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Abstract: Today’s research on fenceless human–robot collaboration (HRC) is challenged by a relatively
slow development of safety features. Simultaneously, design recommendations for HRC are requested
by the industry. To simulate HRC scenarios in advance, virtual reality (VR) technology can be utilized
and ensure safety. VR also allows researchers to study the effects of safety-restricted features like
close distance during movements and events of robotic malfunctions. In this paper, we present a VR
experiment with 40 participants collaborating with a heavy-load robot and compare the results to
a similar real-world experiment to study transferability and validity. The participant’s proximity
to the robot, interaction level, and occurring system failures were varied. State anxiety, trust, and
intention to use were used as dependent variables, and valence and arousal values were assessed
over time. Overall, state anxiety was low and trust and intention to use were high. Only simulated
failures significantly increased state anxiety, reduced trust, and resulted in reduced valence and
increased arousal. In comparison with the real-world experiment, non-significant differences in all
dependent variables and similar progression of valence and arousal were found during scenarios
without system failures. Therefore, the suitability of applying VR in HRC research to study safety-
restricted features can be supported; however, further research should examine transferability for
high-intensity emotional experiences.

Keywords: human–robot collaboration; HRC; virtual reality; VR; emotional experience

1. Introduction

Fenceless human–robot collaboration (HRC) is expected to enable the flexibility of
increasingly complex production sites [1]. Aiming at a batch-size 1 production [2], referring
to the production of single pieces, the combination of robots’ repetitive accuracy, and
workers’ ability to solve ill-defined problems [3] HRC becomes an economic interest.
Thereby, collaboration defines a simultaneously cooperative work task of the human and
the robot within a shared collaborative space where safe physical contact is possible and
often desired between the human and the robot [3]. Expected benefits for the production
industry are majorly dependent on humans’ cognitive and emotional reactions to the
collaboration with robots. It is thus necessary for research to develop and evaluate suitable
workplace design guidelines for fenceless HRC. These can decrease the risk of robot
rejections and sabotage due to a lack of acceptance in the workplace [4]. As a result, the
implementation of new technological developments will benefit in the long term. Due
to technical insufficiencies and current safety regulations, fenceless HRC with shared
and concurrent workspace of humans and robots is still rare on the shop floor [5] and
little is known about workers’ reactions to HRC in practice. Additionally, only a few
applications designated as ‘HRC’ meet the criteria of a real collaboration between humans
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and robots [6]. An empirical study identified only 50 industrial applications of HRC with
lightweight robots across Germany in 2016 [7]. Although this number has risen in the past
years, applications of HRC with heavy-load robots remain in niche and pilot studies [8].
Robots come with a serious risk of physical harm as misconduct or technical problems can
cause unintended physical contact with workers. Thus, the technical guideline ISO/TS
15066 [3] specifies strict safety regulations for HRC when deployed in a shared workspace.
These contain strongly limited speeds of robots and limitations of moving loads within
collaboration zones, increasing safety and likely lowering risk perceptions of workers.
Concurrently, decreased speeds increase cycle times and can impede the efficient usage
of HRC. The typical and regularly applied speed of fenceless robots outside collaboration
zones is about 1500 mm/s [9]. Sensor-based distance-related adaptive speed control is still
rare. To achieve robot forces permissible with biomechanical thresholds of human body
parts, constant speeds of 250 mm/s are typically used within collaboration zones, which
simultaneously marks the maximum speed limit in manual mode [10]. As a result, a huge
gap between possible and permissible speeds arises. Therefore, close-distance interactions
with robots moving at regular speeds that still comply with the limits of biomechanical
threshold are conceivable within shared workspaces in the next years. Still, it is unknown
if workers’ risk perception is adequately lowered by sensor-based adaptive speed control
as trust in sensor capability is required. Even though a specific distance of a moving robot
is objectively safe, subjective cognitive and emotional reactions may differ. In human–
human interactions, the first impression of an interaction partner has major importance
and influence on further interactions. The same is true for human–robot interactions [11],
especially in mandatory workplace situations where negative personal experiences should
be prevented. The question arises of how these reactions can be studied in advance to
ensure the availability of adequate design recommendations prior to robust technology
development in the real world. In this paper, virtual reality (VR) technology is presented to
be a promising and, especially, safe, and low-cost methodology for studying human factors
during safety-restricted interactions, and a first step toward proving the transferability and
validity of VR research results in the field of HRC is undertaken.

