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Abstract: Time constraints is the most critical factor that faces the first responders’ teams for search
and rescue operations during the aftermath of natural disasters and hazardous areas. The utilization
of robotic solutions to speed up search missions would help save the lives of humans who are in
need of help as quickly as possible. With such a human-robot collaboration, by using autonomous
robotic solutions, the first response team will be able to locate the causalities and possible victims
in order to be able to drop emergency kits at their locations. This paper presents a design of
vision-based neural network controller for the autonomous landing of a quadrotor on fixed and
moving targets for Maritime Search and Rescue applications. The proposed controller does not require
prior information about the target location and depends entirely on the vision system to estimate the
target positions. Simulations of the proposed controller are presented using ROS Gazebo environment
and are validated experimentally in the laboratory using a Parrot AR Drone system. The simulation
and experimental results show the successful control of the quadrotor in autonomously landing on
both fixed and moving landing platforms.

Keywords: UAV; neural network; intelligent control; ROS; unmanned aerial vehicles; search
and rescue

1. Introduction

Search and rescue operations (SAR) in hazardous and hard-to-access spots are critically
constrained with time limits; any time delay may result in dramatic consequences and the losses
of lives. It is of utmost importance that the first responder’s team search and reach the trapped victims
and persons in danger within the shortest possible time to save their lives. However, the SAR missions
can get more complicated practically in challenging environments such as avalanches, oceans, forests,
volcanoes, and hazardous areas due to the irregular morphologic nature of the environment as well
as threats to the lives of the rescue personnel. Studies over the past decade have established the
utilization of Unmanned Aerial Vehicles in SAR missions where a considerable amount of literature
has presented system design of combined UAVs and Unmanned Ground Vehicles UGVs in reaching
victims, referred to as targets, within the minimum possible time and to assist the overstretched first
responders and prevent putting their lives at risk while reaching the targets at low operating costs.
UAVs can be programmed to fly autonomously or can be manually controlled from a ground station
in various applications. UAVs are agile and fast and can reach targets with the minimum involvement
of human operators. UAVs can operate at high altitudes, stands strong winds and low temperatures,
thus enabling them to fit to fly at various operating conditions. With proper embedded systems and
equipment, UAVs can fly during the day and night and can carry payloads such as emergency kits
that can be dropped at target locations [1–4].
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In disastrous and hazardous areas, there are always barriers that make SAR missions more
challenging when using UAVs. As an example of such barriers, in maritime SAR missions, the winds
and speed of the currents of oceans would complicate the search mission and may increase the
risk of losing the victims or failing to rescue them [3,5,6]. An efficient solution is to design a UAV
swarm system for SAR operations. Swarm systems have been found efficient in SAR missions when
incorporated by different robotic systems such as Unmanned Ground Vehicles (UGVs) and Unmanned
Surface Vehicles (USVs) along with UAVs. Several studies have revealed swarm-based solutions to
overcome such challenging situations by designing cooperative and cognitive UAV swarms with
dynamic search algorithms based on the last known location of the humans [7–9]. Reference [10]
has reported an optimal cooperative cognitive dynamic search algorithm for UAVs used in SAR
missions. The authors have utilized the elements of game theory as an enabling function for developing
a dynamic search pattern. In maritime SAR missions, UAVs are utilized to detect moving victims
in tides and waves of the ocean during the aftermath of sinking ships or burning oil tankers and oil
rigs. A marine SAR system has been proposed in Reference [11] using UAVs, UGVs and Unmanned
Surface Vehicles (USVs) to locate and rescue victims in offshore marine SAR missions. The UAVs are
responsible for locating and tracking moving victims in the ocean and sending the location information
to the USVs and the control unit to execute the rescue procedure. A review on the control methods for
multiple UAVs and the system design architectures for various UAV swarm-based applications has
been reported in References [12,13]. The authors have illustrated format methods in resilient system
designs that are applicable to wide UAV-based applications but more specifically towards multi-UAV
control in uncertain, dynamic and hazardous environments.

An artificial neural network (ANN) controller for the autonomous landing of a UAV on a ship has
been presented in [14]. The authors have trained the ANN to identify the helipad corner points for
landing by using a video feed from an onboard camera on the UAV and to calculate the orientation
and distance to the landing spot. Simulation results were illustrated and have shown the successful
control of the UAV to precisely land on the target within an accuracy of ±1%.

