
robotics

Article

A Novel Design and Implementation of Autonomous
Robotic Car Based on ROS in Indoor Scenario

Chunmei Liu 2, Chengmin Zhou 1,2,* , Wen Cao 2, Fei Li 1 and Pengfei Jia 3

1 School of Cybersecurity, Chengdu University of Information Technology, Chengdu 610225, China;
lifei@cuit.edu.cn

2 School of Information Engineering, Southwest University of Science and Technology,
Mianyang 621010, China; liuchunmei@swust.edu.cn (C.L.); caowen@swust.edu.cn (W.C.)

3 College of Artificial Intelligence, Southwest University, Chongqing 400715, China; jiapengfei200609@126.com
* Correspondence: chuengminchou@gmail.com

Received: 24 January 2020; Accepted: 19 March 2020; Published: 24 March 2020
����������
�������

Abstract: Pervasive deployment of autonomous vehicle all over the world is an undisputed trend
in the future. Autonomous vehicle will inevitably play an essential role in decreasing traffic jams,
reducing threats from driving while intoxicated (DWI), and assisting the handicapped to get around.
At the same time, the new energy vehicles (NEV) especially the electromobile is gradually adopted
by several governments like Germany, USA and China as compulsive transportation tools from
the standpoint of environmental friendliness. Taking these two crucial trends into consideration,
this article proposes a scheme of autonomous robotic car based on robot operation system (ROS) in
electromobile-like car which can be easily transplanted to commercial electromobile. In this article,
the design and implementation of robotic car are demonstrated in detail which involves overall
architecture of functional modules, hardware design, obstacle avoidance, localization and mapping,
land detection and tracking, velocity control and indoor navigation. All software modules and
hardware are integrated in NVIDIA Jetson TX1 and TRAXXAS car.

Keywords: autonomous car; obstacle avoidance; navigation; lane detection and tracking; SLAM

1. Introduction

1.1. Background

According to the report from World Health Organization (WHO), around 1.25 million fatalities
and 20–50 million injuries each year worldwide were generated due to motor vehicle crashes from
2013 to 2018. In motor vehicle accidents, the 1997 Tri-Level Study of the Causes of Traffic Accidents
found that human errors were a definite or probable cause in 90–93% of incidents examined [1].
Statistical data demonstrates that motor vehicle accidents with human error poses a huge threat to
human safety. Considering the security, connectivity and convenience of autonomous technology,
autonomous techniques are widely studied and deployed worldwide to reduce or even eliminate
human errors.

According to the definition of National Highway Traffic Safety Administration (NHTSA) from
the US, levels of autonomous vehicle are divided into five stages which respectively are No
Automation (Level 0), Function-specific Automation (Level 1), Combined Function Automation
(Level 2), Limited Self-Driving Automation (Level 3) and Full Self-Driving Automation (Level 4) [2].
For example, floor mopping robotics belong to Level 1 because they can use the light detection and
ranging (liDAR)-based simultaneously localization and mapping (SLAM) algorithm only to navigate
themselves and fulfill tasks. Multi-sensor data fusion algorithms can be used in Level-2 robotics,

Robotics 2020, 9, 19; doi:10.3390/robotics9010019 www.mdpi.com/journal/robotics

http://www.mdpi.com/journal/robotics
http://www.mdpi.com
https://orcid.org/0000-0002-8297-5949
http://dx.doi.org/10.3390/robotics9010019
http://www.mdpi.com/journal/robotics
https://www.mdpi.com/2218-6581/9/1/19?type=check_update&version=2

Robotics 2020, 9, 19 2 of 15

therefore they can combine various sensors and algorithms and fulfill tasks in a robust and accurate way.
Multi-sensor data fusion algorithms and other advanced algorithms like reinforcement learning enable
robotics to move freely in city scenarios, therefore, these robotics like Tesla Model X belongs to Level 3.
The best autonomous robotics up to now belong to Level 3–Level 4. That means that these robotics
have been successfully deployed in specific scenarios like city roads, and are expected to be deployed in
other complex scenarios. For example, some outstanding companies, such as Tesla, Google and Baidu,
have successfully deployed autonomous cars in cities, and these cars are expected to be deployed in
suburbs of city or rural areas. On top of achievements from leading corporations, numerous autonomous
vehicle schemes from universities or individuals, either motor-based schemes [3–11] or electronic-based
schemes [12–19], are also extraordinary and have decent performance in various of situations.

1.2. Objectives behind this Article

At the end of 20th century, Japan and USA started to be typical countries in developing the new
energy vehicles (NEV)-based automatic industry. Since the early 21st century, the government of
Germany, France and China took part in the NEV-based automatic industry and introduced numerous
policies to accelerate the development of techniques [20]. Environmental impact and climate change
urge governments across the border to prioritize to the development of NEV-based autonomous
driving, thereby gradually pushing NEV-based autonomous driving become a prevalent and pervasive
trend of future.

