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Abstract: This article describes an experimentally tested approach using semi-supervised learning for
generating new datasets for semantic segmentation of vine trunks with very little human-annotated
data, resulting in significant savings in time and resources. The creation of such datasets is a crucial
step towards the development of autonomous robots for vineyard maintenance. In order for a mobile
robot platform to perform a vineyard maintenance task, such as suckering, a semantically segmented
view of the vine trunks is required. The robot must recognize the shape and position of the vine
trunks and adapt its movements and actions accordingly. Starting with vine trunk recognition and
ending with semi-supervised training for semantic segmentation, we have shown that the need for
human annotation, which is usually a time-consuming and expensive process, can be significantly
reduced if a dataset for object (vine trunk) detection is available. In this study, we generated about
35,000 images with semantic segmentation of vine trunks using only 300 images annotated by a
human. This method eliminates about 99% of the time that would be required to manually annotate
the entire dataset. Based on the evaluated dataset, we compared different semantic segmentation
model architectures to determine the most suitable one for applications with mobile robots. A balance
between accuracy, speed, and memory requirements was determined. The model with the best
balance achieved a validation accuracy of 81% and a processing time of only 5 ms. The results of
this work, obtained during experiments in a vineyard on karst, show the potential of intelligent
annotation of data, reducing the time required for labeling and thus paving the way for further
innovations in machine learning.

Keywords: semantic segmentation; object detection; semi-supervised learning; intelligent data
annotation; vine trunk segmentation; agriculture robotics

1. Introduction

In today’s world, rapid technological progress and automation offer the opportunity
to introduce innovations in many industries. Agriculture, as one of the most important
sectors of the economy, is no exception. Considering that vineyards are sensitive to many
environmental factors and require constant care and attention, it is even more important
to improve and simplify the traditional methods of viticulture. The HEKTOR project
(hektor.fer.hr (accessed on 18 January 2024)). Ref. [1] aims to develop an autonomous
robot for the care of vineyards, equipped with tools that allow it to perform activities such
as suckering, spraying, and monitoring. This robot is designed to make work easier in
small and medium-sized vineyards in order to solve the problem of tedious and often
dangerous manual labor [2]. Extensive work has already been carried out in the field of
object detection in the vineyard for robot localization, autonomous task execution [3], and
navigation [4]. Systems for efficient spraying [5] and the necessary hardware for vine
suckering [6] have been developed.
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One of the most important aspects for the success of this type of robot is its ability
to understand its environment and interact with it correctly. This includes accurately
recognizing the vine, assessing its state, identifying its shape and position, and adapting
the movements and actions that the robot needs to perform. To achieve this understand-
ing of the environment, advanced computer vision and machine learning methods must
be used, such as object detection and semantic segmentation. In the field of machine
learning, both object detection and semantic segmentation play an important role in a
variety of applications; e.g., medical diagnostics [7,8], autonomous driving [9], and other
industries [10,11]. The goal of object detection is to automatically label and classify each
object in an image with a bounding box, while the goal of semantic segmentation is to
automatically label each pixel in an image with the corresponding semantic class so that
computers can automatically and accurately understand the content of images. Recent
advances in semantic segmentation have largely been achieved by applying deep neural
networks via supervised learning, as evidenced by several studies [12–20]. This also applies
to object detection [21–30].

One of the biggest challenges in machine learning, especially in the context of semantic
segmentation, is the lack of large, fully annotated datasets. Annotating images at the pixel
level requires significant time and human effort, so there is often only a limited amount of
data available for learning. Using a small or limited amount of data can lead to overfitting
and a weaker generalization effect for the algorithms, especially when dealing with diverse
and complex real-world scenes that are outside the range of the training data. For this
reason, these advances are highly dependent on large, fully annotated datasets [31–34]. To
overcome this problem, several labeling-efficient learning techniques have been proposed.
These include semi-supervised learning [35–45], unsupervised learning [46–48], weakly su-
pervised learning [49–56], and the adaptation of synthetic domains to real domains [57–62],
all of which focus on semantic segmentation.

