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Abstract: 3D printing is a widely used technology that has been recently applied in construction to
reduce construction time significantly. A large 3D printer often uses a traditional Cartesian robot
with inherent problems, such as position errors and printing nozzle vibrations, due to the long,
heavy horizontal beam carrying it and a large amount of power required to actuate the heavy beam.
A cable-driven parallel robot (CDPR) can be a good alternative system to reduce the vibrations
and necessary power because the robot’s lightweight cables can manipulate the printing nozzle.
However, a large 3D printing CDPR should be carefully designed to maximize the workspace and
avoid cable interference. It also needs to be stiff enough to reject disturbances from the environment
properly. A CDPR with a retractable beam-type end-effector with cables through the guide pulleys in
a single plane is suggested for avoiding cable interference while maximizing the workspace. The
effects of using the retractable end-effector on the workspace were analyzed relative to the cable
connection points’ location changes. Static stiffness analysis was conducted to examine the natural
frequencies, and the geometric parameters of the end-effector were adjusted to improve the lowest
natural frequencies. Simulation results show that a retractable beam-type end-effector can effectively
expand the wrench-feasible workspace.
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1. Introduction

The application of 3D printing technology has been improved and expanded, including in the
production of traditional plastics and metallic parts [1,2] to bio-printing objects [3]. Recently, the
application of 3D printing technology has expanded further into large construction sites [4,5], as it can
significantly reduce material consumption because materials may only be used where they are needed
while reducing construction time by printing out complex structures without time-consuming assembly
processes. One popular system for implementing a 3D printer is a Cartesian robot that consists of
horizontal and vertical beams. However, using a Cartesian robot introduces several problems. First,
the horizontal beam carrying the printing nozzle tends to bend because of the nozzle’s weight. Second,
when the 3D printer’s size increases, the horizontal beam becomes long and heavy, which induces
considerable bending and position errors when printing large structures.

Another promising system for 3D construction printing is a cable-driven parallel robot (CDPR)
because it uses lightweight cables to manipulate an end-effector (Figure 1). A CDPR covers a large area
because the robot provides a scalable workspace by changing the locations of its guide pulleys. There
have been several studies on the use of CDPRs for large 3D construction printing [6–8]. However,
developing a CDPR for 3D construction printing requires a careful design process because its design
parameters can significantly affect workspace volume, cable interference with a printed structure,
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and robot stiffness. Most of the researchers for 3D construction printing have mainly focused on the
development of a 3D-printing CDPR for construction, followed by the research of the investigation
of the 3D-printing accuracy and the improvement based on the kinematic calibration. For most of
the previously developed 3D-printing CDPRs for construction, suspended cable connection has been
typically selected for securing the workspace under the end-effector since there can be no cables
passing under the end-effector. A large suspended CDPR for construction, called Control of Giant
Robots (CoGiRo), was developed and tested for the printing accuracy of a large wall [6]. A 3D printing
CDPR was developed and the feasibility of its mechanism was investigated using simulation and
experiments [7]. The kinematic calibration method for a 3D-printing CDPR had been researched for
improving the accuracy of the robot [8]. The kinematics and statics of the 12-cable-driven robot with
the eight lower cables had been investigated [9]. A suspended CDPR combining CoGiRo [6] and the
12-cable-driven robot [9] had been developed and its performance has been evaluated in terms of
enhancing the quality of the largely printed object [10]. However, a suspended CDPR has a significant
disadvantage that it does not have vertical stiffness since the end-effector is suspended vertically by
the gravitational force and not explicitly constrained by cables. Thus, if a suspended CDPR is exposed
to vertical disturbances from the environment, such as vibration from a rock drill or sudden gust of
wind, its accuracy can be considerably degraded.
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Figure 1. An eight-cable vertically crossed over-constrained cable-driven parallel robot (CDPR).