Given relevant laws and trends of future in field of autonomous vehicle, this article proposes an
electronic-based autonomous vehicle scheme which features the multi-sensor fusion method in obstacle
avoidance using convolutional neural network (CNN) and liDAR-based image processing approach.
In contrast with traditional approaches, fused approach using deep learning algorithm and liDAR
is more precise and robust once sufficient and high-quality dataset are given. Techniques like
simultaneously localization and mapping (SLAM), lane detection and tracking, path planning,
navigation, data recording and velocity control are also included and successfully tested in the
indoor scenario. An intelligent car-like robot is shown in the Figure 1. The Figure 2 represents its test
environment in simulated and real-world scenarios respectively.

Figure 1. Intelligent car-like robot.

Robotics 2020, 9, 19 3 of 15

Figure 2. (a) Represents the car in the abstract scenario, while (b) represents the car in real world.

2. Control Loop of Intelligent Autonomous Robotic Car

The architecture of control loop of robotic car can be theoretically divided into six components
including sensors (Part 1 in the Figure 3), obstacle avoidance (Part 3 in the Figure 3), lane detection and
tracking (Part 2 in the Figure 3), SLAM and navigation (Part 4 in the Figure 3), data fusion (Part 5 in
the Figure 3), and command transformation (Part 6 in the Figure 3). The overall control loop of robotic
car is demonstrated in the Figure 3.

Figure 3. Overall control loop of robotic car. Functional modules in the control loop include
the data collection (part 1), obstacle avoidance (part 3), lane detection and tracking (part 2),
simultaneously localization and mapping (SLAM) and navigation (part 4), data fusion (part 5),
and hardware and command execution (part 6). The arrival of a new position marks the end of one
loop and the beginning of another loop.

Robotics 2020, 9, 19 4 of 15

Various types of raw messages are generated by sensors which include Xbox stick controller,
wheel speed sensor, steering angle sensor, inertial measurement unit (IMU), liDAR, depth camera
and red-green-blue (RGB) camera. These messages are then sent to the following modules for further
processing. To be exact, messages from Xbox stick controller are sent to data fusion module for steering
data fusion. Messages generated by wheel speed sensor, steering angle sensor, IMU and liDAR are
converted to SLAM and navigation module for pose estimation, path planning and navigation. Depth
camera and liDAR provide messages for obstacle avoidance module, while RGB camera generates
messages for lane detection and tracking module. In SLAM and navigation module, path planner
sub-module receives messages from the mapper where grid-maps are generated using messages
from liDAR and odometer, in which messages are from the wheel speed sensor, steering angle sensor
and IMU. Eventually, path planner generates steering messages which can be used to generate the
steering angle of car. In data fusion module, decision-level data fusion method is adopted to generate
ROS-based final decision messages. In command transformation module, ROS-based final decision
messages are transformed in parser sub-module to hardware messages that can be recognized and
executed by hardware of car in Controller sub-module. Finally, controller processes messages from
the parser and odometer to generate final steering angle and speed messages, and drives the car to
required positions. New data is then collected from new positions and transmitted to other modules,
therefore marking the end of one loop and the start of another loop.

3. Function Modules Design

3.1. Intelligent Obstacle Avoidance System

3.1.1. Obstacle Avoidance Based on CNN

There are many contributions based on machine learning and liDAR-based methods for
autonomous driving before us. Typical contributions can be found in [21,22]. These methods
however are combined in our paper, while contributions from the others have not.

In this paper, we utilize deep learning method in which a neural network architecture from [23] is
utilized and some promotions are made in this neural network to reduce the number of CNN layers
considering the real-time of car system. Results of the experiment demonstrate that trimming or
reducing proper numbers of CNN layers can reduce the time profiling in obstacle avoidance and
tailored neural network can also keep the robustness and validity of original neural network. In the
revised neural network, obstacle images with a size of 115 × 200 are utilized as inputs and sent into
five convolutional layers, in which convolutional cores of each convolutional layer are 5 × 3, 5 × 5 and
3 × 3 respectively. After obstacle images are processed by convolutional layers, the dimension of raw
images is largely down-sized and outputs are sent into a flatten layer where the output is a vector
with the size of 512 × 1. Output vectors are converted to four full connection (FC) layers. The size of
output vectors in each FC layer are 256 × 1, 100 × 1, 50 × 1, 10 × 1 respectively and final output vector
of CNN with a size of 10×1 is utilized to generate ROS-based steering messages. To be exact, in the
forward propagation of training, Softmax function is utilized to transform the output vector and the
label into probability distributions once the output vector is obtained (we map the steering angle of car
into 10 numbers that are used as labels. Numbers range from 0.1 to 1. Numbers 0.1–0.4 represent left
directions, while 0.6–1 represent right directions, and 0.5 represents the forwarding). The loss value
(Equation (1)) is therefore obtained using obtained probability distributions.

