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Abstract: In this paper, we experimentally evaluate the performance of a sensor concept for solving
the direct kinematics problem of a general planar 3-RPR parallel mechanism by using solely the
linear actuators’ orientations. At first, we review classical methods for solving the direct kinematics
problem of parallel mechanisms and discuss their disadvantages on the example of the general
planar 3-RPR parallel mechanism, a planar parallel robot with two translational and one rotational
degrees of freedom, where P denotes active prismatic joints and R denotes passive revolute joints.
In order to avoid these disadvantages, we present a sensor concept together with an analytical
formulation for solving the direct kinematics problem of a general planar 3-RPR parallel mechanism
where the number of possible assembly modes can be significantly reduced when the linear actuators’
orientations are used instead of their lengths. By measuring the orientations of the linear actuators,
provided, for example, by inertial measurement units, only two assembly modes exist. Finally,
we investigate the accuracy of our direct kinematics solution under static as well as dynamic
conditions by performing experiments on a specially designed prototype. We also investigate
the solution formulation’s amplification of measurement noise on the calculated pose and show that
the Cramér-Rao lower bound can be used to estimate the lower bound of the expected variances for a
specific pose based exclusively on the variances of the linear actuators’ orientations.

Keywords: direct kinematics problem; parallel robots; linear actuators’ orientations; assembly
modes; general planar 3-RPR parallel mechanism; inertial measurement units; Cramér-Rao lower
bound; static and dynamic experiments

1. Introduction

The direct kinematics problem is the problem of finding the actual position and orientation, also
known as pose, of the moveable manipulator platform with respect to the fixed base platform from
the active joints’ coordinates. In general, this problem has multiple solutions. For example, for the
general planar 3-RPR parallel mechanism, where three linear actuators, that is, active prismatic joints
(P-joints), connect the passive revolute joints (R-joints) of the fixed base platform with those of the
moveable manipulator platform, shown in Figure 1, up to six different poses of the manipulator
platform are possible for a given set of linear actuators’ lengths. These different poses that solve
the direct kinematics problem are also known as assembly modes. However, the general questions
that have to be answered for solving the direct kinematics problem in terms of control purposes are:
(a) how many solutions exist for a given set of active joints’ coordinates and (b) which one of them is
the actual solution?
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Many scientists have focused on answering these questions. The first question is basically
solved by reducing the system of kinematic constraint equations to a univariate polynomial
equation. Noncomplex solutions of this equation correspond to possible assembly modes of the
parallel mechanism, that is, possible ways to assemble it. Among others, Gosselin et al. [1]
introduced a polynomial formulation for the direct kinematics problem of the general planar 3-RPR
parallel mechanism and concluded that for a given set of linear actuators’ lengths, up to six real
solutions can exist. The same result was independently achieved by Peisach, Pennock and Kassner
and Wohlhart [2–4] and finally proved by Gosselin and Merlet [5]. Kong and Gosselin [6] even proposed
a coordinate-free formulation to avoid dependencies on the chosen reference frame. In contrast to that,
Collins [7] used Clifford algebra and Rojas et al. [8] introduced a method based on the bilateration
problem to derive the polynomial formulation in a different manner. This distance-based method,
however, can even yield two times more solutions compared to classical methods. For the special case
where the three revolute base platform joints are aligned, only four solutions exist, see, for example,
References [5,6,8].
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Figure 1. General planar 3-RPR parallel mechanism with the three base platform joints A, B and C and
the three manipulator platform joints D, E and F. The pose of the manipulator platform is given by the
position of joint D and the platform’s orientation γ with respect to the shown coordinate system.

Finding the univariate polynomial equation makes it possible to calculate all the possible solutions
of the direct kinematics problem but it does not identify the actual pose of the manipulator platform.
This can be done either by using additional numerical techniques such as Newton-Raphson algorithms
with an initial pose estimation [9–15] to transform the system of nonlinear kinematic constraint
equations into an explicit or linear problem where a closed-form solution can be found [16–23].

As the linear actuators’ lengths are no generalized coordinates, they are only used because they
are the active joints’ coordinates. Due to the simple inverse kinematics of the general planar 3-RPR
parallel mechanism with a unique solution, the linear actuators’ lengths can be directly calculated
when the manipulator platform’s pose is known. This allows to use other coordinates that are more
suitable for solving the direct kinematics problem and, afterwards, calculate the linear actuators’
lengths from the obtained manipulator platform’s pose. There are several advantages associated with
avoiding the linear actuators lengths because (a) reference drives are required to derive the initial
lengths, (b) absolute length sensors that do not need reference drives are very expensive and have a
limited operation range, (c) possible deformations and backlashes in the linear actuators and joints
cannot be determined, and, most importantly, (d) they do not provide a unique solution of the direct
kinematics problem.
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In order to avoid using the linear actuators’ lengths for solving the direct kinematics, we proposed
a new sensor concept where the manipulator platform’s pose can be uniquely determined from the
orientations provided by three inertial measurement units (IMUs) that were placed on top of the
manipulator platform as well as on two of the linear actuators [24–26]. For measuring the manipulator
platform’s orientation, additional wiring effort is required that can cause workspace reductions due
to the risk of link-wire interferences. In Reference [27], we therefore suggested using solely the three
linear actuators’ orientations for solving the direct kinematics problem and derived an analytical
formulation that provides the two possible poses of the manipulator platform. Therewith, instead
of having up to six assembly modes for the general planar 3-RPR parallel mechanism when using
the linear actuators’ lengths that also cannot be found analytically (except for some special cases),
we found an analytical expression to calculate them.

As the quality of the formulation’s results mainly depends on the quality of the measured linear
actuators’ orientations, in this paper, we investigate the accuracy of our concept under static as well as
dynamic conditions by performing several experiments on a new, specially designed prototype of a
general planar 3-RPR parallel mechanism. For measuring the linear actuators’ orientations, we use
inertial measurement units that provide linear accelerations and angular velocities of a rigid body
in their three axes. Furthermore, we evaluate the maximum achievable accuracy of our formulation
and investigate the effect of measurement errors on the calculated manipulator platform’s pose by
computing the Cramér-Rao lower bound and comparing the results with those of our experiments.

The remainder of this paper is as follows. In Section 2, classical methods for solving the
direct kinematics problem of parallel mechanisms and especially the general planar 3-RPR parallel
mechanism are reviewed and their disadvantages are highlighted. In Section 3, we revisit the approach
for calculating the number of possible assembly modes when solely the linear actuators’ orientations
are measured. In Section 4, we then derive the Cramér-Rao lower bound to estimate the variances
of the calculated pose of the manipulator platform based on the variances of the linear actuators’
orientations. In order to test our concept under static as well as dynamic conditions, in Section 5,
we present the experimental results that were performed on a specially designed prototype of a general
planar 3-RPR parallel mechanism. Finally, a conclusion and evaluation is made in Section 6.

Throughout the paper, we use the following notation referring to Figure 1. The three base
platform joints are denoted as A, B and C and the three manipulator platform joints as D, E and F.
The body-fixed coordinate system of the base platform is located in joint A and the body-fixed
coordinate system of the manipulator platform is located in joint D. The position of the manipulator
platform with respect to the base platform is given by the coordinates x and y while the orientation
of the manipulator platform is given by the angle γ. In the following, the manipulator platform’s
pose p with respect to the base platform is denoted by the position of the manipulator platform and
its orientation:

p =
[

x y γ
]>

. (1)

The coordinates of the two remaining base platform joints, B and C, are denoted as c1 and c2 in
the x-axis and d1 and d2 in the y-axis. The three manipulator platform joints D, E and F are aligned
and the distance between joint D and joint E is denoted as l1, whereas the distance between joint E and
joint F is denoted as l2. The linear actuators’ lengths are denoted as ρ1, ρ2 and ρ3 and correspond to the
distance between the joints A and D, B and E, as well as C and D, respectively. The linear actuators’
orientation angles are denoted as ϕ1, ϕ2 and ϕ3 and correspond to the angle between the x-axis and
the first, second and third linear actuator, respectively.

2. Review of Classical Solutions for the Direct Kinematics Problem

In the literature, three methods are available for handling the direct kinematics problem of
parallel mechanisms. Scientifically, the most interesting method is to derive the echelon form which
contains all the solutions of the direct kinematics problem. Here, the system of kinematic constraint
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equations is reduced to a univariate polynomial equation from which all the possible solutions are then
derived. Noncomplex solutions of this equation correspond to possible assembly modes of the parallel
mechanism, that is, modes for which the manipulator platform’s pose satisfies the requirements of the
active joints’ coordinates as well as the closure conditions, or, in other words, possible solutions to
assemble the parallel mechanism. The echelon form therewith allows to find all the possible solutions
of the direct kinematics problem but it does not identify the actual or real pose of the manipulator
platform. This problem can be solved by using one of the two following methods.