In this article, we explore an approach that leverages existing vine trunk detection
data [63] to generate a dataset that can be used for semantic segmentation of vines with
a minimum of human annotation. There are several approaches that attempt to label
unlabeled data with minimal human effort. A team at Meta AI Research has presented its
Segment Anything system [64], which creates segmentation masks using image embeddings
and prompts. While this approach is very powerful [65,66], our initial tests showed
only mediocre results. We believe that this was due to the low resolution of our inputs.
Further investigation and experimentation are needed, but this is beyond the scope of
this study. A team at the Rochester Institute of Technology has developed an approach
that uses semi-supervised learning together with active learning [67] to transfer labels
from a smaller dataset to a larger one. Another approach is to use generative models
(GANs) [68] to generate fake examples that lead to confusion regarding the predictions of
labeled and unlabeled examples. This encourages the model to generalize as it has to learn
to distinguish between fake and real objects. Semantic segmentation with semi-supervised
learning is typically treated with a student–teacher architecture [44,69] and in recent years
in combination with contrastive learning [70,71]. The approach used in this work combines
semi-supervised learning and contrastive learning with error localization networks [45],
which focus the model and allow it to quickly fix common errors. This method is compared
with other learning methods for semantic segmentation in the context of mobile robotic
systems in Table 1. First, cherry-pick objects to segment refers to the ability of our method
to select the objects to be segmented. This saves processing time as we do not segment
objects that we are not interested in. Second, recognizing individual vines is important
because semantic segmentation methods output a binary image containing all vine trunks,
which means that an additional step is required to separate individual instances of vine
trunks. Third, class interpretability is a problem that arises with unsupervised segmentation
methods. Since we do not provide ground truth data to the training method, there is no
reason why the method should not learn to segment, for example, the shadow of the vine
trunk and the vine trunk. There is no way to accurately interpret the segmented class.
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Finally, a small memory footprint is an important requirement for a mobile robotic system.
While it is possible to have a supervised semantic segmentation model with low memory
requirements, the input resolution would have to be reduced so much that the performance
would degrade significantly. Since our method only segments low-resolution thumbnail
images of recognized objects, the segmentation models can be extremely small. We also
compared existing semantic segmentation methods to determine which is best suited for
use with a mobile robot. The source code developed as part of this research is available at
Supplementary Video S1.

Table 1. Comparison of the available training methods for semantic segmentation and our proposed
method in the context of mobile robotic systems. The green tick shows that a method includes a
certain functionality or feature and the red cross shows that it does not.