An adaptive sliding mode relative motion controller for the autonomous carrier landing of a UAV
has been designed and implemented in Reference [15] for a fixed wing UAV. The UAV model was
controlled using a 6 degrees of freedom (DOF) relative motion model. The controller demonstrated
a good performance in simulation by driving the UAV within the required trajectory and attitude.
An artificial neural network controller has been designed an ANN to track a real-time object and to
detect and autonomously land on a safe area without the need for markers [16]. The proposed controller
estimates the attitude and computes the horizontal displacement from the landing area. Simulations
were carried out and were experimentally verified showing the successful control of the UAV. In
addition, an artificial neural network direct inverse control (DIC-ANN) to control a quadrotor UAV
dynamics has been presented and applied in Reference [16]. The authors have presented a comparative
study between the performance of the DIC-ANN and PID controller on the UAV attitude and dynamics.
The performance of the DIC-ANN controller was superior to the performance of the PID and they
have elaborated that using ANN controller will support the autonomous flight control of the UAVs.
A comprehensive method for an automatic landing assist system for fixed-wing UAVs has been
proposed in Reference [17]. The method is based on markers identification on a runway for fixed-wing
UAVs where the camera locates the markers as object points for perspective-n-points (PnP) solution
with pose estimation algorithm. Simulations were carried out and a successful control and detection of
the markers were achieved.

A novel design of a vision-based autonomous landing of a UAV on a moving platform has
been reported in Reference [18]. The novelty of the presented approach relies on using onboard
visual odometry and computations without using motion capture systems for the state estimation and
localization of the platform position. Additionally, the authors have stated that with their state-of-art
computer vision algorithm, no prior information of the moving platform is required to execute the
autonomous landing algorithm. The proposed algorithm has been simulated using a Gazebo and
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Rotors simulation framework in the Robot Operating System (ROS). The moving target speed was
varied and the path planning and auto-landing system has been tested to work correctly. The authors
have carried out experimental verification of their proposed auto-landing system and successful results
were reported.

A model predictive control algorithm for autonomous landing of a UAV on moving platforms
has been used in the literature [19]. The algorithm was designed and simulated using MATLAB
environment followed by an experimental setup that proved successful attempts on landing on
moving platforms of various speeds and trajectories. The model predictive control strategy requires
a predicted path of the moving target to be able to land correctly on the target. This is achieved via
the live feedback from the motion capture system where the inputs are fed into the model predictive
controller to estimate the required landing trajectory. With the current experimental setup, the necessity
of having a motion capture system for estimating the landing trajectory limits the system to work
indoor only.

An autonomous landing of a quadcopter on a ground vehicle moving at high speeds has been
reported in Reference [20]. The authors demonstrated the efficiency of their control strategy by
extensive experiments with the vehicle moving at the highest possible speed of 50 km/h. The system
architecture consists of low-cost and commercially available sensors as well as a mobile phone placed
on the landing pad to transmit GPS data for the localization and estimation of the vehicle position
relative to the quadcopter. A simple Proportional-Derivative (PD) controller is used for the autonomous
landing mode. The controller of the system was tuned manually during simulations and adjusted
accordingly during the experiments. In addition, a Kalman filter is used for estimating position,
velocity and acceleration of the moving target based on the received GPS data. A high processing
onboard computer is placed on the quadcopter to carry out computations within a short and reliable
time. Collectively, it can be observed that there exists a body of literature presenting research on the
autonomous landing of UAVs on stationary targets. However, the autonomous landing on moving
targets still poses a challenge and there remains a paucity of its research work [19]. In addition, most of
the reported work on the autonomous landing of moving targets rely on prior information from
external infrastructures such as motion capture and GPS systems for indoor and outdoor navigation
and localization, respectively. In view of all the studies that have been mentioned, overall these
studies highlight the need for further contributions toward the autonomous landing of UAVs on
moving targets.

This research aims to contribute to the growing area of research of UAVs in a plethora of
applications by presenting a vision-based intelligent neural network controller for the autonomous
landing of UAV on static and moving targets for maritime SAR applications. The novelty of the
developed controller relies on its simple yet applicable design for the autonomous landing on static
and moving targets with no prior information from external infrastructures of the target locations.
The paper is divided into four main sections. The first section presents the quadrotor system modelling,
section two presents the autonomous landing controller design, section three illustrates the simulation
results and, lastly, section four illustrates the experimental results and discussion.

2. Quadrotor System

In this section, the quadrotor system modelling is presented. The Newton–Euler derivation
method is utilized to describe the quadrotor equations of motions with the translational and rotational
dynamics. Table 1 provides the definition of the variables used in modelling the quadrotor system.
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Table 1. The nomenclature.

Symbol Definition

g Acceleration due to gravity
φ Roll angle
θ Pitch angle
ψ Yaw angle
Ωi Propellers angular rates
b Thrust factor
d Drag factor

Ixx Iyy Izz Inertia moments
l Arm length

The detailed model derivation has been presented in Reference [21] with the system dynamic
equation defined as

f (X, U) =



g− (cosφ cos θ) 1
m U1

(cosφ sin θ cos ψ + sin φ sin ψ) 1
m U1

(cosφ sin θ sin ψ− sin φ cos ψ) 1
m U1.

