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Abstract: The majority of the industrial material handling mechanisms used in the manipulation
or assembly of mesoscale objects are slow and require precision programming and tooling,
mainly because they are based on sequential robotic pick-n-place operations. This paper presents
problem formation, modeling, and analysis of a sensorless parallel manipulation technique for
mimicking real-systems that transfer mesoscale objects based on the vibration of inline-feeder
machines. Unlike common stick-slip models that utilize a “mass-on-moving-belt” and avoid totality
of the motion, the research obtains differential equations in order to describe the combined physics of
stick-slip dynamics of an object traveling along an oscillating platform under smooth and dry friction
conditions. The nonlinear dynamics are solved numerically to explain the effect of system parameters
on the stick-slip motion. The research provides empirical models based on frequency-analysis
identification to describe the total linear speed of an object to an input force. The results are illustrated
and tested by time–response, phase plots, and amplitude response diagrams, which compare very
favorably with results obtained by numerical simulation of the equation of motion, and this suggests
that the vibration of the platform is independent of stick-slip motion when the mass of the object
being transported is small relative to the mass of the system.

Keywords: inline tracking; nonlinear dynamic; stick-slip; feeder system

1. Introduction

Spatial manipulation of objects is of such ubiquitous utility that it is currently in indispensable use
in a wide range of areas including industry, research, space, biology, medicine etc. In fact, it is difficult
to think of processes, which do not involve some kind of sorting, singulating, orienting, feeding,
positioning or assembling of parts. A number of diverse approaches have been employed ranging
from a sensor based deterministic pick-n-place Microassembly to vibration assisted manipulation.
However, the irregularity of the shape and the weight of objects being grasped often require retooling
of the endeffectors that are typically attached to the robots. Sensorless vibration technique are currently
used in industrial feeder system to sort and transport parts between given initial and final positions.
The use of vibration forces in sorting and assembling parts of tangible sizes is an ongoing phenomenon
utilized in mechanical filters and feeders. It is relatively cheap especially for mass sorting scenarios
because it does not require sensors or grippers. However, so far the efforts lack in conceptualizing
a method which can be successfully used for controlled two dimensional spatial manipulation of a
particle atop a membrane by controlling the vibration force input underneath. It has so far only been
utilized as a general gross stimulus which targets the entire particle domain as a whole identically
without the ability to focus or control a specified point target locally. The currently used methods for
manipulation employ a wide spectrum of tools for part sorting such as inline feeder. On the other hand,
inline tracking feeders utilize sensorless horizontal vibration to feed particles at a desired total speed
where its motion could be analyzed based on incremental dry friction stick-slip principle generated at
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the contact between the particle and the oscillating plane. When the relative velocity at contact is equal
zero, the static friction occurs (stick), otherwise, a slip mode corresponding to dynamic friction takes
place. Stick-slip mechanism requires precise control of the force being applied on the particle such that
its value is below the static friction force when the oscillating plane motion is directed along the feed
direction. This sticktion force will drag the particle at a velocity calculated from the dynamics of the
oscillating plane. However, during the slip motion and when plane oscillate away from feed direction,
the force applied on the particle must be higher than the static friction force.

Numerous works have been devoted to the study of friction-induced oscillations [1–3].
Mitropolskiiand Nguyen describe self-excited oscillations of the mass-on-belt system for a case where
there is no sticking between mass and belt [4]. Jin et al. obtained analytical approximation—but limited
to short stick condition—to evaluate the stick-slip motion due to a randomly excited and viscously
damped duffing oscillator placed on a frictional belt with a uniformly moving speed [5]. lmer discussed
stick–slip and pure-slip oscillations of the mass-on-belt system with no damping [6]. There exist some
more detailed modeling of frictional behavior based on contact deformation, atomic geometry and
microscopic roughness [7,8]. Also, there is vast research devoted to dimensional dynamic system with
friction [9–11]. For example, Geffen discussed the basic mechanics of friction and friction models [12].
The system dynamics with nonsmooth surfaces or wet film are complex and poses challenges to the
stability of system dynamics [13–15]. Stick-slip chaotic dynamics in a one degree of freedom very
weakly forced oscillator was solved using Melnikov’s techniques [16]. Examples of such self-excited
oscillation process include bridge vibration caused by wind forces oscillation and squeak of door
hinges, violin string, and electric bell [17,18]. Readable literature reviews on dry friction and stick–slip
models and friction force model are given by Feeny et al. [19] and Pennestrì et al. [20].