Method Cherry-Pick Objects
to Segment

Little Human
Annotation Needed

Detection of
Individual Vines

Class
Interpretability

Low Memory
Footprint

Supervised
semantic segmentation

✗ ✗ ✗ ✓ ✗

Unsupervised
semantic segmentation

✗ ✓ ✗ ✗ ✗

Semi-supervised
semantic segmentation

✗ ✓ ✗ ✓ ✗

Semi-supervised
semantic segmentation

and YOLO object detection
✓ ✓ ✓ ✓ ✓

2. Methodology
2.1. Training YOLOv5 Object Detection Model

The main resource for this research was the publicly available vine trunk object-
detection dataset VineSet [63], which contains about 22,000 annotated color images of six
Portuguese vineyards, including about 2000 annotated thermal images. We could not
use the thermal images in this context and therefore discarded them immediately. The
annotations of the VineSet dataset were created in the Pascal VOC format. Since we were
using the YOLOv5 architecture, we had to use the YOLO annotation format for object
detection. For this reason, a program was developed to convert Pascal VOC .xml files to
YOLO .txt files so that we could use them with the publicly available YOLO project. A closer
look at the dataset shows that VineSet has several problems. A large part of the dataset is
intended for the recognition of grape clusters and does not contain any vine trunks at all.
An example of this can be found in Figure 1a. While it is useful to have negative examples
(i.e., examples that do not contain the target object in the image), too many such examples
(as in this case) can negatively affect the accuracy of the model. Approximately 30% of
the dataset was programmatically filtered out because it did not contain vine trunks. The
proportion of negative examples was reduced to 5% of the total dataset for the reasons
already mentioned. In addition, the dataset contains a large number of unlabeled vine
trunks in the background, as can be seen in Figure 1b,c. This is extremely disadvantageous
for a model of this type, as it will learn that the examples of vine trunks are not really vine
trunks. Furthermore, there are bounding boxes that only cover a very small segment of a
vine trunk, as can be seen in Figure 1d. Such annotations do not represent the kind of objects
we want to recognize and would significantly affect the training results. Unfortunately,
there is no convenient and effective algorithmic method to filter out such examples, so
the entire dataset was filtered manually. In total, about 65% of the images were discarded
for these reasons. About 8000 images remained from the VineSet. In addition to the data
from the VineSet dataset, we used all other manually annotated data collected as part of
the HEKTOR project, which included about 40 images of vineyards in Zelina, 33 images of
vineyards in Jazbina, and 250 images of vineyards on Korčula. Figure 2a–c show examples
of data from VineSet, and Figure 2d shows an example of data from the island of Korčula.
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(a)
_

(b)
_

(c) (d)

Figure 1. Examples from VineSet that negatively affect object detection training. The image in (a) is
intended for grape cluster detection and does not contain vine trunks. The images in (b,c) contain
unannotated vines in the background. The image in (d) contains a very small piece of vine that
is annotated.

For the training, the medium YOLOv5 model was used, which was previously trained
with the COCO dataset. Although there are newer YOLO architectures [29,72], our robot
stack was built with YOLOv5 and the performance proved adequate, so we saw no need
to upgrade to newer architectures. The model was trained for 50 epochs. To improve the
generalization of the model, recommended augmentations were added. Some of these
augmentations were adding Gaussian noise to the image, blurring the image, converting
the image to a monochrome image, rotating the image, flipping the image on the horizontal
axis, cropping the image at different points, and creating mosaics from multiple images. All
these functions are already implemented in the YOLOv5 project and the hyperparameters
that determine how often these augmentations take place are default values in the YOLOv5
project. The training time of 50 epochs was also based on the default training time specified
in the YOLOv5 project. The dataset was split into 80% for training and 20% for validation.
All images were automatically scaled to a resolution of 640 × 480 as that is a default input
size for our medium YOLOv5 model.

The graphs in Figure 3 show that the model reached an mAP_0.5:0.95 of about 68% on
the validation set after 50 epochs. The mAP_0.5:0.95 represents the mean average accuracy
over a range from 0.5 to 0.95 and is the most important metric for evaluating this model. It
represents the average Intersect Over Union (IOU) at different threshold values in the range
from 0.5 to 0.95 in steps of 0.05. In this context, the threshold value means the confidence
level above which the network output is considered to be a detection. The IOU is an
accuracy measure for the prediction of the model, which is calculated as the intersection
between the prediction of the model and the ground-truth labeling divided by the union
of the prediction and labeling. Figure 4 visually illustrates the calculation of this metric.
Visual inspection of the Video S2 Supplementary shows that this model performs very
well. Every nearby vine was recognized, and even distant vines were detected. In addition,
the recognition was stable and consistent. Figure 5 shows some examples of vine trunk
detection from vineyards in Istria that were not included in either the training set or in the
validation set. A look at the graphs in Figure 3 before and after filtering the dataset confirms
that our filtering approach had a significant positive impact on model performance.
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(a)
_

(b)

(c) (d)
Figure 2. Vine trunk detection dataset sample. The images in (a–c) are samples from VineSet, and the
image in (d) is a sample of data from the Korčula vineyard. Red rectangles indicate labeled vines.