One possibility of finding the actual solution of the direct kinematics problem is to use iterative
techniques such as Newton-Raphson procedures to solve the system of nonlinear kinematic constraint
equations. These techniques require a good initial guess of the manipulator platform’s pose on the
one hand and a determinable pose that is sufficiently far away from a singular configuration on the
other hand [28]. In this context, a singularity is a pose where the manipulator platform has at least
one uncontrollable instantaneous degree of freedom leading to huge forces in the joints and the linear
actuators, see, for example, References [29–31].

As an alternative to additional numerical procedures, in the third method, additional sensor
information is used to transform the system of nonlinear kinematic constraint equations into an explicit
or linear problem where a closed-form solution can be found. This method allows to find the actual
pose of the manipulator platform uniquely and, compared to iterative methods, faster, more accurately
and independently from initial pose estimations.

In the following, the three methods are reviewed and their complexity as well as remaining
challenges are illustrated on the example of the general planar 3-RPR parallel mechanism. As the
planar equivalent to the Stewart-Gough platform, this mechanism has been investigated by several
scientists in terms of direct kinematics [1–8,32], singularities [29–31,33–35] and control [36–38].

2.1. Analytical Solution

In this section, we review the classical method to derive the assembly modes of the general planar
3-RPR parallel mechanism by following the method introduced by Gosselin et al. [1]. In contrast to the
classical planar 3-RPR parallel mechanism where the manipulator is illustrated as a triangle, we use
the mechanism displayed in Figure 1. However, we show that by using the linear actuators’ lengths,
for this parallel mechanism, up to six solutions for the direct kinematics problem, that is, up to six
assembly modes, exist.

The inverse kinematics of the general planar 3-RPR parallel mechanism can be written as

ρ2
1 = x2 + y2 , (2)

ρ2
2 = (x + l1 cos γ− c1)

2 + (y + l1 sin γ− d1)
2 , (3)

ρ2
3 =

(
x + (l1 + l2) cos γ− c2

)2
+
(
y + (l1 + l2) sin γ− d2

)2 . (4)

By subtracting Equation (2) from Equation (3) and Equation (2) from Equation (4), we get

ρ2
2 − ρ2

1 = Rx + Sy + T , (5)

ρ2
3 − ρ2

1 = Ux + Vy + W (6)
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with

R = 2l1 cos γ− 2c1 ,

S = 2l1 sin γ− 2d1 ,

T = l2
1 + c2

1 + d2
1 − 2l1(c1 cos γ + d1 sin γ) ,

U = 2(l1 + l2) cos γ− 2c2 ,

V = 2(l1 + l2) sin γ− 2d2 ,

W = (l1 + l2)2 + c2
2 + d2

2 − 2(l1 + l2)(c2 cos γ + d2 sin γ) .

(7)

From Equation (5), we get

x =
ρ2

2 − ρ2
1 − Sy− T

R
, (8)

and by inserting this result into Equation (6),

y =
R(ρ2

3 − ρ2
1 −W)−U(ρ2

2 − ρ2
1 − T)

RV − SU
. (9)

In the same manner, we get

x =
V(ρ2

2 − ρ2
1 − T)− S(ρ2

3 − ρ2
1 −W)

RV − SU
. (10)

In order to obtain a univariate equation in γ, inserting Equations (9) and (10) into Equation (2)
gives us:

ρ2
1 =

(
V(ρ2

2 − ρ2
1 − T)− S(ρ2

3 − ρ2
1 −W)

)2

(RV − SU)2 +

(
R(ρ2

3 − ρ2
1 −W)−U(ρ2

2 − ρ2
1 − T)

)2

(RV − SU)2 . (11)

By applying the Weierstrass substitution

X = tan
γ

2
, cos γ =

1− X2

1 + X2 , sin γ =
2X

1 + X2 , (12)

We can get the sixth order polynomial in X, whose six possible solutions can be found
numerically. In this context, Wenger et al. [33] investigated the situation where the term RV − SU in
Equations (9)–(11) becomes zero. Finally, we can substitute backwards and insert the solutions for γ

back into Equations (9) and (10) to obtain the position of the manipulator platform. However, there is
no analytical solution for this problem available [8].

As an example, Figure 2 shows the six assembly modes of the general planar 3-RPR parallel
mechanism when using the linear actuators’ lengths. Here, we use the following parameters:

c1 = 40 mm , d1 = 10 mm , l1 = 25 mm , c2 = 90 mm , d2 = −20 mm , l2 = 35 mm . (13)

With a given set of linear actuators’ lengths

ρ1 = 80.6226 mm , ρ2 = 61.7931 mm , ρ3 = 82.9139 mm , (14)

six assembly modes exist. Due to a faster calculation time, we derive the solution by using the method
proposed by Rojas et al. [8]. The coordinates of point D, given by x and y and the orientation of the
manipulator platform γ for the six solutions are:



Robotics 2019, 8, 72 6 of 31

xI

yI

γI

 =

 37.3098 mm
−71.4701 mm
−59.7539◦

 ,

xII

yII

γII

 =

−11.5040 mm
79.7976 mm
−50.5183◦

 ,

xIII

yIII

γIII

 =

 72.6382 mm
−34.9812 mm

38.1265◦

 , (15)

xIV

yIV

γIV

 =

 10.0000 mm
80.0000 mm
−20.0000◦

 ,

xV

yV

γV

 =

 36.0067 mm
72.1354 mm
−9.0029◦

 ,

xVI

yVI

γVI

 =

 79.1195 mm
15.4950 mm
42.2360◦

 . (16)
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Figure 2. Assembly modes (shown in blue, red, green, orange, yellow and brown) for the manipulator
platform of the general planar 3-RPR parallel mechanism when using the linear actuators’ lengths ρ1,
ρ2 and ρ3 from Equation (14).

2.2. Numerical Solution

Since we are usually more interested in the actual manipulator platform’s pose than in all of the
possible poses, it is necessary to distinguish the actual pose from all the others. In the literature, there
are numerous methods proposed that aim to find the actual pose of the parallel mechanism. Here,
genetic algorithms [39–42], neuronal methods [43,44] and interval analysis methods [15,45] have to be
mentioned. In fact, the most common numerical procedures for fast determination of the manipulator
platform’s pose are iterative techniques such as Newton-Raphson algorithms, see References [11,46–50].
Here, the inverse kinematic equations are used together with a pose estimate for iteratively solving
these equations with a multi-dimensional Newton-Raphson algorithm.

All the iterative techniques have in common that they need a pose estimation. With the first guess,
they calculate an error between the linear actuators’ lengths that correspond to the pose estimate and
the measured linear actuators’ lengths. By using the measurement model, they vary the pose within
several iterations to minimize this error. Different formulations and stop-criteria were proposed to
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obtain the actual pose (see, for example, Reference [28]) but every iterative method depends on the
quality of the first pose estimation. In fact, the pose the algorithm converges to is neither necessarily
the actual pose due to the quality of the initial pose estimation nor the closest possible pose next to the
initial estimate [28]. The iterative algorithm might also fail to converge in case of singularities [28,51].
In conclusion, the initial pose estimation influences both the pose the algorithm converges to and, not
to be neglected, the computation time which corresponds to the number of iterations. For a static case,
it is not possible to assure that the actual pose of the manipulator platform can be found at all because,
depending on the initial pose estimate, all the solutions are possible. In fact, further information is still
required to guarantee that the actual pose can be found.

Fortunately, for dynamic cases such as pose control, the initial guess can be improved during the
sampling time and incorrect solutions can be removed. Since the converged pose is available for the
previous set of linear actuators’ lengths, this pose can be used as an initial guess together with the
new set of lengths. Furthermore, the new solution has to be within some boundaries, based on the
sampling time, maximum velocities and the latest pose [28].

As an example, we apply the Newton-Raphson algorithm to the general planar 3-RPR parallel
mechanism to compute the actual pose. In case a measurement model h can be found that links the
measurements z with the manipulator platform’s pose p, this pose can be found iteratively using the
Newton-Raphson algorithm:

p(i) = p(i− 1) + Jh

(
z− h

(
p(i− 1)

))
(17)

where i is the iteration step, p(0) the initial pose estimate and Jh the Jacobian of h(p), which is

Jh

(
h
(

p(i)
))

:= Jh(i) =
dh(i)
dp(i)

. (18)

The algorithm stops when the difference between the measurements z and the results for the
measurement model h at the proposed pose p(i) falls below a threshold value Λ, that is,∥∥∥z− h

(
p(i)

)∥∥∥
2
< Λ . (19)

As the measurement model h(p), the inverse kinematic Equations (2)–(4) are used.
The Newton-Raphson algorithm requires exact measurements and a good initial pose estimate.