Loss = −
∑

i

pi · log qi (1)

where q represents the probability distribution of expectation, p represents probability distribution of
real outputs, and i represents the serial number of images in each batch. Equation (1) is based on the
cross entropy error (CEE), while the mean square error (MSE) is also a popular approach to calculate

Robotics 2020, 9, 19 5 of 15

the loss value of CNN. In the back propagation of training, the gradient descent approach is used to
update the value of weight

wnew
i = wi − η ·

∂Loss
∂wi

(2)

where w represents the weight matrix of CNN, η represents the learning rate, and i represents the
serial number of images in each batch. Equation (2) utilizes the gradient approach (this project uses
stochastic gradient descent (SGD)) on w to update the value of weight matrix. The training continues
until the convergence of weights. In the test process, images of obstacles are fed into the network
and results (labels) are obtained. These labels are mapped into steering angles in the hardware,
therefore, the ROS-based steering messages are obtained. Architecture of CNN layers and its data flow
are presented in the Figure 4.

Figure 4. The framework of convolutional neural network (CNN) layers and data flow. Obstacle images
are sent into CNN which is composed by three types of layers including CNN layer, flatten layer and
full-connection layer. The probability of outputs and probability of expectation are therefore obtained.
These two variants can be utilized to calculation the loss value. The weight of CNN is therefore updated
using gradient approach.

3.1.2. Obstacle Avoidance Based on the Timed-Elastic-Band (TEB) Method

In order to design or select algorithms to implement obstacle avoidance or local path planning,
four crucial factors should be taken into account. These factors include online planning or offline
planning, car-like or differential-drive chassis, real-time capability and trajectory optimization.

Normally, obstacle avoidance (local path planning) based on the online planning algorithm
outperforms the offline planning algorithm because online planning integrates planning with
state feedback and it is more suitable in dynamic scenario, such as classical elastic band
(EB) approach [24], but this approach costs more computing resources. Dynamic window
approach (DWA) [25] addresses issue of computational efficiency properly. That means the
DWA samples and scores simulated trajectories from searching space rather than taking all
trajectories into account, therefore, largely reducing computational burden of system or time profiling.
However, trajectory optimization has not been deeply investigated in this approach. Most path
planners only consider differential-drive situations, which however cannot capture the steering radius
of robots. Considering four key factors mentioned above, a novel formulation of timed-elastic-band
(TEB) method is utilized in this paper to implement obstacle avoidance. That means the TEB method is
suitable for car-like robots and utilizes online planning. This makes robots respond more quicker in
dynamic scenarios, thus achieving a time-optimal obstacle avoidance solution [26].

Robotics 2020, 9, 19 6 of 15

3.2. Simultaneously Localization and Mapping (SLAM) and Navigation System

As for SLAM, although it is based on a mature open source SLAM scheme, we revised it and
proposed a novel automatic exploration scheme which can create maps automatically without the
assistance from human interference. The basic principle of the automatic exploration is finding a
frontier between known and unknown space in cost map and generating a desired trajectory to the
destination. For example, when the car explores the indoor room, some frontiers of room will be
displayed in the cost map, but other places in the room will not be displayed because these places
are out of liDAR’s range or barricaded by other objects. Therefore, in order to explore unknown
places, the car will firstly retrieve its previous trajectories until its starting place is found, compute
the distance between starting place and current place, and move toward an unknown place far away
from starting place. Secondly, the cost map is updated, and internal data is obtained if size of cost
map has changed. To be exact, internal data is the increment grid map from last step to current step.
Some grids are occupied by frontiers of object while other grids are not. Therefore, the direction of car
in the next step is obtained by figuring out the number and direction of occupied and unoccupied
grids. Thirdly, new trajectory to the unknown places is generated based on obtained internal data.
Finally, new trajectory and the pose of the car are sent to the node of controller to generate the messages
of steering. The steps of autonomous exploration in map generation of SLAM is shown in Figure 5.

Figure 5. Steps of autonomous exploration in map generation of SLAM.

The indoor map is conserved in the map server after being completely generated for navigation.
Navigation module downloads the map from the map server and plan the global trajectory with the
assistance of classical A* algorithm. Detail steps of SLAM and navigation are presented in the Figure 6.

Figure 6. Steps of SLAM and navigation. The module of SLAM and navigation can be divided into
two parts, including map generation and saving, and navigation. On one hand, the robotic system
generates maps and trajectories of robotics using data from sensors. The map and trajectory then is
fused to another map that is saved in robotics. On the other hand, saved maps are utilized to generate
the cost map that can be used to navigation based on the A* algorithm.

3.3. Lane Detection and Tracking

Earlier research in lane detection and tracking can be based on traditional image processing
algorithms [27], while deep learning, and reinforcement learning are widely used in these years.

Robotics 2020, 9, 19 7 of 15

This paper proposes an open computer vision (CV)-based method which meets real-time and costs
lesser computing resource compared with the machine learning method.