(a)
_

(b)
_

(c) (d)
Figure 3. Validation training metrics for the YOLO model before and after dataset filtering. We can
see that in (a) the mAP_0.5:0.95, which represents the mean average precision of the IOU metric over
a 0.5–0.95 range for thresholds, our most important metric, was improved by about 17% after we
filtered the dataset. (b) shows the mean average precision on the fixed threshold of 0.5. (c) shows
precision or how often a model is correct then predicting the target class. (d) shows recall or what
proportion of target classes was identified correctly.
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Figure 4. Representation of the IOU metric. The figure shows two bounding boxes: the model-
prediction bounding box and the ground-truth bounding box. The overlapping region is the intersect
and the combined region is the union.

Figure 5. Sample YOLO detection in a vineyard in Istria that is not present in the original dataset.
Colored rectangles show individual detections, and the text above the rectangles shows the class
(which is always “trunk”) and the detection confidence in a range from 0 to 1.

2.2. Creation of the Data Set

After obtaining a trained model for recognizing vine trunks, we could use it to separate
all the vines from our data into individual images. YOLOv5 was run on the entire VineSet
as well as on annotated and unannotated footage from Korčula collected as part of the
HEKTOR project. Each detection rectangle was converted into a square by setting the
shorter side of the rectangle to the value of the longer side. Squares that crossed the
image boundary during this process were discarded to avoid black columns in the dataset.
All squares were then cropped from their respective images and scaled to a resolution of
128 × 128 pixels. The reasons for setting the resolution to 128 × 128 are manifold. The main
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reason is the storage space required for the data. At a resolution of, say, 268 × 268 pixels,
the dataset would be four times as large, which would make it much more unwieldy and
training much slower. If we keep the amount of data small, we can create prototypes, test
ideas, and train much faster.

Using this method, 37,913 images were collected, each containing a centered vine
trunk: 34,218 from VineSet with the sample shown in Figure 6a and 3695 from Korčula with
the sample shown in Figure 6b. We can see that some images contained more vine trunks,
but we were only interested in the vine trunks in the center of the image; i.e., we only
wanted the model to determine the segmentation of the centered vine trunk because other
vine trunks, if detected, would have their own images and their own segmentations. If the
model were to segment all vine trunks in an image, it would have to implicitly perform
object detection, which is not its task. By letting the model determine only the segmentation
of the centered vine trunk, we simplify its task considerably. Next, a random sample of
300 images was manually annotated using the online application RoboFlow [73], which
provides a set of tools for annotating data for machine learning purposes. In our case, we
used the autoselect tool, which allows the user to create binary masks with just a few clicks
using basic computer vision methods, significantly speeding up the process.

(a)
_

(b)

Figure 6. Sample of cut-out images of vine trunks from (a) VineSet and (b) the Korčula vineyard
using YOLO detection. We can see that each image has a centered vine trunk. It does not matter that
there are other trunks in the image as we were only focused on the centered one.
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2.3. SSL-ELN

The method used to create our dataset was a semi-supervised learning method called
Semi-Supervised Semantic Segmentation with Error Localization Network (SSL-ELN),
which was introduced in [45]. With this method, we can train a semantic segmentation
decoder with a small set of annotated data and a large set of unannotated data. The
SSL-ELN method is based on two segmentation networks: the student network, which
is the final model we train, and the teacher network, which is used to generate pseudo-
labels. Pseudo-labels are a technique commonly used in semi-supervised learning to
apply artificial labels to unlabeled data based on the prediction of the model. The student
network is trained with the teacher’s pseudo-labels in two ways: through self-learning and
contrastive learning. Since models often show limited performance when learning with
small amounts of labeled data, the use of pseudo-labels can improve the model’s ability to
generalize but also carries risks due to their inaccuracy. To mitigate these risks, the SSL-
ELN method introduces the Error Localization Network (ELN), which acts as an auxiliary
component for identifying potentially inaccurate pseudo-labels in unlabeled images and is
integrated with self-learning and contrastive learning approaches, ensuring performance
improvements. The ELN helps the model to focus on areas with a high probability of error
in segmentation, reducing the damage that inaccurate pseudo-labels can cause. In addition,
the ELN is trained with a special learning strategy that simulates different and highly
probable errors that may occur during segmentation, improving the model’s adaptability
and generalization. The benefits of the SSL ELN method have been tested with popular
segmentation datasets such as PASCAL VOC 2012 [32] and Cityscapes [31], where the
method outperformed the existing best approaches with most test settings [45].