In order to have vertical stiffness, the cables that provide the end-effector with vertical forces can
be additionally connected to the end-effector. In general, there are two methods of connecting cables
for providing the vertical forces: one is to connect the cables to the bottom tip of the end-effector and
guide them through the guide pulleys at the bottom of the external frame and the other is to connect
the cables to the top of the end-effector and guide them through the guide pulleys at the bottom of
the external frame. The latter method is a vertically crossed cable connection as shown in Figure 1.
While the use of the former method can easily cause the cable interference with a printed object due
to the cables fixed to the bottom tip of the end-effector, the latter method can allow more workspace
than the former method. However, the latter method still has the cables going toward the bottom of
the external frame and eventually leads to the cable interference with a printed object. For example,
a 3D-printing CDPR using the vertically crossed cables can have the cable interference problem as
shown in Figure 2. Considering the 3D-printing CDPR printing a tall and wide object, the locations
of the guide pulleys near the bottom may become lower than the height of the object being printed.
Along with the height increase of the printed object, when the 3D-printing CDPR tries to print a corner
of the object, the cables coming from the guide pulleys near the bottom will interfere with the opposite
corner of the printed object as shown in Figure 2.



Robotics 2020, 9, 65 3 of 13
Robotics 2020, 9, x FOR PEER REVIEW 3 of 13 

 

 

Figure 2. The cable interference with the printed object around a corner. 

In order to solve the cable interference problem with the vertically crossed cables, the guide 

pulleys near the bottom can be lifted up to the top plane as shown in Figure 3a. The height increase 

of the guide pulleys can prevent the cables from occupying the workspace under the end-effector 

while maintaining vertical stiffness. Along with the guide pulleys at the top plane, using the short 

end-effector at the high positions can be advantageous to expand the horizontal workspace. This is 

because the horizontal component of cable force increases with the use of the short end-effector as 

shown in Figure 3b. In addition, the long end-effector is useful to reach low positions as shown in 

Figure 3c. 

 
 

 

(a) The end-effector with the 

guide pulley in the top plane 

(b) The short end-effector for 

the high positions 

(c) The long end-effector for 

the low positions 

Figure 3. The different lengths of the end-effector with the guide pulleys in the top plane. 

Therefore, in this paper, for addressing the cable interference problem with maximizing the 

workspace volume while providing vertical stiffness, a novel retractable beam type end-effector with 

the guide pulleys distributed in a single horizontal plane is proposed for a 3D-printing CDPR as 

shown in Figure 4. The cable interference with the objects printed in workspace can be avoided by 

the cables guided thorough the guide pulleys in the horizontal top plane in Figure 4. This is because 

there is no cable cutting across the workspace from the guide pulley at the bottom of the external 

frame to the end-effector as compared to vertically crossed cable connection in Figure 1. To the best 

of the author’s knowledge, there has been no attempt to use a retractable end-effector with the guide 

pulleys in the same plane for 3D-printing application. 

The use of the proposed end-effector should be investigated by conducting the workspace 

analysis and stiffness analysis for CDPRs as the workspace analysis of CDPRs has been conducted 

considering feasible tension distributions for various CDPRs [11–14]. In addition, the stiffness 

analysis of CDPRs has been researched for several CDPRs [15–18].  

Figure 2. The cable interference with the printed object around a corner.

In order to solve the cable interference problem with the vertically crossed cables, the guide
pulleys near the bottom can be lifted up to the top plane as shown in Figure 3a. The height increase
of the guide pulleys can prevent the cables from occupying the workspace under the end-effector
while maintaining vertical stiffness. Along with the guide pulleys at the top plane, using the short
end-effector at the high positions can be advantageous to expand the horizontal workspace. This is
because the horizontal component of cable force increases with the use of the short end-effector as
shown in Figure 3b. In addition, the long end-effector is useful to reach low positions as shown in
Figure 3c.
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Figure 3. The different lengths of the end-effector with the guide pulleys in the top plane.

Therefore, in this paper, for addressing the cable interference problem with maximizing the
workspace volume while providing vertical stiffness, a novel retractable beam type end-effector with
the guide pulleys distributed in a single horizontal plane is proposed for a 3D-printing CDPR as shown
in Figure 4. The cable interference with the objects printed in workspace can be avoided by the cables
guided thorough the guide pulleys in the horizontal top plane in Figure 4. This is because there is no
cable cutting across the workspace from the guide pulley at the bottom of the external frame to the
end-effector as compared to vertically crossed cable connection in Figure 1. To the best of the author’s
knowledge, there has been no attempt to use a retractable end-effector with the guide pulleys in the
same plane for 3D-printing application.
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Figure 4. A cable-driven parallel robot with a retractable beam-type end-effector.