Firstly, camera calibration is used to create undistorted images by using calibration matrices to
revise the distortion of image. It is followed by using four filters with threshold, including absolute
horizontal Sobel operator, magnitude of the gradient based on horizontal and vertical Sobel operator,
direction of the gradient based on Sobel operator, and hue-lightness-saturation (HLS) transformation
to create separate binary images and combine separate images together. Perspective transform is used
to generate a “bird view” of binary images, while the bird-view image is also tailored in order to obtain
an area which is most likely to have lane pixels. The bird-view images are split into two parts vertically
in polynomial fit process, and then sliding windows which enclose 200 pixels are used to find the left
and right lane. Once the pixel exists, sliding windows re-center their positions before second order
polynomial to fit the window groups in left and right side. Left and right lanes are therefore generated.
According to left and right lanes generated in previous step, Equation (3) is utilized to calculate the
radius of curvature for each lane.

R =

[
1 + (dx/dy)2

]3/2∣∣∣d2y/dx2
∣∣∣ (3)

In Equation (3), x and y represent pixel position in world space, and pixel space therefore must be
converted into world space firstly using Equations (4) and (5).

x = xpixel · α (4)

y = ypixel · β (5)

xpixel and ypixel represent the position of lane in pixel space, and xpixel and ypixel can be extracted directly
from images. α and β represent the scale when the position of lane in pixel space is mapped to world
space, and these values are 13/8300 and 70/115 respectively. The offset of car is calculated using
Equation (6) under the assumption that the center of image is the center of car in real world.

o f f set =
ximage_width

2
−
(xle f t + xright)

2
(6)

ximage_width, yimage_height, xleft, and xright represent the width of undistorted image, the height of undistorted
image, position of left lane, and position of right lane. Equation (7) is used to calculate the steering
angle θ to generate steering messages for manipulating car.

tanθ =
o f f set

yimage_height/2
(7)

Steps of lane detection and tracking is presented in Figure 7a, and the process of computing steering
angle in Equation (7) is illustrated in the Figure 7b.

Robotics 2020, 9, 19 8 of 15

Figure 7. (a) Represents steps of lane detection and tracking, and (b) represents the calculation of
steering angles. The left image in (b) illustrates how to obtain the steering angle in the Equation (7)
theoretically, while the right image in (b) represents the image from the experiment.

3.4. Data Fusion

Decision-Level Data Fusion Design

A loose coupling method is adopted in the data fusion module. The loose coupling method
integrates steering messages from different decision modules including steering messages from lane
detection, messages from local path planning and messages from CNN to carry out decision-level
data fusion. Firstly, top priority is given to steering messages from the module of lane detection and
final decisions are generated directly once lanes exist, and steering messages are transmitted to the
data fusion module. During this process, steering messages from lane detection will guide the car
to drive along the lane until no lane is founded. Local obstacle avoidance function (local navigation)
is completed using liDAR-based TEB method and deep learning method (CNN). The difference of
these two methods is that TEB method is more suitable in emergent cases because liDAR-based
method responses quicker than image-based method, but TEB method takes effect within 0.1~0.2 m
while CNN method takes effect with a distance of two meters or much further. These two methods
form a complementary, which means that emergent injuries or collisions can be avoided by using
TEB method while the CNN method can be used to guild car to perform in a trained human-like
way. Finally, integrated final steering messages are sent to hardware (Teensy3.6) to parse the steering
messages to command that can be recognized and executed by hardware (motors and steering servos
of car). Steps and priorities of steering messages are demonstrated in the Figure 8.

Robotics 2020, 9, 19 9 of 15

Figure 8. Steps of data fusion and priorities of steering messages.

3.5. Auxiliary Modules

3.5.1. Data Recording

Data recording module is designed to record data including either raw data or processed data.
Data comes from all sorts of sensors including the depth camera, the RGB camera, and liDAR. The data
flow of the data recording module are presented in Figure 9.

Figure 9. Data flow of the data recording module.

Depth camera: depth camera can generate two sorts of images; RGB images and depth images
respectively. RGB images are utilized in image recognition module (obstacle avoidance) because of its
lower resolution, which is more suitable in deep learning case. Following this, RGB images are tailored,
segregated and transformed into grayscale images. Additionally, real-time information that includes
timestamp, value of steering angle and velocity value, are also attached as the label of processed
images before being conserved. Depth images are also reserved for extended modules, like 3D SLAM
and navigation.

RGB camera: unlike RGB images from the depth camera, images from RGB camera features high
resolution due to the high frame rate of RGB camera. Additionally, the perspective of RGB camera
for collecting images is also differentiated with depth camera. That means images from RGB camera
contain lanes far away and also ensure the quality of images for a better land detection and tracking.

LiDAR: the map is generated using point cloud from liDAR in the SLAM module. The map is
utilized for navigation, in which positions of car, surrounding obstacles and trajectories of car are also
attached to previous maps and reserved simultaneously.

Robotics 2020, 9, 19 10 of 15

3.5.2. Message Parsing

Message parsing module bridges the software system and the hardware system. On the one hand,
it receives final steering command and velocity command generated by software system. On the other
hand, the commands are parsed and sent to hardware for actual decision making. In command parsing,
ROS-based steering and speed messages are digital signals that are parsed to analog pulse signals.
Analog signals can be recognized and executed by car (steering servos and motors) using approach of
pulse-width modulation (PWM). To be exact, digital numbers ranged from 0.1 to 1.0 are utilized as the
value of decision commands. Digital signals are mapped into the duty ratio of pulse width which can
be recognized and executed by servos of hardware via message parsing module. By modulating the
duty ratio according to the value of digital signals, desired trajectories of car can be generated at the
same time.