When we tried to train this model, we ran into the same problem again: lack of data.
Specifically, it was necessary to split our data into a training set and a validation set in order
to evaluate the performance of the model. Considering that we only had 300 annotated
images, a standard split of 80% for training and 20% for validation would leave us with only
60 images in the validation set. Due to the small validation set, we could not effectively
evaluate the model, and if we increased the validation set, we would have to reduce the
training set and risk significantly limiting the effectiveness of the method. As can be seen in
Figure 7, the validation metric saturated to about 85% very quickly after the start of training
and provided no more information after that. For this reason, we could not determine when
we should stop training to avoid overfitting. We did not know whether the last iteration of
training was better or worse than the current one.

Figure 7. Graph of the metrics on the validation set during the training of the SSL-ELN model. Since
our validation set is too small, our validation metrics become saturated shortly after training begins
and provide no additional information about the model’s ability to generalize.

The solution to this problem is to train the model “blindly”; i.e., to let the model train
significantly longer than the validation metrics suggest, as shown in Figure 7. This ensures
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that overfitting actually occurs. The usual approach in machine and deep learning is to
stop training when the loss in the validation set reaches a minimum or the accuracy of the
validation set reaches a maximum to avoid overfitting, but due to the lack of validation
data, this was not possible. When we tested this overtrained model on unlabeled test data
not included in the training set, we saw that the model mainly predicted noise and did
not generalize, as shown in Figure 8. However, when we tested this overfitted model with
unlabeled training data, we saw that the model had learned to segment the vines from
the training data. These results directly indicated that overfitting had indeed occurred. In
Figure 9, examples of the model’s results with the unlabeled training set are shown. Since
the goal of this step was not to train a decoder that accurately segments the vines, it did
not matter that the model did not generalize because we could process the entire unlabeled
dataset with this model to produce an annotated dataset for semantic segmentation.

Figure 8. An example of the output of the SSL-ELN method using data from the validation set.
The upper row shows the input images and the lower row shows the corresponding binary images
generated by the SSL-ELN method. We can see that the decoder generated noise and that the model
did not generalize.

Figure 9. An example of the output of the SSL-ELN method using data from the training set. The
first row shows the input images and the row in the middle shows the corresponding binary images
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generated by the SSL-ELN method. The lowest row shows the outline of the output for the input
image for the purpose of visualization. We can see that the model indeed learned the training set and
could segment it effectively.

2.4. Dataset Filtering

Visual inspection of the generated dataset revealed a number of problems. Some
examples consisted entirely of noise, and some had accurate detection and noise. We
wanted to filter out examples that contained significant amounts of noise or random
detections, as these were false negatives that could potentially have a negative impact on
the performance of the model. A very primitive but effective method for filtering out noise
data in this case would be to look at the number of white pixels in the image. Figure 10
shows a histogram of the number of white pixels in the labels of the entire dataset. We can
see that there is a clear jump around the value 1200. If we isolate the examples with less
than 1200 white pixels (Figure 11), we can see that the vast majority of the examples were
actually noise. The problem arose from very thin vine trunks that also had a small number
of white pixels but were correctly labeled. The number of such examples was so small that
it was practical to manually isolate these examples and leave them in the set.

Another way to filter out noise data would be to analyze the annotations according
to the number of contours they contain. The histogram in Figure 12 shows that most
images contained one or two contours. The red line represents a standard deviation from
the average and shows us that images with one or two contours made up the majority
of the set. Therefore, we can consider data that fell outside of the standard deviation
as exceptions. If we isolate all images that have three or more contours (Figure 13), we
can see that they all contain significant amounts of noise. We can discard such images.
About 2500 examples were discarded using these methods. The fact that these steps require
human intervention to filter the data is not ideal but is only a minor shortcoming. The
filtering methods automatically isolate candidates that should be discarded, and a human
can tell at a glance whether an image is random noise or a valid segmentation. Compared
to the manual annotation of 37,913 images, this is a considerable saving in time.

