means to perform motion capture outside of a laboratory setting. The one issue that arises from the
motion analysis outside of a motion laboratory is the lack of force plates to measure GRFs. Wearable
devices capable of estimating GRFs have been developed to address the lack of GRF data when using
IMUs. These wearable devices include the use of load cells and pressure sensors [2–4]. However,
these sensors have their limitation as they are cumbersome, or they have a short life cycle. In many
cases, heavy load cells can affect natural walking and change gait patterns [5,6].

Joint angles and GRFs have been shown to be the most important kinematic and kinetic parameters
during human motion [7,8]. IMUs have given researchers the opportunity to perform biomechanical
analysis without the need to set up optical-based motion capture systems such as OptiTrack, Vicon,
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and Qualisys. Researchers have demonstrated the effectiveness of monitoring important kinematic
parameters with a low count of IMUs, such as monitoring hip and knee joint angles using a single IMU
during lower limb rehabilitation.

The next step is to extend the capabilities of IMUs from only being able to measure angles and
motion to reliably measure GRFs. There has been a lot research in developing methods to estimate GRFs
from IMUs. Measuring GRFs with IMUs is an important development because it allows researchers to
conduct experiments and studies outside of the laboratory setting without the need for force plates and
instrumented treadmills. One group has developed a method to estimate vertical ground reaction forces
(VGRF) and sagittal knee kinematics during running using three inertial sensors and two concatenated
artificial neural networks [9]. They estimated GRFs with an RMS error < 0.27 bodyweight. A second
group was also able to estimate VGRFs during running using a neural network model and a uniaxial
accelerometer [10]. This study aims to estimate VGRFs using 17 IMUs during live motion tracking.
This work is a continuation of the multi-model simulation framework for live motion tracking and
analysis within the Unity environment [11].

In this paper, we present a pilot study to validate the VGRF estimations of our computational
framework against experimental force plate data. Our framework uses biomechanics-based models
together with IMU data to estimate the contact forces in real-time. To test the accuracy of our approach,
we compared VGRFs computed by our framework to force plate measured VGRFs. We reported
the RMS tracking errors for each task and trial. The major scientific contribution of this paper is the
presentation of a biomechanical model-based framework that can estimate ground reaction forces in
real-time using IMUs. The following sections present the methodology, results, and future work of
our paper.

2. Methods

2.1. Framework

The proposed framework was developed to interpret and build OpenSim models within Unity [11].
This framework implements OpenSim’s biomechanically accurate musculoskeletal models into the
Unity environment [12]. The framework allows us to simultaneously track and analyze human motion
in real-time since it does not rely on numerical methods to evaluate motion dynamics compared
to OpenSim’s original framework. This allows us to use runtime-derived, closed-form kinematic
and muscle Jacobians, and incorporate custom-performance metrics such as muscular effort [11].
As described in our previous work, we take advantage of the dynamic compilation methods and robotic
algorithms to efficiently perform real-time computation and visualization. We have implemented
into our existing Unity framework a method to use IMU accelerations and orientations coupled with
subject-specific-scaled OpenSim models to estimate GRFs during live motion tracking. Figure 1 shows
a real-time estimation of the GRF magnitude and direction exerted on the right foot while the subject is
being tracked. The simulation has a varying update rate greater than 100 Hz using a desktop with a
5-core i-7 CPU processor and a 1080 Ti Nvidia GPU. A GRF vector can be observed as the purple line
extruding from the right foot of the scaled OpenSim musculoskeletal model after jumping from one
foot to the other.

The framework is used to estimate GRFs based on IMUs. The Axis Neuron Pro software generates
statuses for the feet’ strike/contact events based on virtual contact points that are located on the Axis
Neuron Pro’s avatar’s feet while the subject wears the Axis Neuron Pro full-body motion tracking
suit. A total of 10 contact points is used for each foot, as can be seen in Figure 2. The contact-status
feature tracks when the subject is stepping to estimate the GRF at that instance. The virtual contact
points are calibrated to a “flat foot” pose during the IMUs’ calibration sequence. They are used to
determine when a step occurs and the type of step measured by the IMUs (toe strike vs flat strike vs heel
strike). The IMUs’ acceleration components and vector are used to estimate the GRFs. Additionally,
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the foot’s pose is also determined based on the driven OpenSim model within the Unity framework.
The OpenSim model’s foot is scaled with respect to the subject’s foot size.Robotics 2020, 9, x FOR PEER REVIEW 3 of 12 
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2.2. OpenSim

The unity framework uses the OpenSim body properties to extract the scalar masses for each body
mass found in the musculoskeletal model. For this paper, an OpenSim musculoskeletal model with
25 body segments, 107 muscles, and 41 degrees of freedom was scaled to the subject’s anthropomorphic
data (Figure 3).