Manipulation using vibration holds potentials for automatic translocations of particles and
construction of complex robots [21]. It has been applied in the sorting, translating, rotating, and trapping
submillimeter particles, with application in fluidic medium and dry surfaces [22,23]. Zewei et al.
used frequency programmable vibration tweezer to trap and control the trajectory of sub millimeter
particles on transversely vibrating plate [24]. Lu et al. studied human-robot user interface to transport
micro particles and cells along given path by using controllable ultrasound waves [25]. Baudoin et al.
reported precise selective contactless and nondestructive manipulation of human cell in microscopy
environment [26]. The application of stick-slip combines the friction and inertial working principle.
Recommended literatures can be found in many references including [27–32].

The inline feeder system discussed in this research is an industrialized one dimensional
deterministic micromanipulation based on the utility of lateral vibration. Researchers attempted
to study two dimensional deterministic micromanipulation based on programmable force fields
induced by actuator array or transverse vibration [33,34]. In both methods, the distribution of small
particles demonstrated different results as frequencies and amplitudes were varied. The results
revalidated the theorized propositions for obtaining nodes by vibration forwarded by Rayleigh [35]
and Timoshenko [36]. Chladni [37] had originally propounded this idea experimentally. To date,
there are limited literatures and industry application that utilizes programmable vibration in two
dimensional platforms. Although the friction induced vibration has been well-researched, however,
there is need to analytically investigate conditions that governs stick-slip motion under vibrating
platform. The contribution of this research has two folds; first, a parametric dynamic model of
linear stick-slip motion and solution algorithm are put forward. Second, experimental model based
system identification is obtained; validating motion attributes of the analytical model. A model and
dynamic characteristics of inline feeder system are presented in this research. Feeder systems are
industrialized one dimensional deterministic micromanipulation machine based on the utility of
lateral vibration. This paper is organized as follow, first, general classification of micromanipulation
is presented in Section 2. A dynamic model of feeder system with switching spring is suggested
in Section 3. The condition and the model for stick-slip motion of a particle are discussed. Finally,
Section 4 presents a simulation case study with extensive experimental analysis.
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2. Classification of Micro-Manipulation

Modern Microassembly or micro-manipulation can be classified into deterministic, stochastic and
hybrid [38]. Hybrid Microassembly combines the aforementioned techniques to perform a set of
desired tasks. Deterministic assembly refers to priory planned assembly processes between parts
and their destinations. Microassembly work-cells with integrated part handling skills and sensor
based guided control system architecture enables performing deterministic manipulation tasks.
Deterministic Microassembly is also classified into serial and parallel assembly. Parallel Microassembly
processes enable a large number of parts to be assembled simultaneously with microscale precision [39].
Parallel assembly comprises the simultaneous precise transfer and alignment of components into
binding sites such as active adhesion of nanomaterial under electrostatic field [40]. It enables a large
number of parts to be assembled simultaneously with micro-scale precision. Serial Microassembly
or one by one micro pick and place requires well defined interface between end-effectors and
micro-parts. Such successive process could be classified into automated and manual assembly [41–43],
where manual assembly is operated by mechanical or optical tweezers guided under a microscope [44].
On the other hand, tele-operated, semi to fully automated microassemblies are operated by work-cells
and assisted by proper microgrippers [45]. Methods for controlling the direct pick-n-place operations
include vacuum grippers based on micropipette [46], compliant microgrippers [47], and controlled
surface tension [48]. Stochastic assembly refers to aggregation of a large number of distributed
micro-parts organized by mean of distributed arrays of actuators [49]. Active Surface manipulation
is one method implemented to dynamically recruits objects from fixed neighborhood modules
using actuator array such as and squeeze forces based on vibrating membranes [21,33,50].
Monolithic Self-assembly are process inspired by laws of nature such as fluidic assembly based on
capillary force [51]. Stochastic Parallel Assembly, or most often referred by Multiple Self-Microassembly,
is based on trapping micro-parts in defined binding site such as etched hole, chemical, electromagnetic,
biomedical, and electrostatic [52,53]. It has been applied in industry for fabrication of Liquid Crystal
Display (LCD) substrates with embedded silicon substrate [54]. Such sensorless process enables
massive fabrication of Microelectromechanical systems (MEMS) structures.