Exponential smoothing is also utilized to smooth sharp changes of commands using Equation (8),
in which Vinit represents the initial value or real-time value of commands while Vchange represents the
sheer value (increment or decrease of commands). γ represents the intensity to smooth trajectories,
and its value is 0.05.

Vinit = Vinit + γ · (Vchange −Vinit) (8)

3.5.3. Proportion Integration Differentiation (PID)

Adaptive cruise control (ACC) is an adaption of the conventional cruise control system with
additions of modulating throttle and applying braking, so as to vary the vehicle’s speed to follow the
next closest vehicle [1]. In adaptive velocity control, a closed-loop PID control system is utilized in this
module which receives wheels speed signals and steering angle signals from an encoder to regulate the
speed of robotic car once dynamic or static obstacles are found. Steering messages, velocity messages
and IMU messages are transmitted to SLAM and navigation module (odometer) where the position
and pose of car are generated and sent to hardware (controller) to regulate the velocity of car under the
control of PID.

4. Experiments and Conclusions

4.1. Hardware

Core sensors include Logitech C920 camera, Intel Realsense depth camera, RP-liDAR A2,
9 DoF IMU, Encoder, and Xbox360 stick controller. Digital-analog conversion (ROS messages parsing)
is implemented in Teensy3.6. Traxxas car (1/10 F1 model) and is utilized as the chassis. All functional
modules are integrated in nVidia Jetson TX1.

4.2. Result of Lane Detection and Tracking

In lane detection and tracking, the undistorted raw image is cropped (Figure 10b) after being
captured from camera (Figure 10a) in order to reduce computing burden of image processing.
Following this, the cropped image is converted into a binary image (Figure 10c), before being processed
into “bird view” using perspective transform (Figure 10d). The last step is the polynomial fit which is
the foundation of radius and offset calculation. In Figure 10e, a red line splits the image into two parts
in the left and right sides. Light blue boxes represent sliding windows which are utilized to find lane
pixels. Pink lines represent lane pixels found by sliding windows. Deep blue lines represent curves
after the polynomial fit. A green line is indirectly used to calculate car offset.

Robotics 2020, 9, 19 11 of 15

Figure 10. Lane detection and tracking. (a) Represents the raw image from the RGB camera.
(b) Represents a selected part of raw image, and selected part is likely to have lane. (c) Represents
the threshold binary image. (d) Represents a “bird view” after perspective transform. (e) Represents
the image after polynomial fit. In (e), the read line represents the central line, and shallow blue boxes
represent sliding windows, pinks lines represent lanes found by sliding windows, deep blue lines
represent lines generated using polynomial fit, and green line is indirectly utilized to calculate the offset
of car.

4.3. Result of Intelligent Obstacle Avoidance

The Figure 11 represents the obstacle avoidance performance using TEB and the machine approach.
The trajectory in the red color represents global path, while a deep blue line represents the local path
which is optimized using a TEB and machine learning approach once obstacles are found in the short
distance (0.1 m~0.2 m).

Figure 11. Obstacle avoidance (local navigation) using the timed-elastic-band (TEB) approach. Red dots
represent the obstacles found by liDAR (original data generated by liDAR). Shallow blue area represents
the cost map. Green box represents the car and its pose. Red line represents the global planned path
using A* approach. A short and deep blue line represents the local planned path using the combination
of the liDAR-based TEB approach and machine learning methods. Arrows represent the direction of
actual navigation. Planned paths generated by global planning using A* algorithm and local planning
using TEB approach indicate that the path generated using TEB and machine learning approach is
more short, smooth and robust than path generated using A* algorithm in the complex scenario.

The recognition rate of obstacle based on CNN is presented in the Figure 12.
Normally, obstacle avoidance approach based on CNN takes effect in a far distance and obstacle
recognition rate can come to 97% averagely. The machine learning method based on CNN can guide
car to behave in a trained human-like way. Note that CNN-based trajectories in obstacle avoidance
and training details of a network can be found in the work of our team [28], in which we fuse the
liDAR-based image processing approach with the deep learning approach in local obstacle avoidance
or local motion planning. In the experiment of this paper, however, we fuse the TEB approach with
the deep learning approach, and these approaches take effect in different ranges. That means the
CNN-based approach can take effect in a longer distance, while the TEB-based approach takes effect in
a shorter distance to avoid crashes in complex scenarios. In complex scenarios with more obstacles
surrounded, these two methods are combined, and a robust trajectory is generated. The combination
of these two approaches therefore enhance the robustness of robotic system in obstacle avoidance.