Again, the parameters from Equation (13) are used. As an example, the same linear actuators’ lengths
from Equation (14) are measured. Now, the Newton-Raphson algorithm is able to compute the pose
that meets the conditions given by the measurement model. However, this can be any of the six
possible solutions. It therewith depends on the quality of the initial pose estimate. For example, using

p(0) =
[
10.0000 mm 50.0000 mm 0.0000◦

]>
(20)

as initial pose estimate, after five iterations, the following solution is obtained:[
x y γ

]>
=
[
10.0000 mm 80.0000 mm −20.0000◦

]>
, (21)

which corresponds to the fourth assembly mode and is shown in blue in Figure 3. But using

p(0) =
[
50.0000 mm 20.0000 mm 20.0000◦

]>
, (22)
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after five iterations, leads to a different solution:[
x y γ

]>
=
[
79.1195 mm 15.4950 mm 42.2360◦

]>
, (23)

shown in red in Figure 3. This solution corresponds to the fifth assembly mode. Furthermore, for the
following initial pose estimate:

p(0) =
[
0.0000 mm 0.0000 mm 0.0000◦

]>
, (24)

shown in green in Figure 3, the algorithm even fails to converge. Thus, it cannot be guaranteed that
the actual pose can be found by using the Newton-Raphson algorithm because an appropriate initial
pose estimate has to be provided. Otherwise, the algorithm can converge to the wrong solution or
might even fail to converge.

−20 0 20 40 60 80 100 120

−20

0

20

40

60

80

x

y

A

B

C

estimate 1

D

E

F

estimate 2

D

E

F

estimate 3

Figure 3. Solutions for the general planar 3-RPR parallel mechanism when using a
Newton-Raphson algorithm with the linear actuators’ lengths: solution for [10 mm 50 mm 0◦]>

(blue), for [50 mm 20 mm 20◦]>(red) and for [0 mm 0 mm 0◦]> (green) as initial pose estimates.

2.3. Additional Sensor Solution

As a matter of fact, analytical approaches where the inverse kinematic equations are used to
obtain a univariate polynomial equation and iterative procedures are both vulnerable to measurement
errors, calibration inaccuracies and sensor failure. If only the linear actuators’ lengths are used,
the manipulator platform’s pose cannot be uniquely and unambiguously determined, neither for
accurate measurements and optimal calibrated parallel mechanisms nor for perturbed measurements
and calibrations. In order to overcome these disadvantages, it is possible to use sensor redundancy.
By implementing further sensors, better and more reliable measurement results can be obtained and,
in some cases, the actual pose can be determined without additional numerical procedures. In fact,
the goal of redundant or auxiliary sensor concepts is to find an explicit or linear formulation for the
manipulator platform’s pose with the minimum number of sensor information.

The idea of using additional sensors to find the actual pose of the manipulator platform is based
on the fact that the linear actuators’ lengths are no minimal coordinates and, therewith, are not enough
to find a unique solution for the direct kinematics problem. By implementing further sensors, it is
possible to get more information about the system’s state, reduce the complexity of the constraint
equations and therewith, decrease the number of possible assembly modes until only one possible
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pose of the manipulator platform remains. This allows to solve the direct kinematics equations in
considerably less time, only limited by the sampling rate of the sensors but not the calculation time.
The introduced information redundancy can later be used to increase the accuracy or to tolerate sensor
failure or faulty sensor data, see, for example, Reference [17]. Furthermore, using additional sensors
can even enable an auto-calibration of the parallel mechanism [28,52]. However, the type, number
and location of the redundant sensors must be chosen very carefully to define a unique solution.
Otherwise, it can cause additional problems such as workspace limitations due to the passive legs
or joint arrangements, as mentioned in Reference [53]. Furthermore, different sensor types can even
reduce the quality of the output by introducing time delays and unwarranted confidences. For example,
trusting additional sensors with faulty measurements can lead to incorrect results or even prevent a
result from being calculated.

Merlet [28] extensively discussed possible additional sensor concepts and Vertechy et al. [51]
presented a very detailed, chronological review. Usually, length sensors and rotary sensors are used
as additional sensors to derive the orientations of the linear actuators or passive legs in addition
to the linear actuators’ lengths, see, for example, References [16–23,51,53–68]. However, several
other sensor types were proposed as additional sensors for solving the direct kinematics problem.
For example, Baron et al. [69] suggested using a camera in addition to the linear actuators’ lengths.
For the 6-RUS Hexa-Robot, Hesselbach et al. [70] developed sensors that can be implemented in the
passive joints. Inclination sensors can also be used. However, they are more often used for calibration
purposes [71]. It can be noticed from the amount of papers dealing with the topic of additional sensor
concepts for parallel mechanisms and especially the Stewart-Gough platform that the problem is quite
complicated and the proposed solutions are not optimal. In fact, most of the concepts have one or more
limitations. One drawback, for example, is the applicability, that is, some additional sensor concepts
can only be used for parallel mechanisms with special architecture. The most common limitation
is that the base and manipulator platform joints, respectively, should be coplanar, that is, lie on a
plane, see, for example, References [18,20,57,58,65,68]. This architecture is often called nearly-general
Stewart-Gough platform. Some other concepts require that two or more length sensors are connected
to a common point or joint [18,19,63]. It furthermore stands out that all additional sensor concepts use
at least one of the linear actuators’ lengths and there are only few concepts where less than three linear
actuators’ lengths are used. In fact, none of the existing concepts completely renounce the lengths of
the linear actuators and solely use other sensor information for solving the direct kinematics problem.

As an example for an additional sensor solution, we calculate the actual pose of the general planar
3-RPR parallel mechanism by adding sensor information. One very common possibility to solve the
direct kinematics problem is to add supplementary passive linear actuators that are equipped with
length sensors. By coinciding the manipulator platform joints of one linear actuator with those of the
supplementary linear actuator, see Figure 4, these joints’ positions can be uniquely identified and the
equations can be simplified to a closed-form solution. Here, for example, two passive linear actuators
are added to the parallel mechanism. One is connected to the first and the other one to the third
manipulator platform joint.

To the inverse kinematics of the general planar 3-RPR parallel mechanism in Equations (2)–(4),
two additional equations for the passive linear actuators can be added:

ρ2
4 = (x− c4)

2 + (y− d4)
2 , (25)

ρ2
5 = (x + (l1 + l2) cos γ− c5)

2 + (y + (l1 + l2) sin γ− d5)
2 . (26)

At first, the intersections of the two circles with the radii ρ1 starting at point A and ρ4 starting at
point G shall be found, which, in this case, leads to two solutions. By subtracting Equation (2) from
Equation (25), an equation for x can be obtained:
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ρ2
4 − ρ2

1 = (x− c4)
2 + (y− d4)

2 − x2 − y2 = −2c4x− 2d4y + c2
4 + d2

4 , (27)

⇐⇒ x =
ρ2

1 − ρ2
4 − 2d4y + c2

4 + d2
4

2c4
. (28)

x

y

A(0, 0)

B(c1, d1)

C(c2, d2)

D(x,y)

E

F

γ
l1

l2

ρ1 ρ2 ρ3

base platform

manipulator platform

base platform

G(c4, d4)

H(c5, d5)

ρ4 ρ5

Figure 4. General planar 3-RPR parallel mechanism with two additional passive linear actuators with
the base platform joints G and H. The active linear actuators are shown in black and the supplementary
passive linear actuators are shown in blue.

With Equation (2), the two possible positions xI/II and yI/II of the manipulator platform
are derived:

ρ2
1 =

(
ρ2

1 − ρ2
4 − 2d4y + c2

4 + d2
4

2c4

)2

+ y2 (29)

⇐⇒ yI/II =
ρ2

1d4 − ρ2
4d4 + c2

4d4 + d3
4

2(c2
4 + d2

4)
±

√
c2

4(ρ
2
1 + 2ρ1ρ4 + ρ2

4 − c2
4 − d2

4)(−ρ2
1 + 2ρ1ρ4 − ρ2

4 + c2
4 + d2

4)

2(c2
4 + d2

4)
, (30)

xI/II =
ρ2

1 − ρ2
4 − 2d4y + c2

4 + d2
4

2c4
=

c4
4 + c2

4d2
4 ∓ d4

√
c2

4(c
2
4 + d2

4)(4ρ2
1 − c2

4 − d2
4)

2c4(c2
4 + d2

4)
. (31)

In a similar way, the two possible positions of point F can be determined. Here, the following
substitution is used:

x̂ = x + (l1 + l2) cos γ , ŷ = y + (l1 + l2) sin γ , (32)

which reveals two solutions. The angle γ can then be obtained by using the arc tangent with the known
horizontal and vertical distances between the points D and F.