3. Method

3.1. The Problem

This research models inline feeder system, a sensorless vibration platform that controls the
transportation of mesoscale particles along two spatial coordinates. The feeder is a vibrating beam
driven by electromagnetic actuator and suspended by elastic plates. Particles which are sorted inside
a grooved beam travels massively one-by-one at an average speed controlled by specific frequency
and amplitude. A nonlinear forced spring-mass system is derived for the model shown in Figure 1.
The derivations are based on well-known classical dynamics of vibrating particle in dry medium.
Although numerous friction models have been developed for the control of motion system of small
particles, a simple Coulomb friction model is adopted to define the sliding motion of millimeter to
centimeter size particles [55,56]. The goal of this section is to obtain a parametric Ordinary Differential
Equation (ODE) model optimized to control the speed of the particle.
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Figure 1. Schematic of the inline tracking feeder system under small perturbation.

3.2. Platform Model: Non-Linear ODE

The inline tracking system described in Figure 1 or Figure 2 is comprised of an oscillating beam
of mass M suspended on angled plate. The flexural rigidity, EI, offered by the plate is the product of
its modulus of elasticity, E, and the second moment of area I. The equivalent second moment of area
for q number of stacked plates with thickness h and width w is (qwh3/12). Consider m be the mass
of the plate, with a particle—referred by vehicle—of mass Mp is resting on the top of the oscillating
beam—referred by carrier. The plate in Figure 2 can be modeled by a cantilevered Bernoulli-Euler
beam carrying a mass M at the free end. If the mass of the plate is small in comparison to the tip mass
M, the equivalent spring stiffness coefficient on the tip mass along x-axis reduces to all in comparison to
the tip mass M, the equivalent spring stiffness coefficient on the tip mass along x-axis reduces to [57,58]

Keq = 3EI/L3 (1)
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The mass of the plate can be accounted for in the model by introducing a coefficient α multiplied
by the plate mass and added to the total mass of the carrier and the vehicle. Thus, the equivalent mass
Meq at the tip of the cantilever becomes (

[
M + Mp

]
+ αm). The exact fundamental Eigen frequency ω1

or the natural frequency for spring-mass system under no damping is

ω1 =
√

Keq/Meq (2)

In the context of bending vibrations of the cantilever carrying a proof mass [M+Mp], the coefficient
α is well known and it is equal to (33/144) [59].

Let the tip mass in Figure 2 be given a small perturbation along x-axis from an equilibrium position.
This causes it to displace by v cos(θ) with restoring spring force along the oscillating plane is given by

Fv = −Keq cos (θ)v (3)
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The sum of all forces along v-axis is equal to total inertia. Thus,

Meq
d2v
dt2 + Keq cos (θ)v = F (4)

where F is strong external excitation force applied along v-axis. In feeder system, the force is
predominately induced by electromagnetic coil actuator driven by sinusoidal voltage input. The natural
frequency of the single lumped spring-mass system in Equation (4) observed along the oscillating
plane can be rewritten in parametric form by

ω1 =

√
3EI cos (θ)

L3(M + Mp + αm)
(5)

The linear forward locomotion of the particle, which is assumed positive in the direction of the
v-axis, can be achieved by using incremental but cyclic forward-stick and backward-slip motions.
During the forward-stick period in Figure 3a, the maximum static friction of the particle Mpgµs at
the contact surface should be greater than the forward frictional force. Thus, the vehicle adheres
to the carrier where both translocate together by a magnitude of ∆vC = ∆v f per unit cycle in the
positive direction of v-axis. On the other hand, the particle slips over the beam surface during the
backward-slip motion due to an increase in the acceleration of the beam. This causes the vehicle to
slip by a magnitude of ∆vs per unit cycle in the negative direction of v-axis as illustrated in Figure 3b.
Therefore, the net forward motion of the vehicle per unit cycle δ is (∆vC − ∆vs). The rapid repetition of
the stick-slip cycle causes the vehicle to move discretely at an average speed when both the driving
input frequency ωd and its amplitude A are constant over time.
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Figure 3. Cyclic increments: (a) forward-stick drag motion. (b) backward-slip motion.