Robotics 2020, 9, 19 12 of 15

Figure 12. Obstacle recognition rate of trained CNN model. The experiment of obstacle recognition is
conducted on the nVidia Jetson TX1 using Tensorflow-0.1. The X-axis represents the serial number of
obstacle images in each batch, while the Y-axis represents the obstacle recognition rate. The recognition
rate fluctuates and an average 97% is obtained in the experiment.

4.4. Result of SLAM

The experiment of SLAM was conducted in the indoor scenario (laboratory of university, Figure 2b),
and results of SLAM are shown in the Figure 13. The Figure 13a represents a path that is found in the
autonomous mapping process. The autonomous mapping process is expected to continue until the
indoor space is completely explored. The Figure 13b represents an enclosed map after autonomous
path finding process is terminated. The robotics therefore stops the process of exploration and the
map is saved in robotics. Saved maps are expected to be updated frequently to keep the accuracy of
the navigation.

Robotics 2019, 8, x FOR PEER REVIEW 12 of 16

Robotics 2019, 8, x; doi: FOR PEER REVIEW www.mdpi.com/journal/robotics

Figure 12. Obstacle recognition rate of trained CNN model. The experiment of obstacle recognition is
conducted on the nVidia Jetson TX1 using Tensorflow-0.1. The X-axis represents the serial number of
obstacle images in each batch, while the Y-axis represents the obstacle recognition rate. The
recognition rate fluctuates and an average 97% is obtained in the experiment.

4.4. Result of SLAM

The experiment of SLAM was conducted in the indoor scenario (laboratory of university, Figure
2b), and results of SLAM are shown in the Figure 13. The Figure 13a represents a path that is found
in the autonomous mapping process. The autonomous mapping process is expected to continue until
the indoor space is completely explored. The Figure 13b represents an enclosed map after
autonomous path finding process is terminated. The robotics therefore stops the process of
exploration and the map is saved in robotics. Saved maps are expected to be updated frequently to
keep the accuracy of the navigation.

(a) Automatic mapping process (b) Map from automatic mapping

Figure 13. The automatic mapping process of SLAM and the result of SLAM.

4.5. Result of Pose Estimation

The car can find the path autonomously (Figure 13a) until the overall enclosed map is fully
constructed (Figure 13b). The enclosed map generated using SLAM will be saved and utilized in
navigation. A 2D pose estimation function in RViz interface of ROS can be utilized to estimate the
pose and position of car. Before the pose estimation, a point cloud from liDAR (red points) cannot
match the map (Figure 14a), but after that the map can fit the liDAR data properly (Figure 14b).

Commented [WL10]: Is there any text missing? A
figure can not be listed as one subsection.

Figure 13. The automatic mapping process of SLAM and the result of SLAM.

4.5. Result of Pose Estimation

The car can find the path autonomously (Figure 13a) until the overall enclosed map is fully
constructed (Figure 13b). The enclosed map generated using SLAM will be saved and utilized in
navigation. A 2D pose estimation function in RViz interface of ROS can be utilized to estimate the pose
and position of car. Before the pose estimation, a point cloud from liDAR (red points) cannot match
the map (Figure 14a), but after that the map can fit the liDAR data properly (Figure 14b).

Robotics 2020, 9, 19 13 of 15

Figure 14. Pose estimation. Shallow blue areas represent the cost map near the car. Grey area represents
overall map. (a) Represents the map before pose estimation. In this map, we can notice that the source
data from liDAR (point cloud) and the cost map cannot match the overall map generated using SLAM.
(b) Represents the map after pose estimation. In this map, point cloud generated from liDAR and cost
map match the SLAM map completely.

4.6. Result of Navigation

Before navigation, 2D navigation function in RViz interface in ROS should be utilized to set the
destination and pose of car (Figure 15a). Following this, the car drives along the lane (Figure 15b~d))
(lane is not displayed in map directly) and after passing by the lane, the car walks abiding by the
guidance of navigation (Figure 15e). Finally, the car reaches the destination successfully (Figure 15f).

Figure 15. Navigation using the map generated by SLAM. (a) Represents the destination and pose
setting, and the rear of green arrow represents the destination, while the direction of arrow represents
the pose of car. This process is completed by human manipulation. (b)~(e) Represent intermediate
positions in navigation. We can notice that the car avoids the obstacles and arrives at the destination
successfully. The car also detects and tracks lanes and successfully realizes this function, but lanes are
not displayed in RViz (map). (f) Represents the arrival of destination. After that, the car will stop and
wait for forthcoming command.

5. Conclusions and Future Works

This paper demonstrates the design of architecture and implementation of functional modules in
autonomous robotic car. Functional modules are composed by intelligent obstacle avoidance using
CNN and TEB, SLAM, lane detection and tracking, data fusion, data recording, command parsing,
velocity control, and hardware design.

This paper attaches much importance on proposing the architecture of autonomous car-like robot,
features the fusion of all sorts of steering messages from different sensors, and fulfills all required
functions successfully, instead of focusing on theoretical mathematical formulas or the optimization of
specific algorithms.