Robotics 2020, 9, 88 4 of 12

1 
 

Figure 3. Scaled OpenSim Model.

2.3. Ground Reaction Force Estimation

The IMU’s 3-axis accelerations are extracted from Axis Neuron’s Pro software’s data stream
and transformed to match the OpenSim musculoskeletal’s coordinate system. These accelerations
are converted to m/s2 because they are streamed in terms of gravity and then multiplied with
the corresponding musculoskeletal body masses. The resulting forces are transformed into Unity’s
coordinate system by multiplying the rotation matrix with respect to the OpenSim’s coordinate system
and are summed from the outer extremities to the most inner body segments (pelvis, right hip, left hip,
and back). The GRF can be expressed by Equation (1) where RU is the rotation matrix to respect of
Unity’s coordinate system, M(i)OS is the mass property of the scaled OpenSim model’s body segment in
kg, G is the gravitational constant in m/s2, ROS is the rotation matrix to respect of OpenSim’s coordinate
system, and a(i)IMU is the acceleration of the IMU corresponding to the subject’s body segment in m/s2.
All IMUs are used to estimate the GRF, as their accelerations are multiplied to the respective body
mass on the musculoskeletal model. The framework outputs GRFs that are filtered with the use of a
2nd order Butterworth filter that has a set cutoff frequency of 8 Hz. Figure 4 can be used to understand
how the GRF estimation method is implemented within the existing framework.

GRF =
n∑

i=1

RUM(i)OSGROSa(i)IMU (1)
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Figure 4. Flowchart diagram of the GRF estimation method within the OpenSim Unity Framework.

3. Experimental Setup

3.1. Subject Information

In this experiment, a healthy female subject of the age of 26 was chosen. Her bodyweight was
55.34 kg and her height is 160 cm. The subject had no history of musculoskeletal injuries, no neurological
impairments, and was physically capable of performing dynamic tasks. The subject signed an informed
consent form before the experiment regarding data collected during the experiment, video footage of
the experiment, and subject preparation pictures. The subject was given a copy of the signed consent
form. Anthropometric data was collected by measuring the body mass of the subjects using a weight
scale and height of the subject using a tape measure.

3.2. Equipment

The subject’s kinematics were tracked by an 18-camera Qualisys motion analysis system that was
set to a capture rate of 120 Hz [13]. Two over-ground 600 × 900 mm2 Bertec force plates were used
during this experiment [14]. The force plates can measure the three components of a single point force
input and the moment components associated with the force about the x, y, and z axes. The force
plates were used to measure the GRFs exerted by the subject and synchronized to the Qualisys motion
analysis system. The sampling rate of the force plates was set to capture at a rate of 1200 Hz.

The subject’s kinematics were tracked with Notion’s Perception Neuron Pro IMU motion-capture
system that consists of 17 neurons that are IMUs [15]. Each Neuron IMU is composed of a 3-axis
gyroscope, a 3-axis accelerometer, and a 3-axis magnetometer. The perception neuron pro suit
captured at a rate of 120 Hz. The data transmission is wireless as sensors communicate to a local hub.
The subject’s IMU motion is mapped using Notion’s in-house software AXIS Neuron Pro that connects
to the OpenSim Unity framework via TCP.
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3.3. Subject Preparation

The subject was set up with motion capture reflective markers and IMUs to track the subject’s
motion. A total of 46 markers and 17 IMUs were placed on the subject for full-body tracking.
Visualization of the subject’s body in the Qualisys’ software assists when referencing the GRFs and
related motion. Figure 5 shows the subject’s marker and IMU motion capture suit preparation.
Fourteen of the 17 IMUs are marked by red circles on the figure. The remaining 3 IMUs are located on
the backside of the subject’s head, upper back, and waist.
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3.4. Experimental Protocol