The stick-slip motion is satisfied when the value of the frictional force at contact is direction
dependent. One technique to control the magnitude of contact friction is to control the carrier
acceleration bi-directionally such that the backward acceleration ab is higher than the maximum
allowable forward acceleration as that causes slippage, i.e., the forward acceleration a f is any acceleration
less than as. This directional control of beam acceleration could be obtained by using several techniques
such as: (1) time-variant control of an input shape force function, (2) use of non-linear spring with
hysteresis, (3) insertion of omnidirectional damper or shock absorber, or (4) a design fixture that allows
a linear elastic plate to have two effective spring constants dependent on the direction of motion.

The last technique above is implemented by introducing a bracket in tight contact with the elastic
plate as illustrated in Figure 4. This causes the stiffness to change depending on the velocity direction
(v́ = dv/dt) of the bending. Where the effective lengths that correspond to forward and backward
bending are L f and Lb, respectively.
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Figure 4. Bi-directional elastic plate with two spring constants.

The equivalent spring constant for the forward and the backward bending are obtained by
substituting the effective lengths in Equation (1). Therefore, the natural frequency of the oscillating
system switches according to Equation (5).

Assume the vehicle travels together with the carrier, i.e., no slippage, then the combined system
under very small bending can be modeled by inhomogeneous non-linear second order differential
equation under external sinusoidal force. Let the displacements of carrier vC and vehicle vV be
represented by v, then the combined dynamic model can be described by

Meq
d2v
dt2 + Keq(v́) cos (θ)v = A sin (ωdt) (6)

where theoretically the equivalent spring constant switches its value between the forward spring constant
K f

eq and backward spring constant Kb
eq depending on the direction of the beam displacement, i.e.,

Keq(v) =

 K f
eq, v́ > 0

Kb
eq, v́ < 0

 = 3EI

 1/L3
f , v́ > 0

1/L3
b , v́ < 0

 (7)

A better approximation of Keq(v́) could be obtained by using conventional Heaviside function H(v́)
with Keq(0) = 3EI(L3

b − L3
f ) /2(L f Lb)

3. The approximate equivalent spring constant can be rewritten

Keq(v́) = Kb
eq + (K f

eq −Kb
eq) H(v́) (8)

The discrete form of the Heaviside function could be replaced by a smooth analytical approximation
such as logistic function. The equivalent spring constant can be rewritten in a continuous form

Keq(v́) = Kb
eq + (K f

eq −Kb
eq)/(1 + e−2βv́) (9)

where a larger k corresponds to a sharper transition at v′ = 0. If H(0) = 1/2, equality holds in the limit as
β→∞. Finally, the second order nonlinear linear differential equation that represents system traveling
together under alternating spring constant is written in a continuous form as following

(M + Mp + αm)
d2v
dt2 +

3EIL3
f L3

be−2βv́ + ( L6
b − L3

f L3
b + 3EIL3

f L3
b)

(1 + e−2βv́)L6
bL3

f / cos (θ)

v = A sin (ωdt) (10)

The above one-dimensional nonlinear differential equation is accurate when the vehicle is adhering
to the carrier surface, or when M + αm � Mp. The latter condition is sufficient to neglect the force
caused by Mp during slipping mode.
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3.3. Stick-Slip Model: Linear ODEs

The solution of the nonlinear ODE in Equation (10) provides the displacement of the “vehicle
and carrier” platform under no slippage assumption. However, a more detailed parametric model is
required to understand the stick and slip dynamics in conjunction of the vibration of the platform.
The forward and backward displacements undergo a cyclic pattern that can be separated by modeling
each motion with a linear ODE. Because the carrier displacement is cyclic and continuous over time,
the solution at the end of the forward period becomes initial condition for the backward period and
vice versa. Newton’s second law is applied for forward motion without slippage, and then backward
motion with slippage.

During the forward motion, it is desired to find the maximum allowable forward acceleration
as below which the vehicle does not slip. The static friction force fs at the contact surface pushes the
vehicle to stay together with the carrier. Assume an ideal model where a simple isotropic dry friction
condition exists at contact surface, and with static and dynamic coefficients of friction be µs and µd,
respectively. The as is calculated at the maximum static friction. Thus, the acceleration for the entire
assembly described in Figure 5 during the forward motion of vehicle must satisfy the following stiction
condition at any time during the forward motion:

d2v f /dt f
2 < gµs sin (∅/2) (11)

where the forward motion v f in the decoupled system refers to the carrier displacement, and it is
equal to the displacement of vehicle vV if the stiction condition in Equation (11) is satisfied. During the
forward time t f , or v́ f > 0, the spring constant is equal to K f

eq. The forward displacement of the vehicle
per unit cycle becomes equal to ∆v f . A cycle is defined here by a period of time comprised of successive
forward and backward motions.
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The forward acceleration is found from the second order linear differential equation that represents
a system traveling together under no slippage

d2v f

dt f
2 +ω2

1 f v f =
A

(M + Mp + αm)
sin (ωdt f ) (12)