θa1
.
ψ + b1U2.

φa2
.
ψ + b2U3.

θa3
.
φ + b3U4


(1)

where
a1 = (Iyy − Izz)/Ixx, a2 = (Izz − Ixx)/Iyy

a3 = (Ixx − Iyy)/Izz, b1 = l/Ixx, b2 = l/Iyy, b3 = 1/Izz
(2)

and system inputs are defined as
U1 = b(Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4)

U2 = bl(Ω2
2 −Ω2

4)

U3 = bl(Ω2
3 −Ω2

1)

U4 = d(−Ω2
2 −Ω2

4 + Ω2
3 + Ω2

1)

 (3)

3. Intelligent Controller Design

In this section, a vision-based hybrid intelligent controller is developed for the autonomous
landing on targets. The targets are defined by April tag markers. The test-bench UAV used in this
research is programmed to have three operating modes. First, the UAV is commanded to operate in
the exploration mode where it follows a predefined path to find possible targets using the downward
facing camera. Once a target is detected, the target tracking mode will be activated to have the UAV
tracking the target. After locating and tracking the target, the UAV will enter the landing mode where
it will gradually descend to the marked area.

The hybrid controller consists of a neural network controller with a PID controller. Figure 1
presents the controller system architecture. The neural network controller is developed in an inner-outer
loop scheme with a PID controller for the autonomous landing on the target. At this stage of the
research, the PID controller is tuned heuristically using the Zeigler-Nichols tuning method. To solve
the previous control problem, we calculate the kinematic control vector:[

θd φd
.
ψd

.
Zd

]T
(4)

This minimizes the error vector, defined as
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E =


ex

ey

eψ

ez

 =


x− xd
y− yd
ψ− ψd
z− zd

 (5)
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Figure 1. The control system architecture.

The neural network controller is a three-layer feedforward neural network and the output vector
is given by the following equations:

z2 = W2E
l2 = g(z2)

z3 = W3l2

l3 = g(z3)

(6)

where l2 and l3 ∈ R4 are the hidden and output layer vectors respectively, W2 and W3∈ R4×4 are the
hidden and output layer weight matrices, respectively. The activation function is a sigmoid function
µ(.) and is defined as

g(x) =
1

1 + e−x (7)

The weights are obtained by using a supervised learning mechanism; the training process aims to
minimize the error between the user input commands and the kinematic output vector of the neural
network depending on the quadrotor’s state. The neural network is illustrated in Figure 2.
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The training process is performed as follows:

• Data Collection

The quadrotor is operated and controlled manually to hover and land on the target with different
initial starting positions and orientations. During the data collection, data synchronization is applied
to ensure that every state change is caused by the captured control command.

• Training Phase

The backpropagation algorithm is used to calculate the gradient descent in every iteration to
minimize the error vector. Figure 3 illustrates the data collection and training phases of the neural
network controller.
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4. Simulation Results

In this section, the simulation scenario and results are presented. The Robotics Operating
System (ROS) framework was used with Gazebo simulator to simulate the developed controller [22].
The workstation specifications were a PC with Ubuntu Linux operating system that has I5 2.4 GHz
processor, 6 GB RAM, and an NVIDIA GEFORCE 840M graphical card.

In ROS, multiple codes, defined as nodes, can run simultaneously to control the system with
topics and messages passing between different codes as a feedback and attributes that can be used in
one another. Hence, the simulation software can be divided into the following code packages:

• A controller package: contains the neural network controller forward propagation implementation.
• Data collection package: to perform data logging and synchronization of the captured data.
• Training package: trains the neural network model with the collected data and obtains the

weight matrices.
• Manual operation: drives the quadrotor manually using the keyboard to land on targets for

data collection.
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• ARdrone autonomy package: an open source package used to receive the input commands
from the control package and sends it to the ARdrone model plugin used by the Unified Robot
Description File (URDF) format inside the Gazebo simulator.

• Ar_track_alvar package: an open source package used to estimate the position of the landing
pad with the markers using the downward camera feed in which it calculates the distance to the
marker and the defined x,y,z points of the detected landing pad.

• TUM_simulator package: a package that was developed by the TUM UAV research group that
contains the ARdrone URDF files, sensors plugin, IMU, cameras, and sonar of the ARdrone.

All the previous packages are implemented as ROS nodes that can communicate with each other
using specified topics in a publisher-subscriber pattern.

Remark 1: For the experimental part, all the previous packages will be used except the
TUM_simulator package, which is replaced by the real drone that communicates with the laptop
via a WIFI link.