As an example, Figure 5 shows the actual solution of the general planar 3-RPR parallel mechanism
when using the linear actuators’ lengths and two additional lengths. Here, the parameters from
Equation (13) are used together with

c4 = 10 mm , d4 = 10 mm , c5 = 100 mm , d5 = 0 mm . (33)



Robotics 2019, 8, 72 11 of 31

With the set of linear actuators’ lengths from Equation (14) and

ρ4 = 70.0000 mm , ρ5 = 68.3222 mm , (34)

two solutions are obtained. The two possible coordinates of the manipulator platform, given by x and
y and the orientation of the manipulator platform γ are:xI

yI

γI

 =

 10.0000 mm
80.0000 mm
−20.0000◦

 ,

xII

yII

γII

 =

 80.0000 mm
10.0000 mm
−0.7883◦

 , (35)

where the second solution is not possible because the distance between the points DII and FII does not
satisfy the conditions given by l1 and l2. In fact,∥∥∥DIIFII

∥∥∥
2
=
√
(80.000 mm− 167.7541 mm)2 + (10.000 mm− 8.7925 mm)2

= 87.7624 mm 6=
√
(l1 + l2)2 = 60 mm .

(36)
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−20
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ρ2

ρ3

ρ4

ρ5

DI

EI

FI

γI

DII

Figure 5. Actual solution (blue) for the general planar 3-RPR parallel mechanism when using two
additional lengths in addition to the linear actuators’ lengths. The second solution is shown in red.

3. Assembly Modes when Using the Linear Actuators’ Orientations

In the last section, we have seen that all the current concepts for solving the direct kinematics
problem have several disadvantages as illustrated on the example of the general planar 3-RPR parallel
mechanism. In this section, we demonstrate that by using the three linear actuators’ orientations,
the solution of the direct kinematics problem of the general planar 3-RPR parallel mechanism
can be calculated analytically and a maximum of two instead of six assembly modes exist. Here,
the elimination method described in Section 2.1 is used where the inverse kinematic equations are
used to systematically eliminate unknown variables until a univariate equation is obtained.
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For the general planar 3-RPR parallel mechanism shown in Figure 1, the inverse kinematics can
be rewritten as

tan ϕ1︸ ︷︷ ︸
A

=
y
x

, (37)

tan ϕ2︸ ︷︷ ︸
B

=
y + l1 sin γ− d1

x + l1 cos γ− c1
, (38)

tan ϕ3︸ ︷︷ ︸
C

=
y + (l1 + l2) sin γ− d2

x + (l1 + l2) cos γ− c2
, (39)

where we will be using the abbreviations A, B and C in the following. The angles ϕ1, ϕ2 and ϕ3 are
the three orientation angles of the linear actuators with respect to the base platform’s x-axis and can
be obtained, for example, from IMUs that are mounted on the linear actuators. Now, we can rewrite
Equation (37):

y = Ax , (40)

and use it in Equation (39):

C =
Ax + (l1 + l2) sin γ− d2

x + (l1 + l2) cos γ− c2
. (41)

From this, we can derive an expression for x:

x =
(l1 + l2)(− sin γ + C cos γ)− Cc2 + d2

A− C
, (42)

and from Equation (40), we can get an expression for y:

y = A
(l1 + l2)(− sin γ + C cos γ)− Cc2 + d2

A− C
. (43)

In order to obtain a univariate equation in γ, we use Equations (42) and (43) with the remaining
Equation (38) of the inverse kinematics:

B =
y + l1 sin γ− d1

x + l1 cos γ− c1
=

A (l1+l2)(− sin γ+C cos γ)−Cc2+d2
A−C + l1 sin γ− d1

(l1+l2)(− sin γ+C cos γ)−Cc2+d2
A−C + l1 cos γ− c1

. (44)

Now, we have a univariate equation in γ whose two possible solutions are given by

γI = − atan 2
(

DH − E
GI

,
F + D

G

)
, (45)

γII = − atan 2
(−DH − E

GI
,

F− D
G

)
(46)
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where

D =

√
−I2

(
−G +

E2

I4

)
, (47)

E =
((

(−c1 + c2)C + c1 A− d2
)

B− (Ac2 − d1)C− A(d1 − d2)
)

I2, (48)

F =

(((
(−c1 − c2)l1 − l2c1

)
B + (d1 − d2)l1 + (d1 − d2)l2

)
C

+ c1l1B2 − (d1 − d2)l1B + (c2l1 + c2l2)C2

)
A2 +

(
(−c1 + c2)l2B2 + d1l2B

)
C2 − B2Cd2l2

+

(((
(c1 − c2)l1 + (c1 − 2c2)l2

)
B− d1l1 − d1l2

)
C2

+
((

(−c1 + c2)l1 + l2c1)B2 +
(
(d1 + d2)l1 − (d1 − 2d2)l2

)
B
)

C− B2d2l1

)
A , (49)

G = (C2 + 1)(A− B)2l2
2 + l2

1(B− C)2(A2 + 1)− 2l1l2(B− C)(AC + 1)(A− B) , (50)

H = A(B− C)l1 − C(A− B)l2 , (51)

I = (A− B)l2 − (B− C)l1 . (52)

Finally, we can use the solutions for γ in the Equations (42) and (43) to obtain the position of the
manipulator platform. If we are also interested in the linear actuators’ lengths, we can calculate them
by using inverse kinematics, see Equations (2)–(4).

Figure 6a shows the two assembly modes of the general planar 3-RPR parallel mechanism when
the linear actuators’ orientations are used. We use the same parameters as in Section 2. With a given
set of linear actuators’ orientation angles

ϕ1 = 82.8750◦ , ϕ2 = 96.0453◦ , ϕ3 = 106.5502◦ , (53)

the two assembly modes can be calculated. Using our method, we can find the following two solutions:xI

yI

γI

 =

10.0000 mm
80.0000 mm
−20.0000◦

 ,

xII

yII

γII

 =

 24.2363 mm
193.8902 mm

104.5335◦

 . (54)

As a second example, Figure 6b shows the two assembly modes of the general planar 3-RPR
parallel mechanism when the following linear actuators’ orientation angles are used:

ϕ1 = 82.8750◦ , ϕ2 = 94.7360◦ , ϕ3 = 101.0877◦ . (55)

In this case, the following two solutions are obtained:xI

yI

γI

 =

10.0000 mm
80.0000 mm

20.0000◦

 ,

xII

yII

γII

 =

10.2792 mm
82.2340 mm

23.6134◦

 . (56)

Compared to the first example where the two solutions are far away from each other and the
actual solution can be identified easily, in the second example, the two solutions are quite close to each
other. This would make the differentiation of the actual solution more difficult, especially when the
linear actuators’ orientations are perturbed by measurement noise. In fact, when two linear actuators’
orientations are identical, the root in Equation (47) becomes negative and no real solution exists.
This also corresponds to a direct kinematics singularity.
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Figure 6. The two assembly modes (shown in blue and red) for the manipulator platform of the
general planar 3-RPR parallel mechanism when using the linear actuators’ orientations: (a) results for
ϕ1 = 82.8750◦, ϕ2 = 96.0453◦ and ϕ3 = 106.5502◦ and (b) results for ϕ1 = 82.8750◦, ϕ2 = 94.7360◦

and ϕ3 = 101.0877◦.

In general, it can be noticed that, in contrast to the usual six assembly modes, we only have
two assembly modes when using the linear actuators’ orientations. Furthermore, the assembly
modes calculated from the linear actuators’ orientations differ from those calculated from the liner
actuators’ lengths, compare Figures 2 and 6. Finally, the equations that were used for calculating
the assembly modes are applicable to every type of general planar 3-RPR parallel mechanisms and
can be solved without any numerical methods. In contrast, when using the linear actuators’ lengths,
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there is, in general, no analytical equation available to calculate the assembly modes, see, for example,
Reference [8].

4. Cramér-Rao Lower Bound

In order to evaluate the achievable accuracy of the presented approach, based on the expected
variances of the linear actuators’ orientations, the Cramér-Rao lower bound (CRLB) of the manipulator
platform’s pose can be computed and compared with the actually measured variances. The CRLB is
an estimator that provides the lowest possible mean-squared error among all other estimators. Thus,
it can be used to compare existing estimators or algorithms regarding their efficiency on the one hand
and to estimate the impact of measurement errors on the calculated pose on the other hand.