Equation (12) is a forced spring-mass system with natural frequency ω1 f obtained by substituting
L f in Equation (5). The general solution is comprised of homogenous and particular functions:

v f (t f ) = C1 f cos (ω1 f t f ) + C2 f sin (ω1 f t f ) +
A/(M + Mp + αm)

(ω2
1 f −ω

2
d)

sin (ωdt f ) (13)
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where C1 and C2 are constants obtained from initial conditions (displacement v f and velocity v́ f )
updated at every time the carrier changes its direction (dv f /dt f ) or when the conditions of the
contact slippage change. The first fundamental frequency for the forward motion ω1 f is obtained by
substituting L = L f in Equation (5). The system is assumed to start in forward motion from a stationary
boundary conditions, i.e., v f (t f = 0) = v́ f (t f = 0) = 0. During the first cycle k = 1, the time t1 f at
which the direction first switches from forward to backward is obtained from the roots of the derivative
of Equation (13). When the velocity becomes negative (dv f /dt f ≤ 0 or dvb/dtb ≤ 0), the dynamic model
in Equation (13) transitions into the backward ODE model until the velocity switches back into a
positive value. The backward ODE model is obtained from the free body diagram under slippage
conditions. The dynamic equation of the carrier can be represented by

d2vb

dtb
2 +ω2

1bvb =
A sin (ωdtb)

(M + αm)
−

gMp

(M + αm)
µd (14)

Equation (14) is a forced spring-mass system with external friction. The general solution is
comprised of homogenous and particular functions

vb(tb) = C1b cos (ω1btb) + C2b sin (ω1btb) +
A/(M + αm)

(ω2
1b −ω

2
d)

sin (ωdtb) −
gMp

ω2
1b(M + αm)

µd (15)

The first fundamental frequency for the backward motion ω1b is computed by substituting L = Lb
and Mp = 0 in Equation (5). The backward motion occurs during negative velocity, v́b < 0, until it
switches back into a positive value at the end of the first cycle t1b. In this period, the slippage conditions
are assumed to take over. The force analysis of a vehicle undergoing slippage during the backward
motion is described by

d2vV

dtb
2 = µdg sin (∅) (16)

The double integral of the left hand side of Equation (16) calculates the slipped displacement
during the backward motion period. The slippage displacement per unit cycle or ∆vs is

vV(t1b) − vV(0) = v́V(0)t1b + 0.5µdg sin (∅)t2
1b (17)

where vV(0) = vb(t1 f ) = v f (t1 f ) and v́V(tb) = v́b(t1 f ) = v́ f (t1 f ).
The total displacement traveled by the vehicle during the first cycle is ||∆v f || − ||∆vs ||. The total

distance traveled over a period of time ∆t can be obtained in the same manner by recalculating
||∆vk f || − ||∆vks || for every cycle k within ∆t. Assume the velocity profile of the carrier has n roots within
period of time ∆t = [t0 tn+1], and let the vibration start with the forward direction at t0, then the total
displacement of vehicle is:

n∑
k=0

v f (tk+1) − v f (tk) + v́ f (tk)(tk+1 − tk) + 0.5µdg sin (∅)(tk+1 − tk)
2 (18)

where the roots of velocity belongs to set tr = [t1, . . . , tn]. Equation (18) is a simplified arithmetic
for calculation of the total distance traveled over ∆t where it assumes that the vehicle undergoes
pure drag in the forward motion, and pure slip in backward motion. In general, stick-slip could
occur either direction and the distance travelled by vehicle can be calculated in similar approach
discussed earlier, as will be demonstrated in the simulation case study. Also, it should be noted
that although Equation (16) does not consider the mass of the vehicle, it contributes to the solutions
in Equations (13) and (15).
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3.4. Nondimensional Analysis