The use of the proposed end-effector should be investigated by conducting the workspace analysis
and stiffness analysis for CDPRs as the workspace analysis of CDPRs has been conducted considering
feasible tension distributions for various CDPRs [11–14]. In addition, the stiffness analysis of CDPRs
has been researched for several CDPRs [15–18].

One of the main goals of this paper is to figure out how the length change of the retractable
end-effector can be optimized with respect to maximizing the workspace for 3D-printing. Another
important goal is to investigate the effectiveness of a design method of adjusting the geometry of the
end-effector to increase the lowest natural frequencies in order to make the 3D-printing CDPR robust
to the external disturbances. Through conducting a series of simulations, it is uniquely depicted that
the wrench feasible workspace can be expanded by changing the length of the retractable end-effector
with the guide pulleys in a single plane with respect to the z-position changes of the end-effector. In
addition, the improvement of the lowest natural frequencies of the CDPR is newly achieved with
respect to the length change of the end-effector along with changing the z-position by the geometry
change of end-effector.

This paper is structured as follows: For evaluating the effectiveness of a CDPR with a retractable
beam type end-effector having the guide pulleys in a single plane, workspace and static stiffness
analysis have been conducted. In the first section, inverse kinematics and equations of motion for a
CDPR are briefly introduced. Secondly for workspace analysis, the effects of the distribution of the
guide pulleys (cable connection points on the external frame) on the size of workspace is analyzed
and the effectiveness of changing the length of the retractable end-effector on the workspace has been
investigated. Then, static stiffness analysis is conducted to investigate the natural frequencies for the
spatial translation and rotation motions (six degrees of freedom (DOFs) of a CDPR) and the geometric
parameters of the end-effector are modified for improving the lowest natural frequencies. Simulations
successfully show that the CDPR using a proposed retractable beam mechanism can be effective for 3D
construction printing.

2. Inverse Kinematics and Equations of Motion for a CDPR with a Retractable End-Effector

The eight-cable setup for the CDPR with a retractable end-effector was chosen to ensure a
symmetrical 3D printing workspace. Inverse kinematics of the retractable CDPR was calculated by
using the parameters based on the origin coordinate Fo in Figure 5, where li is the cable length vector
to the i-th cable connection point (the location of the guide pulley) on the external frame. Meanwhile,
p is the position vector to the end-effector’s center of mass, which indicates the position of the printing
nozzle. Re is the rotation matrix representing the rotation of the end-effector relative to Fo, while ai is
the position vector from Fo to the i-th cable connection point on the external frame. Lastly, bi is the
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vector from the end-effector’s center of mass to the cable connection point on the end-effector. Thus,
the cable length vectors corresponding to the position of the end-effector can be calculated by using
the vector loop Equation (1).

li = ai −Rebi − p, i = 1, . . . , 8 (1)
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Figure 5. Geometric parameters of a cable-driven parallel robot (CDPR) with a retractable
beam-type end-effector.

Cable length vector li is normalized by length |li|, and it is used to derive a structure matrix
corresponding to the end-effector’s position (Equation (2)).

ui = li / |li|, i = 1, . . . , 8 (2)

Equation (3) shows the relationship between the wrench, we, and cable force vector, fc, including
the structure matrix, AT. The wrench, we, includes translational force vector, fe, and moments, te, to
the end-effector.

we =

[
fe

te

]
= −ATfc = −

[
u1 . . . un

b1 × u1 . . . bn × un

]
fc, n = 1, . . . , 8 (3)