Figure 10. Histogram of the number of white pixels in the entire generated dataset with the threshold
value marked in red below which the data were discarded. The threshold value of 1200 was chosen
because a sudden increase in the number of white pixels could be seen in the histogram.
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Figure 11. Example of SSL-ELN-generated annotations with 1200 white pixels or less. Some remnants
of labeled vine trunks can be seen, but the images cannot be considered valid annotations due to
noise and random white blobs in the images.

Figure 12. Histogram of the number of contours in the generated dataset. It can be seen that most of
the images had one or two contours. The red line represents a standard deviation from the mean and
shows us that images with one or two contours made up the majority of the set.

Figure 13. Examples of generated annotations with three or more contours. There are some remnants
of labeled vine trunks, but the images cannot be considered valid annotations due to noise and
random blobs present in the images.



Robotics 2024, 13, 20 12 of 20

2.5. Semantic Segmentation Training

Given the large number of available semantic segmentation models, selecting the
optimal architecture for our topic was a challenging task. Among the most important
criteria that helped us select the most suitable model were accuracy, prediction speed, and
memory requirements; i.e., the amount of VRAM the model occupied on the graphics
card. We had to select the desired pre-trained encoder and decoder architecture. To find
out which model best fulfilled these criteria, we had to run experiments with different
combinations of architectures and decoders.

The publicly available project called Segmentation models with pre-trained backbones
in PyTorch [74] provided us with a very simple API to train and run different semantic seg-
mentation models and allowed us to try out different pre-trained encoders. We considered
the following model architectures: UnetPlusPlus [16], MANET [17], DeepLabV3Plus [13],
PAN [20], Link [18], FPN [75], and PSP [19]. The pre-trained encoders we tried were mo-
bilenet_v2 [25] and efficientnet-b0 [26]. These encoders were chosen for their small size and
high efficiency, which makes them suitable for mobile robot applications. Efficientnet-b0
has only four million parameters, while mobilenet_v2 has only two million parameters.

The evaluation was carried out by grid search using combinations of encoders and
decoders. We had a total of 12 combinations and trained one after the other. The data
were split into a training set of 80% and a validation set of 20%. Each training operation
took 40 epochs with a mini-batch size of 32 and a learning rate of 0.0001 using the Adam
optimizer [76]. The Adam optimizer is a stochastic gradient descent method based on
adaptive estimates of first- and second-order momentum that achieves faster convergence
than standard methods. The training uses the so-called dice loss [77]. The dice loss is
a more manageable version of the IOU metric. It is useful for semantic segmentation
because it normalizes the overall class size in the image. In ordinary binary cross-entropy
loss, segmentations that occupy more space in the image are implicitly considered more
important, while smaller segmentations tend to be ignored. Normalization by segmentation
size gives a more accurate measure of similarity between prediction and label. The dice
loss is represented by the following equation

DICE = 1 − 2 ∑N
i pigi

∑N
i p2

i + ∑N
i g2

i
(1)

where pi is the prediction of the pixel i and gi is the ground truth; i.e., the label of the pixel
i. All training and evaluations were carried out with an RTX 2080Ti graphics card.

3. Evaluation of Results and Discussion

Table 2 shows the evaluation metrics after training each model. Figure 14 shows the
data from the last two columns of Table 2 in a graph where the x-axis is the processing time
and the y-axis is the value of the IOU metric with the validation set. It can be seen that
the PSP model with both encoders was significantly faster than all other models. The PSP
model with the mobilenet_v2 encoder achieved an average processing time of 4.54 ms, which
was 2.75 times faster than the Link model with the mobilenet_v2 encoder, which was next in
line. We also see that the efficientnet-b0 was about 8.75 ms slower than the mobilenet_v2 in
all models except PSP, making mobilenet_v2 a more suitable encoder for this application. Of
course, there is always a trade-off. All models except PSP had an accuracy between 83%
and 84%, while PSP achieved an accuracy of about 81%. Since the intention was to use
these models in mobile robotic systems, the efficiency of the models was one of the most
important metrics. A decrease in accuracy of about 3% was thus much less important than
the speedup provided by the PSP model. Therefore, we can conclude that the PSP model
with the mobilenet_v2 encoder offers a compromise that makes it the most suitable model
for our application.