Previously, it was found that the stick-slip depends on the vibration of the platform regardless of
the mass of the vehicle. Thus, the design of a platform that meets the stick-slip requirement depends
on the platform dynamics, more accurately when Mp � (αm + M). Assume the mass of the vehicle
be negligible. Let χ and τ represent the nondimensional scaled quantities for the displacement and
time, respectively. The zeroth order (no damping) linear differential equations are rewritten from
Equations (12) and (14) in nondimensional format

d2χD

dτD2 + χD = sin (ωDτD ) (19)

where the subscript D is substituted with f or b to refer to forward or backward equation, respectively.
The conditions used in variable transformation are vD = χDvcD and tD = τD tcD. The nondimensional
frequency ωD is equal to tcDωd, and the characteristic coefficients tcD and vcD are normalized intrinsic
units defined by:

tcD =

√
M + m

KD
eq cos (θ)

, vcD =
A

KD
eq cos (θ)

(20)

Further simplification is obtained by introducing ratio η = ω f /ωb or 1/η = tc f /tcb, and µ = vc f /vcb.

µ = 3/2
√

Lb/L f if the flexure rigidity is constant. The algorithm in Figure 6 provides procedures for

simulating platform vibration based on Equation (19). A nondimensional slip condition of Equation (11)
can be simplified into µsgt2

cD/vcD and then compared with solution of equation to determine vehicle
velocity using dimensionless form of Equation (18).
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Figure 6. Suggested simulation algorithm of forward and backward ODEs systems coupled by
initial conditions.

4. Simulation Example

An optimal parametric design of a feeder system is when there exists an input function
(say sinusoidal force with frequency(s) ωd and amplitude(s) A) such that the total vehicle displacement
per unit cycle is positive, i.e., in the forward direction. The stick-slip dynamic model of the vehicle does
not affect the dynamical model of the carrier when Mp � (αm + M). Therefore, the carrier’s vibration,
as described in the non-linear ODE in Equation (10) or the system of linear ODEs in Equation (19),
could provide an open control input to the vehicle system, as suggested in Figure 7.
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Figure 7. Control model diagram showing coupled nonlinear system dynamics of stick-slip locomotion.

Let v(t) be numerical solution of the nonlinear ODE model in Equation (10). The necessary
but not sufficient conditions for a vehicle to move in the forward direction, vV > 0 , is such that
S = { ´́v < µsg sin (∅) for v́ > 0, and ´́v > µsg sin (∅) for v́ < 0}. The optimal design parameters of the
carrier could be searched within the conditions in the set S such that the sum of stick-slip displacements
per unit time is maximized.

A case study is investigated to solve the nonlinear ODE in Equation (10) numerically by using
Matlab ode45 function (Mathworks, 2019). The system parameters used in this case study are θ = 80o,
m = 0.4 kg, M = 10 kg, Mp = 50 kg, E = 200 GPa, L f = 5 cm, Lb = 15 cm, µs = 0.2, µd = 0.1,
g = 9.81 m

s2 , w = 5 cm, h = 5 mm, ωd = 29.6 Hz, A = 0.4 N, β = 1 × 106 and sampling rate
dt = 1 ms. The corresponding forward and backward frequencies are ω f = 33 Hz and ωb = 6.3 Hz,
respectively. The numerical solution of the carrier displacement v(t) is simulated for time range of
[0–100] s. Interestingly, the carrier displacement response abruptly jumped at ~0.2 s, ~1.2 s and ~7.8 s,
as shown in Figure 8a. However, the dynamic system is stable around the equilibrium point (0,0)
as shown in phase diagram Figure 8b. A small time window is examined and plotted in Figure 8c
for a time range [0–0.04] s to compare how the acceleration of the carrier relates to the motion of
the vehicle. In general, it should be noted that the forward and backward accelerations are below
slip threshold gµs, and therefore, the displacement response of the vehicle follows the displacement
response of the carrier. Slip conditions are observed to take place in both directions when the amplitude
is increased to A = 40 N as shown in Figure 8d. The following discussion examines with great depth
how stick-slip conditions occur. From initial time until 0.003 s, the forward acceleration d2v f /dt f

2 value
is identified below the value of the slip condition gµs, and therefore the vehicle sticks to the carrier.
As the simulation time increases, the vehicle starts slipping until time reaches 0.013 s. This is because
the forward acceleration, d2v f /dt f

2, is greater than gµs within time period [0.003–0.013] s. As the time
progresses during the forward period, the vehicle sticks again until time reaches 0.027 s. At this instant,
the motion switches to the backward direction, where backward acceleration, d2vb/dtb

2, being less than
gµs. This continues until 0.035 s. During this period of time, i.e., [0.027–0.035] s, the vehicle sticks to
the carrier. Finally, the backward acceleration becomes greater than the slip condition until the end of
the simulation at 0.04 s. During this last period of time, the vehicle exhibits slippage. The accumulated
distance traveled by the vehicle, Vv, during the aforementioned stick-slip process is also plotted;
showing the location of the vehicle in real-time. It should be pointed out that the parameters selected
for this case study are not optimal, and further parametric design analysis are needed to tune the
forward motion of the vehicle.