Robotics 2020, 9, 19 14 of 15

In future works, priority will be given to enhancing the robustness and accuracy of functional
modules by adding reinforcement learning in obstacle avoidance module, utilizing artificial neural
network like deep learning approaches in data fusion, and applying 3D map in navigation.

Author Contributions: Conceptualization, C.L. and C.Z.; methodology, C.Z.; software, C.L. and C.Z.;
validation, C.Z., C.L. and W.C.; formal analysis, C.L. and C.Z.; investigation, W.C.; resources, W.C.; data curation,
C.Z.; writing—original draft preparation, C.Z.; writing—review and editing, C.Z.; visualization, C.Z.; supervision,
F.L. and W.C.; project administration, F.L., W.C. and P.J.; funding acquisition, F.L., W.C. and P.J. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by (1) Youth Software Innovation Project (Sichuan Province,
China), grant number 2018013; (2) Industry-University Cooperative Project for Collaborative Education
(Ministry of education, China), grant number 201802128027; (3) Project of Science and Technology department
(Sichuan Province, China), grant number 18ZDZX0141; (4) National Natural Science Foundation of China,
grant number 61906160; (5) Fundamental Science and Advanced Technology Research Foundation of Chongqing,
grant number cstc2018jcyjA0867.

Acknowledgments: The design and implementation of autonomous car-like robot receives the support from “Youth
Software Innovation Project, Sichuan Province, China”, “Industry-University Cooperative Project for Collaborative
Education, ministry of education, China”, “Project of Science and Technology department, Sichuan Province, China”.
(Grant number:2018013, 201802128027, 18ZDZX0141). This work is also supported by National Natural Science
Foundation of China (Grant No.61906160), Fundamental Science and Advanced Technology Research Foundation
of Chongqing (Grant No.cstc2018jcyjA0867).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Varghese, J.; Boone, R.G. Overview of autonomous vehicle sensors and systems. In Proceedings of
the International Conference on Operations Excellence and Service Engineering, Orlando, FL, USA,
10–11 September 2015.

2. U.S. Department of Transportation Releases Policy on Automated Vehicle Development. N.p., 30 May 2013.
Available online: https://mobility21.cmu.edu/u-s-department-of-transportation-releases-policy-on-auto-
mated-vehicle-development (accessed on 20 March 2020).

3. Xu, P.; Dherbomez, G.; Hery, E.; Abidli, A.; Bonnifait, P. System architecture of a driverless electric car in the
grand cooperative driving challenge. IEEE Intell. Transp. Syst. Mag. 2018, 10, 47–59. [CrossRef]

4. Wei, J.; Snider, J.M.; Kim, J.; Dolan, J.M.; Rajkumar, R.; Litkouhi, B. Towards a viable autonomous driving
research platform. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, Australia,
23–26 June 2013.

5. Cofield, R.G.; Gupta, R. Reactive trajectory planning and tracking for pedestrian-aware autonomous
driving in urban environments. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV),
Gothenburg, Sweden, 19–22 June 2016; pp. 747–754.

6. Lima, D.A.D.; Pereira, G.A.S. Navigation of an autonomous car using vector fields and the dynamic window
approach. J. Control Autom. Electr. Syst. 2013, 24, 106–116. [CrossRef]

7. Jo, K.; Kim, J.; Kim, D.; Jang, C.; Sunwoo, M. Development of autonomous car-part i: Distributed system
architecture and development process. IEEE Trans. Ind. Electron. 2014, 61, 7131–7140. [CrossRef]

8. Jo, K.; Kim, J.; Kim, D.; Jang, C.; Sunwoo, M. Development of autonomous car-part II: A case study on the
implementation of an autonomous driving system based on distributed architecture. IEEE Trans. Ind. Electron.
2015, 62, 5119–5132. [CrossRef]

9. Liu, L.; Wu, T.; Fang, Y.; Hu, T.; Song, J. A smart map representation for autonomous vehicle navigation.
In Proceedings of the 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD),
Zhangjiajie, China, 15–17 August 2015; pp. 2308–2313.

10. Kunz, F.; Nuss, D.; Wiest, J.; Deusch, H.; Reuter, S.; Gritschneder, F.; Scheel, A.; Stübler, M.; Bach, M.;
Hatzelmann, P. Autonomous driving at ULM university: A modular, robust, and sensor-independent
fusion approach. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea,
28 June–1 July 2015; pp. 666–673.

https://mobility21.cmu.edu/u-s-department-of-transportation-releases-policy-on-auto- mated-vehicle-development
https://mobility21.cmu.edu/u-s-department-of-transportation-releases-policy-on-auto- mated-vehicle-development
http://dx.doi.org/10.1109/MITS.2017.2776135
http://dx.doi.org/10.1007/s40313-013-0006-5
http://dx.doi.org/10.1109/TIE.2014.2321342
http://dx.doi.org/10.1109/TIE.2015.2410258

Robotics 2020, 9, 19 15 of 15

11. Cardoso, V.; Oliveira, J.; Teixeira, T.; Badue, C.; Filipe, M.; Oliveira-Santos, T.; Veronese, L.; de Souza, A.F.
A model-predictive motion planner for the IARA autonomous car. In Proceedings of the 2017 IEEE
International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 225–230.