By using the inverse kinematic Equations (37)–(39), we can find a relation between the
measurement vector z, with

z =
[

ϕ1 ϕ2 ϕ3

]>
, (57)

and the pose p, with

p =
[

x y γ
]>

, (58)

that is given by the measurement model h(p):

z =


atan

( y
x
)

atan
(

y+l1 sin γ−d1
x+l1 cos γ−c1

)
atan

(
y+(l1+l2) sin γ−d2
x+(l1+l2) cos γ−c2

)
 =: h(p) . (59)

Under the assumption that the measurement vector z is zero-mean Gaussian distributed with its
variances σ2(zk), k ∈ {1, . . . , 3}, that are stored in the covariance matrix C, with

C = diag
(

σ2(zk)
)

, (60)

we can calculate the CRLB as the inverse of the Fisher information matrix F. Its components can be
determined as follows:

Fk,l =
∂z>

∂pk
C−1 ∂z

∂pl
+

1
2

tr
(

C−1 ∂C
∂pk

C
∂C
∂pl

)
, (61)

with k, l ∈ {x, y, γ}, where ∂z
∂pk

are the components of the Jacobian Jh of the measurement model h(p):

Jh =
dh(p)

dp
=
[

∂h>(p)
∂x

∂h>(p)
∂y

∂h>(p)
∂γ

]>
. (62)

In general, the variances σ2(zk) of the measurement vector z are not constant and the trace in
Equation (61) does not vanish so that we have to calculate the derivatives ∂C

∂pk
. Assuming that the

variances σ2(zk), that is, σ2(ϕ1), σ2(ϕ2) and σ2(ϕ3), only depend on the orientation angles ϕ1, ϕ2

and ϕ3, the derivatives ∂C
∂pk

can be transformed as follows:

∂C
∂pk

=
∂C
∂zk

∂zk
∂pk

=
∂C
∂zk

∂hk(p)
∂pk

, (63)

where ∂hk(p)
∂pk

is a component of the Jacobian Jh and ∂C
∂zk

is the derivative of the variance σ2(zk) for the
orientation angle zk, that is, ϕk:

∂C
∂zk

=
∂ diag

(
σ2(zk)

)
∂zk

= diag
(

∂σ2(zk)

∂zk

)
, (64)
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and can be derived by experiments.

5. Experiments

5.1. Experimental Device

In order to investigate the accuracy of the direct kinematics solution under static as well as
dynamic conditions, we perform experiments on a new, specially designed prototype, see Figure 7.
It consists of three identical linear actuators that are connected on the one side to the base platform and
on the other side to the manipulator platform. The base and the manipulator platform have integrated
revolute joints and, furthermore, the possibility to vary the joints’ positions. As linear actuators,
we use Actuonix L16-100-35-P with a minimum length of 168 mm, a stroke length of 100 mm and an
integrated potentiometer for measuring the current length. The linear actuators are equipped with
IMUs to measure their orientation. Here, InvenSense MPU-9250 sensors are chosen as IMUs, where
the accelerometer and the gyroscope values are used. An Arduino Mega board with an integrated data
acquisition and pose calculation algorithm is mounted inside the experimental device. The Arduino
Mega board is furthermore equipped with a display for showing the current pose and a motor
shield for controlling the lengths of the linear actuators using a proportional-integral-derivative (PID)
controller. For comparing the calculated manipulator platform’s pose with the actual pose, we need
an independent measurement system. Here, we use image processing to optically analyse the actual
manipulator platform’s pose, whose joints’ positions are equipped with small red dots for optically
tracking their position. The positions of the red dots’ center points are therefore detected, stored
and converted into the positions of the manipulator platform’s joints from which the manipulator
platform’s pose can be calculated. For the experiments on the general planar 3-RPR parallel mechanism,
we use the following parameters for the base and manipulator platform’s joints’ coordinates according
to Figure 1:

c1 = 170 mm , d1 = 10 mm , l1 = 70 mm , c2 = 280 mm , d2 = −20 mm , l2 = 30 mm . (65)

Figure 7. Experimental prototype of the general planar 3-RPR parallel mechanism with inertial
measurement units (IMUs) mounted on the linear actuators and an Arduino Mega with a display
integrated in the base to calculate and show the two assembly modes of the manipulator platform.
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5.2. Dynamic Orientation Measurement

The mechanism’s y-axis corresponds to the negative gravity vector of the Earth g. The IMUs are
mounted on the linear actuators in the way that their x-axes are always parallel to the mechanism’s
z-axis. For static poses, it is therewith possible to obtain the orientation angles ϕ1, ϕ2 and ϕ3 solely
from the accelerometer values of the IMU, ay,k and az,k, where

ϕk,acc = atan 2
(
ak,y, ak,z

)
. (66)

However, when the manipulator platform moves and, therewith, the linear actuators move
too, the accelerometer values do not provide accurate results, leading to faulty pose calculations.
Robust methods for estimating the actual orientation angles of the linear actuators thus require the
IMUs’ gyroscope values ωk,x, ωk,y and ωk,z in addition to the accelerometer values. The orientation
angle ϕk of the kth linear actuator can be obtained, for example, by using a complementary filter with

ϕk,com(i) = τt (ϕk,com(i− 1) + ωk,x∆t) + (1− τt)ϕk,acc , (67)

where i is the iteration step, τt is the ratio of the gyroscope and accelerometer values and ∆t is the time
between two measurements. As initial orientation estimates, the results from the accelerometer values,
that is, ϕk,acc, are used.

There are alternatives available for robustly and efficiently estimating the orientations based on
IMU measurements including Kalman filtering, nonlinear complementary filters and quaternion based
algorithms [72–75]. For the experiments, however, we choose the above introduced complementary
filter with τt = 0.93 for all the linear actuators. It shows fast responses to changes in the linear actuators’
orientations as the gyroscope has a significantly higher impact than the accelerometer. In fact, especially
for real-time applications on a low-memory computer, the complementary filter is recommendable
because it shows similar accuracy with lower computational complexity compared to other filters. The
time between two measurements ∆t, which is the inverse of the sampling rate, mainly depends on the
computational efficiency of the used algorithms, the programming and the processor. Throughout the
experiments, we realized a sampling rate of 53.16 Hz that corresponds to a ∆t of 18.81 ms.

5.3. Accuracy of the Orientation Measurements

In order to investigate the dependency of the variances of the orientation angles σ2(ϕk) on the
orientation angle ϕk itself, we build a test bench, see Figure 8a, where we can mount different IMUs and
vary the orientation angle in steps of 5◦. Here, we use an InvenSense MPU-9250 sensor which is rotated
around its z-axis. For every orientation angle, we take 10,000 measurements with an Arduino Nano
and calculate the orientation angle using the accelerometer and gyroscope values. Figure 8b shows
the variances of the raw angle ϕacc, that is solely calculated from the accelerometer values and the
filtered angle ϕcom for different orientation angles. For the raw orientation angle ϕacc, the variances
lie between 0.0414◦2 and 0.1609◦2. In contrast to that, the filtered angle ϕcom, shown in Figure 8c,
has significantly smaller variances (27 to 38 times smaller) that lie between 0.0015◦2 and 0.0042◦2.
In order to find a mathematical representation, we added a fifth-order polynomial fit with

σ2(ϕacc) ≈ a0 + a1 ϕacc + a2 ϕ2
acc + a3 ϕ3

acc + a4 ϕ4
acc + a5 ϕ5

acc , (68)

σ2(ϕcom) ≈ a0 + a1 ϕcom + a2 ϕ2
com + a3 ϕ3

com + a4 ϕ4
com + a5 ϕ5

com , (69)

where the constants a0–a5 are given in Table 1.
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Figure 8. Experimental test bench to investigate IMUs on the dependency of the orientation angles’
variances on the orientation angle (a). Experimental results of the InvenSense MPU-9250: (b) variances
of the raw angle and suitable fifth-order polynomial fit and (c) variances of the filtered orientation
angle and suitable fifth-order polynomial fit.

Table 1. Constants of the fifth-order polynomial for describing the orientation angle’s variances of the
raw and the filtered orientation angle as a function of the orientation angle itself.

a0 a1 a2 a3 a4 a5

ϕacc 3.8553× 10−2 2.7241× 10−1 −2.7631× 10−2 1.0431× 10−3 −1.5467× 10−5 7.8730× 10−8

ϕcom 1.9579× 10−3 −1.6773× 10−5 −5.1628× 10−7 5.0914× 10−8 −8.2501× 10−10 4.2277× 10−12

5.4. Accuracy of Static Pose Detections

As a first experiment on our general planar 3-RPR parallel mechanism, we investigate how
accurate the assembly modes can be obtained under static conditions when solely the linear actuators’
orientations are used. We therefore investigate ten randomly chosen static poses of the manipulator
platform where we take 500 measurements and calculate the two assembly modes from the measured
linear actuators’ orientation angles. In this context, we compare the accuracy for the assembly modes
that can be obtained when raw orientation angles ϕacc and filtered orientation angles ϕcom are used.
In addition to this, we compare our experimental results with those provided by the CRLB. As the
ground truth, we use the actual manipulator platform’s pose whose joints’ positions are optically
analyzed by using image processing.