Moorfeed industrial feeder system in Figure 1 is obtained to test the characteristics of the vehicle
speed in relation to its weight and the carrier input force characteristics, mainly amplitude and
frequency. The input force actuator is delivered by electromagnetic coils attached to the carrier.
The system consists of inline tracking and centrifugal bowl each is independently controlled by Rodix
feeder cube system. The Rodix operates at input 120 VAC, 50/60 Hz to generate a sinusoidal force
output frequency that could be ranging from 5 to 300 Hz and with an output voltage Ve ranging from 0
to 120 VAC. This tunable voltage corresponds to a power amplitude displayed in Rodix cube in terms
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of percentage 0–100%. The Rodix setting is adjusted to keep both amplitude and frequency within safe
operation limits in order to avoid damage of mechanical parts. The tracking system of the Moorfeed is
modified to allow for the pure linear translocation of an oriented object with pre-determined geometry
and weight.
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The parts (vehicle block and V-shape carrier adapter) in the CAD design shown in Figure 5 were
manufactured from PLA material by using Makerbot Method 3D printer. The printer is based on FDM
technology, which produces non-smooth surface. The carrier is covered with aluminum tape mainly to
reduce both friction and surface irregularity at contact. The total contact area Ac is measured with a
value of 24 cm2. The contact area is kept constant throughout all experiments. The average speed vV is
measured by the time it takes the vehicle to travel a fixed linear distance of 8.5 cm. These measurements
are carried out for a range of settings that include vehicle mass Mp, frequency input fd = ωd/2π
and power amplitude input percentage Ae%. The fd is the driving force frequency generated by the
electromagnetic actuator measured in Hz. The Ae% is dimensionless and it refers to the percentage ratio
Ae = Ve/120 × 100%. Experiments are conducted to identify average speed model vV = f (Ar,ωd, Mp)

where the average speed is measured against one parameter at a time while others are fixed. The speed
is averaged from three separate measurements. A standard weight is secured inside the hole of the
vehicle. The experiments in Figure 9 plots the speed of the vehicle in cm/s for a range of input frequency
45–57 Hz and at sample increment of 2 Hz. Each curve represents constant power amplitude Ae which
are tested for {35%, 37%, 39%,41%, 43%, 45%, 47%} and a set of mass values Mp = {31, 41, 51, 60} gm
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which are less than the combined values of M and m. It should be noted that measurement sets are
only collected when the vehicle is moving.
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The average speed–frequency plots in Figure 9 shows that the maximum response takes place about
frequency ~47 Hz, and decays at higher frequencies. The dynamic system can be identified by 2nd ODE
model. It is observed that the vehicle speed is proportional to the amplitude power A%, especially at
high frequency region, where the more power amplitude is supplied to the system, the faster the
vehicle becomes. However, the relations become nonlinear due to disturbance at resonance frequency
47 Hz. In general, it is observed from Figure 9 that the weight of vehicle has insignificant effect on
its average speed. Moreover, as the weight of the vehicle increases, the proportionality between
amplitude and average speed becomes more obvious around resonance. This could be because the
perturbation orthogonal to the stick-slip motion tends to be insignificant as the vehicle’s weight
increases. A comparison between the four plots in Figure 9 confirms that the vehicle’s speed at any
given input parameter (Ar,ωd) does not change significantly with mass of the vehicle Mp. This confirms
the validity of the theoretical model where the stick-slip model is independent of the vehicle mass. Also,
the system dynamics becomes less dependent on the vehicle mass, particularly when Mp � (αm + M).