Robotics 2024, 13, 20 13 of 20

Figure 14. The data from Table 2 are displayed in a format that compares the speed of the model
x-axis and its accuracy with validation data y-axis. The color represents the architecture of the model,
while the shape of the dot represents the selected encoder. We can see that the efficientnet-b0 encoder
significantly reduced the processing time in all models. We can also see that the PSP model was
2.7 times faster than all others, but only 3% worse.

Table 2. Evaluation metrics for the combination of model and encoder. The best values in each
column are highlighted in bold. Processing time was calculated by averaging the measured time of
100 samples with a mini-batch size of 100 and expressed in milliseconds.

Model Encoder Train Train Valid Valid Processing
Dice Loss IOU Score Dice Loss IOU Score Time (ms)

UnetPlusPlus Mobilenet_v2 0.08146 0.8495 0.08728 0.8398 15.39
MANET Mobilenet_v2 0.08404 0.8452 0.0889 0.8371 16.65

DeepLabV3Plus Mobilenet_v2 0.08487 0.8446 0.0909 0.8346 13.27
PAN Mobilenet_v2 0.08388 0.8467 0.09122 0.8346 14.69
Link Mobilenet_v2 0.08524 0.8432 0.09108 0.8335 12.46
PSP Mobilenet_v2 0.1045 0.8121 0.1069 0.8084 4.54

UnetPlusPlus Efficientnet-b0 0.07869 0.8543 0.08734 0.8397 24.19
MANET Efficientnet-b0 0.08358 0.846 0.08952 0.836 25.4

DeepLabV3Plus Efficientnet-b0 0.08452 0.8451 0.08983 0.8364 21.93
PAN Efficientnet-b0 0.08442 0.846 0.09079 0.8356 23.53
Link Efficientnet-b0 0.08518 0.8433 0.09183 0.8322 21.31
PSP Efficientnet-b0 0.1128 0.7986 0.1138 0.7972 6.85

3.1. Final Vine Trunk Segmentation Process

Once we had a well-trained semantic segmentation model, we could combine the
whole process by integrating all the systems we set up. The process is as follows:

1. The image is read from the video or from the camera.
2. The image is pre-processed in a way that is suitable for the YOLO model.
3. From the YOLO model, we get vine trunk detections. We memorize the positions and

shapes of the detections.
4. We reshape the detections into squares and cut out the vine trunks from the image.
5. The cut-out images are segmented using the trained PSP network.
6. The segmented binary images are cut out and reshaped so that they have the same

shape as the original detections.
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7. The reshaped binary images are pasted over the original image with a customized
alpha channel to make them transparent.

A diagram of this process is shown in Figure 15. Examples of the results of this process
can be found in Figure 16 and in the Video S3 at Supplementary.

Figure 15. Diagram of the final procedure for segmenting vine trunks. The input image is prepro-
cessed and sent through the YOLO network to recognize the vine trunks in the form of rectangles
shown in red. The rectangles are then converted into squares, cut out from the original image, and
resized to 128 × 128 pixels. The small cropped images are then sent through the PSP model, which
provides binary masks of the vine trunks. These masks are then cropped so that they have the same
shape as the original rectangle, resized to the same size, and inserted into the original image.

(a)
Figure 16. Cont.
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(b)
Figure 16. Examples of the final results of the procedure described. (a) The example shows an image
from Korčula that was not included in the original training dataset. (b) The example shows an
image from Istria that was not included in any dataset. The red lines show the outlines of semantic
segmentation masks generated by the PSP model using the cropped images from YOLO object
detection.