Table 2 shows the ten investigated, randomly chosen static poses. We choose the coordinates for
the manipulator platform poses between 64.62 mm and 155.25 mm in the x-axis, between 157.14 mm
and 216.06 mm in the y-axis and between−20.45◦ and 15.84◦ for the platform orientation. Furthermore,
Table 2 shows the mean values of the calculated poses after 500 measurements calculated from the raw
orientation angles. First of all, it can be noticed that solution I, that is calculated from Equation (45),
always corresponds to the actual pose while solution II, that is calculated from Equation (46), always
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corresponds to the second assembly mode with higher y-coordinates. Second of all, it can be noticed
that solution I and solution II are sufficiently far away from each other so that they can be distinguished
unambiguously. Finally, when comparing the actual pose with the mean value of the calculated poses,
it can be noticed that solution I has an offset error that varies from pose to pose between −5.16 mm
and 0.11 mm in the x-axis, between −12.22 mm and 1.03 mm in the y-axis and between −1.48◦ and
6.42◦ for the platform orientation. The offset errors do not seem to have any dependencies.

Table 2. Investigated static poses and mean values of the calculated poses (solution I and solution II)
after 500 measurements obtained from the raw orientation angles. Dimensions are in mm and ◦.

Pose
Actual Pose Solution I Solution II[
x y γ

]> [
xI yI γI

]> [
xII yII γII

]>
1

[
146.76 190.46 14.01

]> [
148.10 190.89 14.63

]> [
309.13 398.44 −146.85

]>
2

[
90.71 212.00 −20.38

]> [
94.96 220.66 −24.55

]> [
146.43 340.08 − 84.27

]>
3

[
137.55 206.21 − 7.71

]> [
137.68 206.42 − 6.67

]> [
250.39 375.34 −107.89

]>
4

[
155.25 191.61 15.72

]> [
155.41 190.95 17.04

]> [
322.82 396.65 −151.26

]>
5

[
123.65 211.69 −11.96

]> [
124.50 211.93 −11.72

]> [
217.26 369.73 − 99.65

]>
6

[
69.22 215.68 −12.16

]> [
74.53 228.82 −18.83

]> [
124.70 382.65 − 90.18

]>
7

[
107.01 190.51 0.71

]> [
107.98 192.76 − 0.73

]> [
219.71 392.17 −120.73

]>
8

[
64.62 186.05 15.84

]> [
66.82 191.85 10.75

]> [
156.08 448.07 −144.02

]>
9

[
125.21 161.73 13.32

]> [
125.31 162.46 13.50

]> [
276.07 357.91 −153.10

]>
10

[
132.37 157.14 8.30

]> [
132.71 158.64 7.45

]> [
284.36 339.89 −142.95

]>
Figure 9 shows the position and orientation errors between the investigated static poses and

solution I that was obtained experimentally from the IMUs’ values with 500 repetitions as boxplots.
The results from the raw accelerometer values are shown in red and the results from the complementary
filtered orientation angles are shown in blue. Comparing the results from the raw accelerometer values
with those obtained from the filtered orientation angles, it can be noticed that both show similar
offset errors but, most importantly, the results for the filtered orientation angles have significantly
lower variances. In fact, throughout the ten investigated poses, the variances of the position and
orientation errors obtained with the raw accelerometer values are approximately 27 times higher than
those obtained with the filtered orientation angles. This applies for all axes (8.3 to 56.1 times higher
for the x-axis, 14.2 to 37.5 times higher for the y-axis and 14.2 to 33.3 times higher for the platform
orientation). From the results shown in Figure 9, it can also be noticed that the variances in the axes
are not constant and show dependencies on the position and orientation of the manipulator platform.
In fact, the best results for the raw accelerometer values were obtained for the poses 9 and 10 where the
position and orientation errors show variances of only 0.19 mm2 to 0.34 mm2 in the x-axis, 1.60 mm2 to
1.63 mm2 in the y-axis and 2.43◦2 to 2.96◦2 for the platform orientation. In contrast to that, poses 2 and
6 show the highest variances for the raw accelerometer values with 5.07 mm2 to 7.33 mm2 in the x-axis,
65.15 mm2 to 74.55 mm2 in the y-axis and 20.36◦2 to 22.71◦2 for the platform orientation. The same
applies for the filtered orientation angles.

In conclusion, the manipulator platform’s pose can be obtained quite accurately with only small
offset errors. Nevertheless, the variances obtained for the raw accelerometer values are very high
but can be significantly improved when using the filtered orientation angles instead. Here, variances
between 0.006 mm2 and 0.155 mm2 for the x-axis, between 0.051 mm2 and 2.450 mm2 for the y-axis
and between 0.073◦2 and 0.743◦2 can be obtained. In comparison to the other poses, the variances
for poses 2 and 6 are comparably higher. One possible reason may be that only poses 2, 6 and 8,
the orientation angle ϕ2 is above 90◦, whereas ϕ2 is below 90◦ for the other poses. However, pose 8
does not show the high variances that would be expected.
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The variances of the position and orientation errors depend on the variances of the measurements
and, more importantly, the amplification of the solution formulation. The CRLB allows to calculate
the lower bound of the variances that we can expect for a specific pose based on the variances of
the measurements, that is, the orientation angles. Therewith, we can compare our experimental
results for each pose with those calculated by the CRLB. Figure 10 shows the position and orientation
errors obtained experimentally from the filtered orientation angles in blue and the simulated position
and orientation errors calculated with the CRLB in purple. The CRLB only requires the actual pose,
the measurement model and the variances of the measurements. Here, we use the polynomial in
Equation (69) to estimate the variances of the filtered orientation angles.

Table 3 shows the variances and CRLB’s results for the first five static poses when using raw
orientation angles and when using filtered orientation angles. From the first five investigated static
poses, it can already be noticed that the variances of the position and orientation errors obtained from
experiments correspond with those calculated by the CRLB. The same applies for the poses six to ten
(not displayed). For all the poses, the difference between the experimental results from the filtered
orientation angles and the CRLB’s results are very small and do not exceed 0.15 mm2 in the x-axis,
0.28 mm2 in the y-axis and 0.32◦2 for the platform orientation. When using the CRLB together with the
polynomial in Equation (68) as the variances of the measurements, we can estimate the variances of
the position and orientation errors of the results obtained with the raw accelerometer values similarly
accurate (not displayed in Figure 10). Here, the difference between the raw experimental results and
the CRLB’s results are not higher than 1.42 mm2 in the x-axis, 8.00 mm2 in the y-axis and -5.82◦2 for the
platform orientation.
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Figure 9. Results for the ten investigated static poses with 500 repetitions obtained experimentally
from the raw accelerometer values (red) and the filtered orientation angles (blue). The errors in each
axis, ∆x, ∆y and ∆γ, are displayed in a boxplot. Dimensions are in mm and ◦. The box corresponds to
the area in which the middle 50% of the errors lie while the whiskers indicate the area in which the
middle 99.3% of the errors lie.
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Figure 10. Results for the first five investigated static poses with 500 repetitions obtained experimentally
from the filtered orientation angles (blue) and by simulation using the corresponding Cramér-Rao
lower bound (CRLB) (purple). The errors in each axis, ∆x, ∆y and ∆γ, are displayed in a boxplot.
Dimensions are in mm and ◦. The box corresponds to the area in which the middle 50% of the errors lie
while the whiskers indicate the area in which the middle 99.3% of the errors lie.

Table 3. Variances and results for the Cramér-Rao lower bound for the first five static poses when
using raw orientation angles and when using filtered orientation angles. The variances are displayed

as
[
σ2(x) σ2(y) σ2(γ)

]>. Dimensions are in mm2 and ◦2.

Pose
Variances for Raw Orientation Angles Variances for Filtered Orientation Angles

Experiments CRLB Experiments CRLB

1

 1.8895
4.4329
6.9274

  1.6150
4.1013
7.6160

  0.0337
0.2244
0.2335

  0.0715
0.1697
0.3470


2

 7.3331
65.1472
20.3617

  7.7918
57.1507
23.6220

  0.1493
2.4503
0.6109

  0.2968
2.2853
0.9335


3

 0.6376
7.9631
6.0536

  1.2437
9.4596
9.7948

  0.0767
0.4116
0.3189

  0.0582
0.3787
0.4445


4

 1.5456
3.5633
5.6761

  2.5668
4.9758
7.7996

  0.0594
0.1653
0.2352

  0.1070
0.2006
0.3483


5

 1.6415
14.4296

8.1143

  3.0573
18.2156
13.9312

  0.0593
0.4560
0.3463

  0.1263
0.7334
0.5923



In conclusion, by only knowing the measurement variances of the IMUs, it is possible to predict the
manipulator platform’s variances very accurately for any pose in the workspace without experiments
at all. As the experimental results match the CRLB’s results, we can furthermore conclude that the
solution formulation proposed in Section 4 is the optimal estimator with the lowest amplification of
measurement variances on the position and orientation variances. In the measurement model for
the CRLB, we assumed the measurement error to be zero-mean Gaussian. The experiments indicate
that this is not true. By also including these offset errors and the nonlinearity of the IMUs into the
measurement model, it would be possible to predict the offset error of the manipulator platform’s pose
in addition to its variances. As an alternative, in order to realize zero-mean Gaussian measurement
errors, it is also be possible to eliminate the offset errors and the nonlinearity of the IMUs by doing
further calibrations.
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5.5. Comparing Analytic Orientation-Based Results with Iterative Length-Based Results for Static
Pose Detections