Equations of motion for a CDPR in a matrix form with mass and stiffness matrices can be used
for stiffness analysis to calculate the natural frequencies of a CDPR. In Equation (4), equations of
motion are written in a matrix form using mass and stiffness matrices that include the end-effector’s
mass and inertia tensors and the cables’ stiffness, respectively. The stiffness matrix in Equation (4) is
represented as a cable stiffness matrix (Equation (7)) multiplied by the structure matrix, AT, and the
transposition of the structure matrix. The matrix K is a diagonal matrix whose elements are the i-th
cables’ stiffness (Equation (7)). The cable force distribution, fc, is calculated using the closed-form
method and written as Equation (8) [19]. In Equation (9), stiffness matrix multiplication can be derived
by using wrench change relative to the cable force change (Equation (10)), cable force change relative
to cable elongation change, ∆q, (Equation (11)), and the relationship between cable elongation rate
and end-effector velocity (Equation (12)). Equation (4) is simplified by the assumption that most 3D
printing motions are relatively slow, and the location of the end-effector’s center mass is close to the
bottom and maintained in a way in which the centrifugal and Coriolis forces are negligible during
retraction. The center of mass is assumed to be near the bottom because there are several 3D printer
components located in the area, including the printing nozzle, cooling fan, and an extruding motor.

Me
..
xp + ATKAxp = −ATfc, (4)
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Me =

[
me 0
0 Ie

]
, me =


me 0 0
0 me 0
0 0 me

, Ie =


Ix 0 0
0 Iy 0
0 0 Iz

, (5)

Ix =
1
12

me
(
(ye)

2 + (ze)
2
)
, Iy =

1
12

me
(
(xe)

2 + (ze)
2
)
, Iz =

1
12

me
(
(xe)

2 + (ze)
2
)
, (6)

K = diag(k1, . . . , kn), n = 1, . . . , 8 (7)

fc = fM −A+T
(
we + AT fM

)
, fM = ( fmin + fmax)/2 (8)

The mass of the end-effector is me and inertia, Ix, Iy, Iz along each axis are calculated by using the
dimensions of the end-effector, xe, ye, ze. Meanwhile, xe, ye, and ze are the end-effector’s width, depth,
and length, respectively.

∆we = −AT∆fc = −ATK∆q = −ATKA∆xp (9)

∆we = −AT∆fc (10)

∆fc = K∆q (11)

∆q/∆t = A∆xp/∆t (12)

3. Workspace Analysis

For workspace analysis, the calculation for the wrench-feasible workspace was conducted within
a 2 × 2 × 2 m3 external frame. It is determined by calculating the cable force distribution, fc,
using the closed-form method of Equation (8) whether the position of the end-effector is included
in the wrench-feasible workspace. If the results of f c were included between the minimum and
maximum feasible forces, fmin and fmax, the end-effector’s position used in Equation (8) was considered
as a wrench-feasible workspace. AT is calculated by using the position of the end-effector, p
(Equations (1)–(3)). Meanwhile, A+T is the pseudo-inverse of AT, and we is the end-effector’s
external wrench vector, including its mass. The end-effector’s position indicates the position of its
bottom tip, location of the integrated printing nozzle; the boundary of the wrench-feasible workspace
defined the possible ranges of the position of the end-effector along x, y, z axes.

The initial wrench-feasible workspace was obtained by first placing ai, the i-th cable connection
point on the external frame, at each corner of the top plane as the initial values (Table 1). Next, the
locations of ai were examined to determine how the locations of ai can change the volume of the
wrench-feasible workspace. The minimum and maximum cable forces, fmin and fmax, for calculating the
cable force distribution in Equation (8) were determined as 10 N and 200 N, respectively, considering
the dimensions of the potential 3D construction printing testbed’s external frame was 2 × 2 × 2 m3

(8 m3). The mass of the retractable beam-type end-effector is assumed to be 10 kg, which includes the
retractable mechanism and 3D printing module. By using the initial locations of ai and the maximum
and minimum cable forces, the initial workspace volume was 2.96 m3, and it occupied approximately
37% of the external frame’s volume (Figure 6).

Table 1. Initial dimensions (in meter) of a CDPR with a retractable beam-type end-effector.

ai x y z bi x y z

a1 1.0 1.0 2.0 b1 0.02 0.02 1.8
a2 1.0 −1.0 2.0 b2 0.02 −0.02 1.8
a3 −1.0 −1.0 2.0 b3 −0.02 −0.02 1.8
a4 −1.0 1.0 2.0 b4 −0.02 0.02 1.8
a5 1.0 1.0 2.0 b5 0.02 0.02 −0.2
a6 1.0 −1.0 2.0 b6 0.02 −0.02 −0.2
a7 −1.0 −1.0 2.0 b7 −0.02 −0.02 −0.2
a8 −1.0 1.0 2.0 b8 −0.02 0.02 −0.2
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Figure 6. Wrench-feasible workspace (red lines) with the ai (blue dots), bi (magenta dots), and the
external frame (cyan lines) on (a) initial wrench-feasible workspace with the initial locations of ai and
bi and (b) improved wrench-feasible workspace when distances between the closest ai are 0.0283 m.