3.2. Limitations and Shortcomings

We can see that some vines were not recognized, especially vines that were either far
away or very thin. This was due to the limited resolution of YOLO object detection. While
the images shown in Figure 16 are relatively large, the images passed through YOLO are
downsampled to a resolution of 640 × 480. This means that distant or very small vine trunks
are simply not displayed with enough pixels to be recognized. However, this limitation
does not have a negative effect on our goal, as only the vine trunks in the immediate vicinity
need to be recognized for the robot to navigate and execute tasks with vines.

Although our data covered a wide range of vineyards and vine trunks, we cannot
guarantee that our method is transferable to all types of environments. It is worth noting
that our models were trained exclusively on data from European vineyards. Therefore,
there is a plausible chance that the efficiency and accuracy of these models will decrease if
they are used in vineyards that are significantly different in structure or contain different
vine varieties. This means that our method may need to be fine-tuned if it is used in a
significantly different environment. While this is not ideal, it is not a major drawback. As
this study shows, more data from different vineyards can be added without requiring a
significant amount of annotation time.

Another shortcoming of our method is the resolution of the segmentation of the vine
trunks. The low-resolution segmentation models were chosen for simplicity and efficiency.
While it would be trivial to increase the resolution of the data and models, this could cause
the model to become so inefficient that it is no longer suitable for a mobile robot platform.
This requires further research.

3.3. Discussion

The approach presented in this article is less elegant than the usual semantic segmen-
tation approach, where the model segments the entire image at once and performs both
object detection and semantic segmentation. It is better suited to low-power mobile robotic
systems such as those used in autonomous robotics. In the case of a vineyard robot, it is not
necessary to segment all the vine trunks at all times. Most of the time, only object detection
is needed for tasks such as navigation, while semantic segmentation is only required for
specific vine trunks in specific situations (e.g., for planning the robotic arm’s movements).
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The proposed approach adapts to this circumstance and allows the robot to semantically
segment vine trunks as needed, which reduces processing time. In this way, we can use
a semantic segmentation model that has a much smaller memory footprint than would
be required to segment the entire image. The more challenging task of recognizing vine
trunks is handled by a dedicated object detection model. With this customized approach,
we achieve a more efficient use of system resources available in low-power hardware.

4. Conclusions

We have developed an approach for generating a new dataset for the semantic seg-
mentation of vine trunks, a crucial step towards the development of autonomous robots
for vineyard management. Starting from vine detection with the YOLOv5 model and con-
tinuing to semi-supervised training of semantic segmentation with the SSL-ELN method,
we have shown that it is possible to reduce the need for human data annotation, which is
usually a time-consuming and expensive process.

One of the main challenges was the lack of high-quality data for vineyard segmenta-
tion. Through a detailed analysis of the existing VineSet dataset, we were able to identify
and address its critical shortcomings, providing a reliable basis for further model training.
Furthermore, by using semi-supervised learning, we were able to train a semantic segmen-
tation decoder with fewer annotated data than normally required, resulting in significant
savings in time and resources. In conducting this research, only 300 vines were annotated
by humans and we created a dataset of about 35,500 images. This represents less than 1%
of the effort that would be required if all images were manually segmented.

Based on the studied dataset, we compared different architectures of semantic segmen-
tation models to find the most suitable model for our application in mobile robotic systems.
After a thorough evaluation, we concluded that the PSP model with the mobilenet_v2
encoder represented the best compromise between accuracy, speed, and memory require-
ments. The results of this study show that it is now possible to annotate data with fewer
and fewer human work hours, contributing to further innovations in the field of machine
learning.

A continuation and further development of this work would be to use the developed
method to annotate full semantic segmentation images, not just image sections. This would
require a much larger semantic segmentation model, which might make it unsuitable
for mobile robotic systems. Furthermore, the system would then no longer be able to
select the objects to be segmented, which would also make it less suitable for mobile robot
applications as it would increase the processing time, but it would enable further research
in the field of semantic segmentation of vineyards.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/robotics13020020/s1.
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