In Section 2, we reviewed classical methods for solving the direct kinematics problem of
the general planar 3-RPR parallel mechanism and mentioned that iterative methods like the
Newton-Raphson algorithm are most often used for finding the actual pose of the manipulator platform
from the linear actuators’ lengths. The accuracy mainly depends on the initial estimate and the accuracy
of the measured linear actuators’ lengths. The linear actuators that are used in our prototype of the
general planar 3-RPR parallel mechanism have integrated potentiometers. Consequently, the lengths
are measured indirectly with the problem that the actual lengths of the linear actuators are not measured
and rely on the linearities of the potentiometers. In addition, the analog inputs of the Arduino Mega
board have a limited resolution of 10 bit leading to a maximum resolution of 0.0977 mm/bit for the
linear actuators’ lengths (stroke length of the linear actuators divided by the resolution of Arduino
Mega). Nevertheless, the obtained linear actuators’ lengths can be used together with an initial estimate
and the Newton-Raphson algorithm to calculate the actual pose of the manipulator platform. In order
to evaluate the quality of the measured linear actuators’ lengths and to guarantee convergence of the
Newton-Raphson algorithm, we used the actual pose as initial estimate. Table 4 shows the mean offset
errors of the Newton-Raphson algorithm for the measured linear actuators’ lengths. Furthermore,
it shows the mean offset errors for the ten static poses obtained with the analytic formulation proposed
in Section 3 and the raw orientation angles.

Table 4. Investigated static poses and mean offset errors ∆x, ∆y and ∆γ of the analytic,
orientation-based formulation and the iterative length-based solution (Newton-Raphson algorithm).
Dimensions are in mm and ◦. Poses, where the algorithm fails to converge are indicated by a −−.

Pose
Actual Pose Offset Error

Solution I

Offset Error
Newton-Raphson

Algorithm[
x y γ

]> [
∆x ∆y ∆γ

]> [
∆x ∆y ∆γ

]>
1

[
146.76 190.46 14.01

]> [−1.25 − 0.23 −0.66
]> [

8.18 − 9.22 4.09
]>

2
[

90.71 212.00 −20.38
]> [−3.99 − 7.83 3.88

]> [− 1.85 −2.77 1.58
]>

3
[
137.55 206.21 − 7.71

]> [
0.11 0.39 −1.35

]> [− 0.42 −3.79 1.38
]>

4
[
155.25 191.61 15.72

]> [−0.05 1.03 −1.48
]> [

2.77 − 4.41 0.78
]>

5
[
123.65 211.69 −11.96

]> [−0.59 0.51 −0.60
]> [− 0.82 −2.92 1.36

]>
6

[
69.22 215.68 −12.16

]> [−5.16 −12.22 6.42
]> [

1.32 − 3.69 2.25
]>

7
[
107.01 190.51 0.71

]> [−0.90 − 1.85 1.26
]> [− 3.12 0.21 − 1.08

]>
8

[
64.62 186.05 15.84

]> [−2.21 − 5.55 5.16
]> [−32.48 5.86 −11.14

]>
9

[
125.21 161.73 13.32

]> [−0.02 − 0.41 −0.15
]> [ −− −− −−]>

10
[
132.37 157.14 8.30

]> [−0.25 − 1.26 0.82
]> [ −− −− −−]>

From Table 4, it can be observed that, except for the poses 2 and 6, the mean error of the
Newton-Raphson algorithm is significantly higher than the mean error of the analytic formulation.
In fact, the mean errors of the Newton-Raphson algorithm are 1.5 to even 20 times higher than the
mean errors of the analytic formulation. The mean errors spread between −32.48 mm and 8.18 mm
in the x-axis, between −9.22 mm and 5.86 mm in the y-axis and between −11.14◦ and 4.09◦ for the
platform orientation. For the poses 9 and 10, the Newton-Raphson algorithm even converged to a
completely wrong solution although the actual pose is used as the initial pose estimate. In contrast,
for poses 2 and 6, the Newton-Raphson algorithm shows more accurate results than the analytic
formulation. The mean errors in the calculated poses indicate that there is an offset between the actual
and the measured linear actuators’ lengths that needs to be removed by calibration. By comparing the
actual lengths with the measured lengths, however, only small errors in the lengths measurements
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were recognized (±1.5 mm). Other than for the linear actuators’ orientations and consequently the
results for the analytic formulation, the variances for the Newton-Raphson algorithm are nearly
zero (0.21 mm2 in the x-axis, 0.09 mm2 in the y-axis and 0.06◦2 for the platform orientation) since
the lengths do not change under static conditions and the potentiometers’ readings only differ by
±1 bit. This indicates that if the lengths are measured correctly and with a sufficiently high resolution,
the manipulator platforms’ pose can be found with the Newton-Raphson algorithm more robustly
than from the unfiltered orientation angles. In the current form, that is, using the linear actuators’
potentiometer values, only slightly lower variances as for the filtered orientation angles can be obtained.
However, the Newton-Raphson algorithm requires at least three to five iterations to converge, whereas
the analytic formulation provides an explicit formulation without any iteration steps. Furthermore,
if the initial pose estimate is changed away from the actual pose, the required number of iterations
increase and we cannot guarantee that the Newton-Raphson algorithm will always converge to the
correct solution.

In conclusion, the Newton-Raphson algorithm together with the linear actuators’ lengths shows
higher offset errors but lower variances than the analytic formulation where solely the linear actuators’
orientations are used. However, for pose detections where no accurate initial pose estimate can be
provided, for example, in the beginning of an experiment or after restarting the system, the convergence
of the Newton-Raphson algorithm cannot be guaranteed.

5.6. Accuracy of Dynamic Pose Detections

As a second experiment on our general planar 3-RPR parallel mechanism, we investigate how
accurate the manipulator platform’s pose can be obtained under dynamic conditions when solely the
linear actuators’ orientations are used. Therefore, we continuously move the manipulator platform
dynamically by changing the linear actuators’ lengths adequately using a PID controller that minimizes
the differences between the target and the actual lengths. We let the linear actuators run with 12 V
leading to higher velocities (±40 mm/s and ±15◦/s). During the experiment, we measure and filter
the linear actuators’ orientations with the maximum possible sampling rate, that still is 53.16 Hz
and calculate the two assembly modes using the formulation proposed in Section 3. As the ground
truth, we again use image processing to optically analyse the actual manipulator platform’s pose,
whose joints’ positions are equipped with small red dots for optically tracking their position (the
images are recorded with 30 fps). Figure 11 shows the trajectories of the manipulator platform’s joints
in blue, red and green, respectively, during the dynamic experiment. The entire dynamic experiment is
also shown in the video of the Supplementary Material.

Figure 12 shows the manipulator platform’s pose during the dynamic experiment calculated from
the raw (red) and the filtered (blue) linear actuators’ orientations. As reference (black), the positions
and orientations calculated from the optically analysed manipulator platform joints are displayed.
During the experiment, the manipulator platform’s pose ranges between 97.6 mm and 154.5 mm in the
x-axis, between 177.1 mm and 219.1 mm in the y-axis and between 11.6◦ and 24.7◦ for the platform
orientation. Here, we only use solution I of the proposed formulation calculated from Equation (45).
Solution II range between 165.9 mm and 333.7 mm in the x-axis, between 332.2 mm and 492.6 mm in
the y-axis and between −179.9◦ and 179.8◦ for the platform orientation and is therewith sufficiently far
away from solution I.

The poses calculated from the raw accelerometer values are significantly noisier than the poses
calculated with the complementary filtered orientation angles. In fact, the complementary filter’s
results are at least two times more accurate than the unfiltered results and match the actual manipulator
platform’s pose quite well. Especially in the x-axis, the complementary filter’s results are comparatively
accurate and do not exceed a position error of±5 mm. For the platform orientation, the complementary
filter’s results show errors mainly between −10◦ and 5◦. Only between second 22 and 25 of the
experiment, the complementary filter shows strangely big position and orientation errors. The same
but with a smaller impact, happens at second 3 of the experiment. In both cases, the calculated
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orientation angle of the manipulator platform drifts away by 10◦ (at 3 s) and even 30◦ (at 23 s).
The reason for this is probably that, due to the high velocity and the sampling rate, the Arduino Mega
looses some measuring information leading to inaccurate linear actuators’ orientations.