Changes in volume were observed at the locations of ai varied along the horizontal edges of the
external frame’s top plane (Table 2). The variations of ai are limited along the edges of the top plane to
avoid cable interference with an object by maintaining cable connections (Figure 4). The workspace’s
volume decreased as soon as the distance between the neighboring ai lengthened (Figure 6). When
determining the locations of ai, considering the volume decrease in Figure 7, the minimum distance
around 0.1 m was used to prevent the two 0.04 m-diameter guide pulleys from colliding or overlapping
during installation. Thus, the locations of ai were 0.1 m, and the corresponding x, y, and z coordinates
are shown in Table 3.

Table 2. The locations of ai when the distances are 0.0283 (x = 0.98) and 0.212 (x = 0.85), respectively.

ai x y z ai x y z

a1 0.98 1.0 2.0 a1 0.85 1.0 2.0
a2 0.98 −1.0 2.0 a2 0.85 −1.0 2.0
a3 −0.98 −1.0 2.0 a3 −0.85 −1.0 2.0
a4 −0.98 1.0 2.0 a4 −0.85 1.0 2.0
a5 1.0 0.98 2.0 a5 1.0 0.85 2.0
a6 1.0 −0.98 2.0 a6 1.0 −0.85 2.0
a7 −1.0 −0.98 2.0 a7 −1.0 −0.85 2.0
a8 −1.0 0.98 2.0 a8 −1.0 0.85 2.0

Table 3. ai without the collision of the guide pulleys. The distances between the neighboring ai are
0.10 m.

ai x y z

a1 0.925 1.0 2.0
a2 0.925 −1.0 2.0
a3 −0.925 −1.0 2.0
a4 −0.925 1.0 2.0
a5 1.0 0.925 2.0
a6 1.0 −0.925 2.0
a7 −1.0 −0.925 2.0
a8 −1.0 0.925 2.0
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Figure 7. Volume percentages of wrench-feasible workspace compared to the volume of the external
frame when the distance between ai increases.

The length of the retractable beam-type end-effector was modified using the previously determined
ai to investigate how the end-effector’s change in length affected the volume of wrench-feasible
workspace. In Figure 8, a decrease in the end-effector’s length reduced the workspace’s height and
increased its width and depth because the angles of the cables along the horizontal plane became
smaller while the horizontal component of the cable force grew larger.Robotics 2020, 9, x FOR PEER REVIEW 9 of 13 
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Figure 8. The volume changes of wrench-feasible workspace with retractable end-effector lengths at
(a) 1.6 m and (b) 1.2 m.

The volume changes of the workspace with the retracted lengths assume that when maximizing
the volume of wrench-feasible workspace, the long end-effector is useful at low-level positions. In
contrast, the short end-effector is effective at higher positions. The volume change with the retracted
length along the z-axis is represented in Figure 9. Based on the volume change along a specific range
of the z-axis, the retracted length can be continuously varied to maximize the overall workspace as the
position of the end-effector changes along the z-axis. Thus, the end-effector’s retracted length linear
function was derived by utilizing an objective function to maximize the volume of the wrench-feasible
workspace (Equations (13) and (14)). Figure 10 represents the change of the volume V (z, le) according
to the changes in the z-axis and the retracted length. The linear equation of the retracted length le(z) as
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a function of the z-axis position is derived as Equation (15) by the linear approximation of the points of
maximum volume in Figure 10.

Maximize V(z, le) =
∫

S fc(z, le) dz, (13)

The wrench− feasible area of xy plane S fc(z, le) subject to fmin < fc(p, le) < fmax where p = [x, y, z]T,
(14)

le(z) = cr z + dr, (15)
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Figure 10. The changes in volume V (z, le) according to the position changes in the z-axis and the
retracted length of the end-effector with the linear function le(z) (red line). Volume ratio is the ratio of
the wrench-feasible volume V (z, le) to the ideal volume of 2.0 × 2.0 × 0.03 m3 (0.12 m3). Light yellow
indicates the highest volume ratio of 0.64, while dark blue represents the lowest value.