The final set of the experiment deals with system identification of the stick-slip motion model in
terms of average velocity output measured for sinusoidal actuation input. The average speed output
ṽV was measured for a sinusoidal input F = Arsin(ωdt), where ωd is a discrete frequency input, and t
is the time it takes vehicle to travel a distance. Frequency analysis experiments are carried out for
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two different masses {31,60} gm. The input-output data was collected, and the bode plot is shown in
Figure 10. A contentious single-input/single-output (SISO) model is developed for the measurements
as follow: the frequency-response of the k-th SISO measurement was first stored in (ṽV(k),ωd(k)) vector
with sample time Ts is set to zero for Linear time invariant (LTI) continuous system. Then, the estimated
speed function VV due to sinusoidal input and additive noise e is represented in continuous model
G(iω) expressed by

VV = G(iω)F(iω) + e (21)
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The above model could be represented in black-box approximation model constructed from
polynomial rational. The model could be written in Laplace transfer function format with n zeros and
m poles

G(s) =
∏n

0 (s− an)∏m
0 (s− bm)

(22)

where s = iω. The frequency-domain data at a frequency ωd tells how a linear system responds to a
sinusoidal input of the same frequency. The system identification procedures suggest finding best
process model parameters θ = {a0, . . . an, b0, . . . bm} that minimize a weighted least square criteria
argument (Ljung, 2004)

θ̂ = arg min
θ

K∑
k=1

µk(θ)(ṽV(k) −G(k,θ)F(k))2 (23)

where K is length of observed measurements, θ̂ is the estimated parameters and µk is the weighted
value. The speed of the vehicle VV(ω) was measured for range of input frequencies [38–58] Hz at
increment size of 0.5 Hz and with constant power amplitude of 41%. The parameter optimization for a
linear model was obtained using system identification toolbox in MATLAB software. An estimate
output-error OE polynomial model was obtained based on continuous model in Equation (20) with
n = 1 and m = 4. Least square criterion was applied to estimate the unknown parameters using
frequency response measurements. The estimated OE transfer function for the vehicle with mass
31 gm is
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G(s) =
(s∓ 416i)

(s∓ (330 ∓ 287i))
(24)

The magnitude bode plot was generated for the estimated model with measurement data plotted
in the loglog Figure 10. Moreover, 63% goodness of fit between estimate model and reference data
was calculated based on accumulated error from least square method. Similarly, 50% estimated fit for
vehicle of weight 60 gm was calculated from OE model.

G(s) =
(s + 2.6× 1012)

(s∓ (360 ∓ 283i))
(25)

The poles of the characteristic equation for the transfer functions in Equations (24) and (25) are
approximately equal, which confirms that the system dynamic remains unchanged as vehicle mass
varies. This validates the linear dynamic model discussed in Figure 7. Also, it is noticed that an
increase in input amplitude of a feeder system would help the vehicle to overcome friction and start
moving. Moreover, the experimental results and theoretical model confirm that the selection of a
proper frequency input is the main factor for determining the stick-slip forward motion once the
frictional forces is overcome.

5. Conclusions

This paper developed a model for vibration assisted manipulation techniques to move pre-oriented
and singulated meso-scale objects in a linear direction, escorting them from a vibratory or centrifugal
feeder into the intended final position through subsequent stick-slip motions. This feeder system
was approximated by two models corresponding to the nonlinear vibrating platform and stick-slip
motion of a particle. The dynamics of the platform can be assumed independent of the object when
its mass is small compared to that of the platform. We developed two techniques to model the
vibration of the platform, namely a single non-linear spring-mass ODE and two linear ODEs coupled
by initial conditions. The initial conditions are periodically updated to guarantee continuity of the time
response as platform is oscillating. The key concept of the stick-slip model is to control the amount of
contact frictional force transmitted to the object. This was implemented mechanically by designing a
hysteresis-like elastic spring whose value periodically switches depending on the direction of motion
of the platform. A numerical simulation is obtained for a case study; showing the relationship between
the particle motion, and the acceleration of the platform. The particle moves with a net forward
displacement when both (1) the platform acceleration in the forward direction produces inertial force
less than the friction force, and (2) the backward acceleration produces inertia larger than friction.
This stick-slip motion was observed and confirmed in experiments, where an industrial feeder system
is utilized to test the relation between input inertia and particle forward velocity. Frequency-response
identification was obtained to model the dynamic model of the particle’s velocity to input force input.
The model showed that the system can be approximated by second order ODE, where there exists a
frequency at which the velocity is maximum. Finally, both the experimental results, and the parametric
model suggest that the mass of particle is become significant when the mass of particle to platform
mass ratio is significant. Future work will examine parametric optimization of ODE model under
desired stick-slip conditions.
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