12. Al-Harasis, R. Design and implementation of an autonomous UGV for the twenty second intelligent
ground vehicle competition. In Proceedings of the International Conference on Software Engineering,
Mobile Computing and Media Informatics (SEMCMI2015), Kuala Lumpur, Malaysia, 8–10 September 2015.

13. Ferreira, T.; Garcia, O.; Vaqueiro, J. Software Architecture for an Autonomous Car Simulation Using ROS,
Morse and a QT Based Software for Control and Monitoring. In Proceedings of the XII Simpósio brasileiro
de automação Inteligente, Uberlândia, MG, Brasil, 23–25 October 2015.

14. Memon, K.R.; Memon, S.; Memon, B.; Rafique, A.; Shah, A. Real time implementation of path planning
algorithm with obstacle avoidance for autonomous vehicle. In Proceedings of the 3rd International Conference
on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March 2016;
pp. 2048–2053.

15. Parakkal, P.G.; Variyar, V.V.S. Gps based navigation system for autonomous car. In Proceedings of the
2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI),
Udupi, India, 13–16 September 2017; pp. 1888–1893.

16. Beiker, S. Implementation of an automated mobility-on-demand system. In Autonomous Driving; Maurer, M.,
Gerdes, J., Lenz, B., Winner, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2016.

17. Shimchik, I.; Sagitov, A.; Afanasyev, I.; Matsuno, F.; Magid, E. Golf cart prototype development and
navigation simulation using ros and gazebo. In Proceedings of the MATEC Web of Conferences, Punjab, India,
18 May 2016; Volume 75, p. 9005.

18. Evans-Thomson, S. Environmental Mapping and Software Architecture of an Autonomous SAE Electric
Race Car. Ph.D. Thesis, The University of Western Australia, Perth, Australia, 2017.

19. Gupta, N.; Vijay, R.; Korupolu, P.V.N. Architecture of Autonomous Vehicle Simulation and Control Framework.
In Proceedings of the 2015 Conference on Advances in Robotics, Goa, India, 2–4 July 2015; pp. 1–6.

20. Zhang, L.; Qin, Q. China’s new energy vehicle policies: Evolution, comparison and recommendation.
Transp. Res. Part A Policy Pract. 2018, 110, 57–72. [CrossRef]

21. Tian, Y.; Pei, K.; Jana, S.; Ray, B. Deeptest: Automated testing of deep-neural-network-driven autonomous
cars. arXiv, 2017; arXiv:1708.08559 [cs.SE].

22. Du, X.X.; Marcelo, J.; Daniela, R. Car detection for autonomous vehicle: LIDAR and vision fusion approach
through deep learning framework. In Proceedings of the 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017. [CrossRef]

23. Tobias, D.J. Cherry Autonomous Race Car. N.p., 6 Aug. 2016. Web. 29 May 2017. Available online:
https://github.com/DJTobias/-Cherry-Autonomous-Racecar (accessed on 24 March 2020).

24. Quinlan, S. Real-Time Modification of Collision-Free Paths; Technical Report; Stanford University:
Stanford, CA, USA, 1995.

25. Fox, D.; Burgard, W.; Thrun, S. The dynamic window approach to collision avoidance. IEEE Robot.
Autom. Mag. 1997, 4, 23–33. [CrossRef]

26. Smann, C.R.; Hoffmann, F.; Bertram, T. Kinodynamic trajectory optimization and control for car-like robots.
In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; pp. 5681–5686.

27. Pannu, G.S.; Ansari, M.D.; Gupta, P. Design and implementation of autonomous car using raspberry pi.
Int. J. Comput. Appl. 2015, 113, 22–29.

28. Zhou, C.; Li, F.; Cao, W. Architecture Design and Implementation of Image Based Autonomous Car:
Thunder-1. Multimedia Tools Appl. 2019, 78, 28557–28573. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.tra.2018.02.012
http://dx.doi.org/10.1109/IROS.2017.8202234
https://github.com/ DJTobias/-Cherry-Autonomous-Racecar
http://dx.doi.org/10.1109/100.580977
http://dx.doi.org/10.1007/s11042-018-5816-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Objectives behind this Article

	Control Loop of Intelligent Autonomous Robotic Car
	Function Modules Design
	Intelligent Obstacle Avoidance System
	Obstacle Avoidance Based on CNN
	Obstacle Avoidance Based on the Timed-Elastic-Band (TEB) Method

	Simultaneously Localization and Mapping (SLAM) and Navigation System
	Lane Detection and Tracking
	Data Fusion
	Auxiliary Modules
	Data Recording
	Message Parsing
	Proportion Integration Differentiation (PID)

	Experiments and Conclusions
	Hardware
	Result of Lane Detection and Tracking
	Result of Intelligent Obstacle Avoidance
	Result of SLAM
	Result of Pose Estimation
	Result of Navigation

	Conclusions and Future Works
	References