The values of cr and dr in Equation (15) were approximated as −0.675 and 1.929, respectively.
The parameters in Equation (16), cr, dr, and le(z) can be used for representing the schematics of the
retractable end-effector as shown in Figure 11. cr has a negative sign indicating the declined ratio of
the change in the length of the end-effector to the change in the z-position. Thus, cr can be represented
in Figure 11 as being multiplied by the z-position, such as crz. In addition, dr and le(z) are represented
as the maximum length of the end-effector and the retracted length of the end-effector respectively.
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Figure 11. The schematics of the retractable end-effector: the left shows when the end-effector is
retracted to le (z) at a given z-position and the right represents the maximum length of the end-effector.

4. Stiffness Analysis

The stiffness analysis of wrench-feasible workspace was conducted by investigating the CDPR’s
natural frequencies to determine which motion is most vulnerable to external excitations. When 3D
printing objects, if a CDPR has a considerably low natural frequency in the direction of motion, it
would be easily affected by external excitations and print objects with uneven surfaces. The lowest
natural frequencies were investigated along the boundary of the wrench-feasible workspace because
the side walls or vertical columns of an object will be situated close to the boundary of the workspace
while printing a large object. To calculate the natural frequencies of a CDPR, Equation (4) was used to
solve an eigenvalue problem with zero-external forces (Equation (16)). The elements of the stiffness
matrix K are the stiffness of each cable that varies as the cable length and the position of the end-effector
change. The stiffness of each cable is calculated using Equation (17) with |li| as i-th cable length and ks

as the material-specific stiffness of a polymer cable whose cable stiffness per unit length is 130,000 N/m.(
ATKA + λ2Me

)
xp = 0, (16)

ki = ks/|li|, i = 1, . . . , 8 (17)

Figure 12a shows the lowest natural frequencies of the retracted lengths, and Figure 12b represents
where the DOFs belong. In Figure 12b, the numbers 1, 2, and 3 represent the translational DOFs of the x,
y, and z motions, while 4, 5, and 6 represent the rotational DOFs along the x, y, and z axes, respectively.
The lowest natural frequencies are around 1.2 Hz, which mostly belong to the translational motion
in the z-direction, and the rest occur in three rotational DOFs (Figure 12). The geometric parameters
of the end-effector were adjusted to have a more vertically inclined cable, which contributed to the
CDPR’s increase in stiffness to improve the low natural frequencies. Each parameter was adjusted
asymmetrically by increasing the end-effector’s top width (in the x-direction) and bottom depth (in the
y-direction) because the identical changes in geometric shape also improved the natural frequencies
while inducing a smaller workspace volume. As shown in the simulation results, an increase of
0.08 m and 0.16 m in Figures 13 and 14, respectively, demonstrate that most of the natural frequencies
increased by more than 8 Hz. However, the asymmetrical changes also induced a 3% decrease in
workspace volume. Thus, improving the natural frequency by adjusting the geometric parameters of
the end-effector will be studied further in the future based on the experimental results of the frequencies
of disturbance.
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Figure 13. The increases in the (a) lowest natural frequencies and (b) their degrees of freedom along
the boundary of wrench-feasible workspace from 7 to 17 Hz. The lowest natural frequencies belong to
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5. Conclusions and Future Works

In this study, wrench-feasible workspace and stiffness analyses were conducted to investigate the
effectiveness of a retractable beam-type end-effector for 3D construction printing. Cable connection
types and the locations of cable connection points were determined to minimize cable interference
with the printed objects within the workspace and maximize workspace volume, respectively. The
wrench-feasible workspace can be expanded by varying the length of the retractable end-effector over
the workspace, while the stiffness analysis shows that the lowest natural frequencies can be improved
by adjusting the geometric parameters of the end-effector while considering disturbance frequencies.

In the future, the retractable beam-type end-effector for a 3D printing CDPR will be implemented.
The CDPR testbed with a retractable end-effector’s performance will also be investigated in terms of
cable interference and the size and quality of various 3D printed objects.
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