Autonomous Landing on a Fixed Target

As previously mentioned, the quadrotor is programmed to have three operating modes:
the exploration, target tracking, and autonomous landing modes. In this simulation scenario,
the quadrotor takes off from an initial starting position and then starts the exploration mode with
a predefined search pattern until a target is detected. Once the target markers are identified, the
quadrotor starts the tracking mode with the Ar_Track_alvar package to estimate the position and
orientation of the target and, hence, the neural network controller, the autonomous landing phase uses
the published target positions to drive the drone to land precisely on the target.

For the exploration mode, the drone is commanded to follow a predefined trajectory using
reference angles. Figures 4 and 5 illustrate the pitch angle and the roll angle references, respectively.
In addition, the vertical velocity reference is presented in Figure 6. The controller has to drive
the quadrotor system towards the given reference signals to explore the area and to detect the
landing platform.

The simulation of the system resulted in a successful landing on the fixed target as shown in
Figure 7. The resulting simulation 3D exploration trajectory of the quadrotor is illustrated in Figure 8
proving the controllability of the system and the ability of the controller to drive the quadrotor to the
defined reference angles. Furthermore, Figures 9 and 10 present the convergence of the x–y positions
respectively to the target position after the detection of the landing platform. The convergence of the
quadrotor altitude is illustrated in Figure 11, which shows the gradual landing of the quadrotor to
the target platform. Hence, the designed intelligent controller has used the published target positions
from the target tracking package to drive the drone to land successfully on the target position.
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The simulated roll and pitch angles are presented in Figures 12 and 13, respectively, and show that
the angles are bounded and the coupling phenomena of the gyroscopic effect have been successfully
eliminated. It can be observed that the controller maintains the system angles brought back to
equilibrium rapidly, thus demonstrating the agility of the drone with the proposed controller.
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5. Experimental Validation and Results

Autonomous Landing on a Moving Target

In this simulation scenario, the quadrotor is simulated to track and land on a moving target.
The moving target is assumed to be a landing pad on a mobile robot that is moving in a straight line.
The quadrotor takes off and then starts the autonomous exploration mode to find the target. Once the
target is detected, the target tracking package is activated to estimate the target’s position relative to
the quadrotor’s position and thus calculates the x,y,z position points of the target that are fed into the
system controller. As a first step, the system has been simulated in a Gazebo environment and the
quadrotor was able to land successfully on the landing pad as shown in Figure 14.

To demonstrate the feasibility of the proposed autonomous landing controller, an experimental
setup was carried out using a Parrot© AR Drone quadrotor with ROS packages to conduct flight tests
for autonomous landing on a moving platform in the real world. The target was placed on an iRobot
Create mobile robot platform to enable a programmed motion of the target and the flight tests have
been conducted in an indoor environment with the experimental setup illustrated in Figure 15.
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Figure 14. The autonomous landing on a moving target simulation in a Gazebo environment showing
the start of the simulation in (a) until landing on the target in (e).
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Figure 15. The experimental setup diagram with a real quadrotor system.

The flight data have been recorded and fed over the wireless connection into the computer running
ROS and the recorded 2D and 3D trajectories of the quadrotor and the mobile robot are presented in
Figures 16 and 17, respectively, showing the successful landing on the moving target. In addition,
the roll, pitch and yaw angles are presented in Figures 18–20, respectively. It can be noted that the
quadrotor has taken off and followed the predefined exploration trajectory to search for the moving
landing platform whilst the tracking algorithm is executed. The platform was then detected and
the quadrotor started to follow a gradual descending trajectory for a smooth landing on the moving
platform. The recorded angles of the quadrotor system are bounded, showing the robustness and
feasibility of the proposed intelligent controller.
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6. Conclusions

Aiming to contribute towards the design of the autonomous landing controller of UAVs on
moving targets in SAR applications, this research presents a vision-based intelligent neural-network
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controller for autonomous landing on fixed and moving landing platforms. The proposed controller
neither requires prior information of target positions nor external localization infrastructures nor
relies mainly on vision system to locate the target during the exploration phase. Simulations were
carried out in a Gazebo environment and the results have proven the feasibility of the implemented
controller. In addition, the controller has been implemented on an AR Drone quadrotor to validate the
design experimentally. The recorded flight data and results confirm the feasibility of the implemented
intelligent controller to autonomously drive the quadrotor to land on a moving target. Notwithstanding
the limited flight scenarios in this research, the research offers a valuable contribution to utilizing
a simple neural network based controller to land on fixed and moving targets. Further flight scenarios
will be considered as future work of this research to evaluate the performance and the effectiveness of
the proposed control system under various operating conditions.
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