The subject was asked to perform the following five tasks: Single-left-leg support, Single-left-leg
jumping, side-to-side jumping, jog, and skipping. Each task was repeated four times for a total
of 20 recordings/trials. For the single-left-leg support, the subject stood on one force plate while
maintaining single-left-leg support for a duration of 10 s. For the singe-left-leg jump, the subject
stood on one force plate, performed a single-leg stand, jumped, landed on a single leg, and held the
single-leg support for five seconds. For the side-to-side jumping, the subject simultaneous stood on
two force plates and jump from one leg to the other. For the jog, the subject stood two meters behind
the force plates and jogged over the two force plates (each foot struck one of the force plates). For the
skipping motion, the subject stood two meters behind the force plates and skipped over two force
plates (each foot struck one of the force plates two times).
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Figure 6 shows the five tasks performed during the experiment. While the motion was being
tracked, the 3-axis GRF values were calculated at every frame. The update frequency of the entire
simulation procedure averaged about 110 Hz.Robotics 2020, 9, x FOR PEER REVIEW 7 of 12 
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method to track the status of the feet to determine if a foot strike has occurred. 

Figure 6. Tasks performed during experiment, (a) single-leg support; (b) single-leg jump; (c) side-to-side
jumps; (d) jogging; (e) skipping.

When evaluating the results of our experiment, it was observed that the sampling rate was not
consistent with the output recorded form the Unity data output. GRF values from the Bertec force
plates were set to output at 1200 Hz sampling rate by Qualisys. Meanwhile, the Perception Neuron
Pro inertial measurement units suit outputs at a set rate of 120 Hz. The inertial measurement unit data
is used within the Unity framework that has a varying output rate for the GRF estimations. Therefore,
to directly compare both force plate GRFs and estimated GRFs for further analysis, the data acquired
from the force plates and Unity software were down-sampled to 100 Hz. To achieve the desired
sampling frequency, the values were converted to a NumPy array and resampled using the SciPy
resample API [16,17]. The data was filtered using a 4th order Butterworth filter after acquiring the
down-sampled data from both sources. Lastly, the data was organized and phased with each other to
directly compare each dataset.

4. Results

The framework estimates GRF values in real-time, as shown in Figure 7. Visualization of the
estimated GRF vectors during the task can be observed in each panel upon closer inspection of the
biomechanical model. For a more detailed look, please refer to Figure 1.
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Figure 8 shows eight plots that compare the estimated GRFs against experimentally measured
GRFs. Each plot is one trial that compares the GRF values between force plate measurements and IMU
estimations for a specific task.

Figure 9 shows a close-up of a single-support jump with the left foot. The figure is sectionalized
to demonstrate the behavior of the ground reaction estimations during that task. The RMS values
are shown in the figure associated with the respective region. The green region depicts where the
estimation values had RMS values lower than 0.1 compared to the pink section, which depicts where
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the estimations had RMS values higher than 0.1. We believe this may be the result of the current
method to track the status of the feet to determine if a foot strike has occurred.Robotics 2020, 9, x FOR PEER REVIEW 8 of 12 
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Figure 8. GRF plots of IMU estimation and force plate measurement for each task, (a) single-leg support
left foot stand; (b) single-leg left foot jump; (c) side-to-side jumps left foot; (d) side-to-side jumps right
foot; (e) jogging left foot; (f) jogging right foot; (g) skipping left foot; (h) skipping right foot.
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Figure 9. Force Plate vs IMU Estimation of GRF during a single-support jump with the left foot.

The GRF is normalized by the subject’s body weight (BW). RMS difference between estimated
GRFs and experimentally measured GRFs for five different tasks (single-left-leg support, single-left-leg
jump, side-to-side jumping, jogging, and skipping) are observed in Table 1.

Table 1. RMS values of tracking GRFs for each task.

TASK
TRIAL 1 TRIAL 2 TRIAL 3 TRIAL 4

(BW) (BW) (BW) (BW)