Figure 13 summarises the position and orientation errors of the raw and the filtered orientation
angles in boxplots. Both the poses calculated from the raw accelerometer values and the poses
calculated with the complementary filter do not show any offset errors. Due to the high measurement
noise, the poses calculated from the raw accelerometer values are very noisy and show huge errors.
In total, only 50% of the errors range between−15.3 mm and 11.9 mm for the x-axis, between−23.2 mm
and 22.3 mm for the y-axis and between −21.9 mm and 19.3 mm for the platform orientation.
Furthermore, the the proposed formulation often fails to solve Equations (45) and (46) from the
raw accelerometer values. Apparently, the root in Equation (47) becomes negative. This can be traced
back to the noisy IMUs’ measurements under fast motions. Hence, from the raw accelerometer values,
the pose cannot be obtained sufficiently accurate. In contrast to that, the results calculated from the
complementary filter are significantly more accurate and robust. Here, lower variances of the position
and orientation errors can be obtained.

Figure 11. Trajectories of the first (blue), second (red) and third (green) manipulator platform joint
during the dynamic experiment. The trajectories were recorded by a camera with 30 fps and the joints’
positions were analysed using image processing.

For comparison, we additionally used the linear actuators’ lengths and the Newton-Raphson
algorithm to calculate the manipulator platform’s pose iteratively. These results, however, are not
calculated on the Arduino Mega due to the required initial estimate in the beginning of the experiment
and, more importantly, the significantly longer calculation time. In fact, using the linear actuators’
lengths and the Newton-Raphson algorithm is at least ten times slower than using the proposed
analytic algorithm together with the filtered orientations. However, even though the actual pose of the
manipulator platform was given as an initial pose estimate, for this experiment, the Newton-Raphson
algorithm converged to a completely wrong pose in the beginning, that is,[

x y γ
]>

=
[
172.0 mm −142.4 mm 233.3◦

]>
, (70)

and did not return from there. Hence, the results of the Newton-Raphson algorithm does not match the
actual pose at all. Possible reason are the small errors in the linear actuators’ lengths and the missing
robustness of the Newton-Raphson algorithm.
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Figure 12. Pose of the manipulator platform during the dynamic experiment calculated from the
raw (red) and the filtered (blue) linear actuators’ orientations: (a) x-position, (b) y-position and (c)
orientation angle γ. As reference (black), the positions and orientations calculated from the optically
analysed manipulator platform joints are used.
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Figure 13. Boxplots of the position and orientation errors of the manipulator platform’s pose during the
experiment calculated with the raw orientation angles (red) and the complementary filtered orientation
angles (blue). The box corresponds to the area in which the middle 50% of the errors lie while the
whiskers indicate the area in which the middle 99.3% of the errors lie.

In conclusion, the results obtained from the filtered linear actuators’ orientation angles together
with our formulation proposed in Section 3 are capable of calculating the actual manipulator platform’s
pose even under dynamic conditions. Comparably small offset errors and variances can be obtained
throughout the dynamic experiment. It therewith is significantly more accurate and robust than the
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raw orientation angles. Nevertheless, the variances obtained with the complementary filter are still
too high for an accurate pose control. However, it outperforms the Newton-Raphson algorithm in
terms of accuracy, robustness and computational efficiency.

6. Conclusions

In this paper, we first reviewed classical methods for solving the direct kinematics problem of
parallel mechanisms and discussed their disadvantages on the example of the general planar 3-RPR
parallel mechanism. In order to avoid these disadvantages, we proposed a sensor concept together
with an analytical formulation for solving the direct kinematics problem of a general planar 3-RPR
parallel mechanism. By measuring the orientations of the linear actuators, provided, for example,
by inertial measurement units, the number of possible assembly modes can be reduced down to two
when using the linear actuators’ orientations instead of their lengths. Finally, we experimentally
evaluated the accuracy of our direct kinematics solution under static as well as dynamic conditions by
performing experiments on a specially designed prototype.

The static experiments prove that it is possible to calculate the two possible assembly modes of
the manipulator platform from the linear actuators’ orientations. For the investigated general planar
3-RPR parallel mechanism, the two solutions of the direct kinematics problem are sufficiently far away
from each other to distinguish between them. By using the raw accelerometer values to calculate the
linear actuators’ orientation angles, the variances in the orientation angles are quite high leading to
huge variances in the calculated poses of the manipulator platform. The mean results, however, are
quite precise. By using a complementary filter instead, where the linear actuators’ orientation angles
are calculated from the IMUs’ accelerometer and gyroscope values, the variances in the orientation
angles are significantly smaller (27 to 38 times) leading also to smaller variances in the calculated
poses of the manipulator platform. Here, variances between 0.006 mm2 and 0.155 mm2 for the x-axis,
between 0.051 mm2 and 2.450 mm2 for the y-axis and between 0.073◦2 and 0.743◦2 can be obtained.

By using the Cramér-Rao lower bound (CRLB) together with the known variances of the linear
actuators’ orientation angles, it is possible to estimate the variances of the calculated manipulator
platform’s pose in each axis for every pose in the workspace. For the static measurements,
the experimental results match the CRLB’s results so that we can conclude that the proposed solution
formulation is the optimal estimator with the lowest amplification of measurement variances on the
position and orientation variances.

The dynamic experiment also indicates that the raw accelerometer values are too noisy to be used
for accurately and robustly calculating the manipulator platform’s pose. Throughout the experiment,
the results show huge variances. Furthermore, the proposed formulation furthermore fails to solve
Equations (45) and (46) that, can also be traced back to the noisy raw measurements. Much more
accurate and robust results can be obtained from the filtered orientations angles. The complementary
filter shows significantly lower variances of the position and orientation errors and no offset error.
Therewith, the proposed analytic algorithm enables to actually calculate the manipulator platform’s
pose even under dynamic conditions. The risk of confusion between the two assembly modes never
existed during the experiments since solution I, provided by Equation (45), always corresponds to the
actual pose.

The analytic formulation for calculating the two assembly modes of the manipulator platform
from the linear actuators’ orientations presented in Section 3 can be further generalized. In fact,
in the model of the general planar 3-RPR parallel mechanism, we assumed that the three manipulator
platform joints D, E and F are aligned. This model is sufficiently general to show that the planar 3-RPR
parallel mechanism can have up to six assembly modes. However, it does not correspond to the most
general case where no constraints are given for the base and the manipulator platform joints. In future,
we will focus on finding an analytic formulation for calculating the assembly modes even for this case.

By obtaining a unique solution of the direct kinematics problem without requiring the linear
actuators’ lengths, in future, it is possible to actually benefit especially in the control of parallel
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mechanisms. Usually, the measured linear actuators’ lengths are compared with the target lengths that
are provided by inverse kinematics for a given target pose, see Figure 14a. Due to the direct kinematics
problem and the existence of singularities in the workspace of parallel mechanisms, we cannot
guarantee that the linear actuators’ lengths correspond to only one pose and it is possible that the
manipulator platform is in (or moves to) a different pose than expected. This problem can be solved
by using more suitable coordinates, for example, the linear actuators’ orientations. When the direct
kinematics problem provides a unique solution or, in this case, the two solutions are far away from each
other, we can ensure that the manipulator platform always moves to the target pose. Figure 14b shows a
pose control concept where the linear linear actuators’ orientation angles ϕ are used. For a given target
pose ptarget, the target orientation angles ϕtarget can be calculated from inverse kinematics. They can
be compared with the measured orientation angles ϕis and the required deviation of the orientation
angles ∆ϕ can be calculated and given to the controller, for example, a PID controller. The controller
then calculates an appropriate output u for the system that, in turn, produces the system output. Using
the proposed sensor concept, the system output can be measured, for example, with IMUs mounted
on the linear actuators. These measurements are filtered and finally compared with the new target
orientation angles. In contrast to usual control concepts where we cannot guarantee that the pose
that belongs to the measurements, in general, the linear actuators’ lengths, is actually the target pose
(indicated by the dashed line in Figure 14a. However, by using the proposed control concept shown
in Figure 14b, we actually can. In this context, controllability of the robot is essential. Briot et al. [76]
proposed an interesting approach to the analysis of the controllability of parallel mechanisms.

inverse kinematics
ptarget ρtarget

controller
∆ρ

systemu y

measurements

−
ρis

direct kinematics

−
pis

(a)

inverse kinematics
ptarget ϕtarget

controller
∆ϕ

systemu y

measurements
ϕis

−

direct kinematics

−
pis

(b)

Figure 14. Conventional (a) and proposed control concept (b) for controlling the manipulator platform’s
pose of a parallel mechanism. The conventional control concept uses the linear actuators’ lengths,
whereas the proposed control concept uses the linear actuators’ orientations. In contrast to the
conventional control concept, the proposed control concept can guarantee an analytic solution of
the direct kinematics problem.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-6581/8/3/72/s1,
Video S1: Demonstration_Video_3RPR. A video including the dynamic experiment, the Matlab code and other
information are available online at https://github.com/stefanschulz85/Assembly-Modes-of-a-3-RPR-parallel-
Mechanism-when-Using-the-Linear-Actuators-Orientations (doi:10.5281/zenodo.3240459).
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