JOGGING 0.106 0.080 0.074 0.090
LEFT LEG 0.117 0.087 0.085 0.091

RIGHT LEG 0.096 0.074 0.062 0.089
SKIPPING 0.102 0.087 0.121 0.091
LEFT LEG 0.080 0.055 0.136 0.075

RIGHT LEG 0.124 0.119 0.106 0.108
LEFT LEG SINGLE-SUPPORT 0.004 0.068 0.031 0.002

LEFT LEG SINGLE-SUPPORT JUMP 0.181 0.215 0.140 0.160
SIDE-TO-SIDE JUMP 0.274 0.108 0.154 0.158

LEFT LEG 0.461 0.081 0.159 0.148
RIGHT LEG 0.087 0.134 0.149 0.168

5. Discussion

We presented a pilot study to validate the VGRF estimations of our computational framework
against the experimental force plate data. Our framework uses the biomechanics-based models together
with IMU data to estimate the contact forces in real-time. The framework is based on our previous
work on integrating the OpenSim musculoskeletal models with the Unity environment. To test the
accuracy of our approach, we compared VGRFs computed by our framework to experimentally
measure VGRFs. The validation was performed on a single subject performing several tasks that
involve the lower extremity. The RMS errors for the VGRFs are 0.027 BW, 0.174 BW, 0.173 BW, 0.095 BW,
and 0.10 BW for single-leg support, single-support jump, side to side jump, jogging, and skipping,
respectively. The average RMS error for all tasks and trials is 0.112 BW. Limitations include the
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following: the experiment needs to be replicated on multiple subjects and only VGRFs were analyzed
and validated for this study.

6. Conclusions

In this paper, we present a pilot study that explores the effectiveness of using our existing
biomechanical model-based analysis framework and IMUs to estimate VGRFs in real-time (greater
than 100 Hz update rate). As presented in the introduction section of this paper, GRFs estimation is
a necessary step to analyze the human body [7,8]. Until recently, measuring GRFs were limited to
instrumented treadmill, over ground static plates, load cells, and pressure sensors. The first two limit
the measurement of GRFs to a laboratory environment and setting. This constrains the type of motion
that can be analyzed. Meanwhile, load cells and pressure sensors can be cumbersome, and can alter
a subject’s motion. IMUs have become a popular method to analyze motion due to the ease of use,
lack of need for a designated collection environment, and portability. IMUs can be easily placed on a
subject, and set-up time is less compared to traditional motion capture systems. This has made IMUs a
more attractive tool to collect motion data compared to conventional optical marker-based solutions.

IMUs have recently become even more reliable as several methods to estimate GRFs using IMUs
have been developed [9,10,18–22]. A recent study analyzed the feasibility of using an IMU mounted
underneath the walking surface and measured comparable accuracy to IMUs attached to the body [18].
One argument that is used against IMUs is the loss of accuracy due to drift in highly dynamic motions.
The results from the study demonstrate that body-mounted IMUs produce accurate GRF estimations
comparable to static IMUs mounted underneath a walking surface. A separate study investigated the
correlation between the acceleration of body segments and the accuracy of GRF estimations when
body segments are considered [20]. This investigation and results support our method to use subject
specific OpenSim models within our Unity framework that account for the model’s individual body
segment properties to estimate GRFs. Another recent study investigated the use of IMUs to estimate
GRF and center of pressure (CoP) [21]. This study decided to deviate from analyzing level-walking
conditions and instead investigated GRF and CoP estimations during stair and slope ascension and
descension. The study itself highlights the benefits of using IMUs to estimate GRFs due to the system’s
adaptability within versatile environments, such as stairs and slopes.

An interesting trend is the addition of machine learning methods to estimate GRFs using IMUs.
Most of the studies that have been previously discussed use machine learning methods to estimate
GRFs with the use of IMUs [9,10,19–22]. These studies have demonstrated promising results when
estimating vertical and three-dimensional GRFs. We believe that a biomechanical model-based
approach provides more robust GRF estimations since it does not rely on a pre-trained model or
specific dataset. Our biomechanical model-based prediction framework is unique in the sense that
it uses physiologically correct models that allow for subject-specific analysis that can be generalized
to different applications. We can account for internal and external constraints such as a range of
motion, muscle capacities, body parameters, and contact/reaction forces. With that said, we believe that
implementing machine learning methods into our existing biomechanical model-based framework can
supplement our current accuracy as future work. In addition, we plan to perform an experiment with
a larger number of tasks on multiple subjects, analyze and validate horizontal components of our GRF
estimations, and reduce the total number of IMUs required to be worn. The novelty of this framework
includes the integration and real-time tracking of IMU-based motion data, as well as the estimation of
GRFs using biomechanically accurate musculoskeletal models. Some may wonder why we chose to
rely on a biomechanical model approach instead of implementing a method that uses only the dynamic
equation of the human body. The reason we do not only rely solely on a dynamic equation is that
the human body cannot be generalized to an equation. Our biomechanical model-based framework
implements unique behaviors found in OpenSim modeling such as moving muscle path points that
can only be calculated through modeling [11]. This framework provides us with the added benefit of
easily designing virtual experimental environments by utilizing Unity’s built-in graphic and rendering
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tools. The presented framework has great potential to be used in several applications for contact
modeling and estimation, including human rehabilitation, ergonomics, and human-robot interaction
and collaboration.
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