1.1. Human Factors Research in HRC

Despite safety concepts, workers could have concerns [12] that affect the safety and
efficiency of fenceless HRC with industrial robots. Human factors research creates the
groundwork to study the reactions of humans with the aim of safe and efficient HRC [13]
and for an efficient combination of the abilities of humans and robots. Important concepts
of human factors in HRC research include emotional experience and stress [12], trust in
automation [14], and acceptance [15]. A significant effect of trust on acceptance was found
in the context of industrial HRC [16]. Also, [17] summarizes that emotional reactions seem
to be a critical contributor to trust although the relationship of emotional experience and
trust in automation is rarely studied [18]. Therefore, several outcome criteria should be
included in HRC studies. Apart from other emotions like frustration [17], anxiety as one
specific negative emotion is important in the context of HRC. Various experiments studied
anxiety resulting from direct cooperation with a robot in the shared workplace [12,19]. State
anxiety is defined by negative, conscious feelings of tension and dread and measurable
physiological arousal [20]. Behavioral reactions of anxiety include bending forward and
running for cover to escape from danger [21]. These sudden movements can lead to
unintended physical contact with robots. [22] found that being injured by a robot is one
of the key anxieties in industrial workplaces. In an extensive review, [23] concluded that
there is no ‘gold standard’ regarding the measurement of emotions as none of the available
measurements cover the subjective experience as well as physiological and behavioral
responses. Still, it is summarized that measures of emotions should use a dimensional
approach, covering valence and arousal as core dimensions of emotions and that the
measurement concurrent to any relevant events is important for valid measurement. Still,
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studies measuring emotional states in the progression of time and temporally associated
with events are rare in HRC.

Automation psychology studies the concept of trust in automation which in the
subarea of human–robot interaction is specified as trust in robots or human–robot trust [24].
It is defined as “the reliance by an agent that actions prejudicial to their well-being will
not be undertaken by influential others” [24] (p. 24). In HRC, the robot stands for the
influential other. To ensure an efficient and safe collaboration, an appropriate level of
trust is needed that neither contains under- nor over-trust [14]. Under-trust is related to
a rejection of automation and over-trust to misuse and overreliance on the system [25]
resulting in reduced situation awareness [14]. Over-trust, defined as a trust level exceeding
the system’s capabilities [25], may again result in physical harm to workers during events
of system malfunction or automation failure. Studies have shown that people expect
good system performance prior to interaction, even without any detailed information
on the automated system (‘positivity bias’; [26]). Additionally, failures of automated
systems affect trust [27] and the first-failure effect [28] studied in early automated systems
research has shown a reduction of trust level following system failures [28,29]. Effects
of failures were also observed in human–robot interaction. According to literature, even
an effect of the temporal position of failures was observed. An early automation failure
in interactions caused a greater reduction of real-time trust than a late event in a study
of [30] but the contrary effect was found for HRC with an industrial robot in [31]. So,
the effect of the temporal position of failures in HRC remains unclear. In most literature,
failures are simulated as software-conditioned automation breakdowns. People miss
the occurrence of an automation breakdown due to overreliance and reduced situation
awareness [14], resulting in performance loss. Combining fenceless interactions with a
reduced situation awareness while working with automated systems, robot malfunction
can increase the risk of unintended physical contact between robot and worker or at least
result in negative emotional reactions. Studying the effects of automation failure in research
that concurrently ensures the safety of study participants is hard to achieve in the context
of heavy-load robots.

Human factors research further aims to identify predictors of technology usage. The
underlying theoretical concept is technology acceptance and several theoretical models,
for example, the unified theory of acceptance and use of technology (UTAUT) [32], arose.
Actual system usage as a core outcome of acceptance models can only be applied in
longitudinal studies. Additionally, workers’ usage of robots at workplaces is mandatory
rather than personally decided. Therefore, the direct preceding stage of actual usage, called
intention to use, is a more reliable outcome criterion to measure technology acceptance in
HRC research.

Previous research on human factors found that specific characteristics of robots’ visual
appearance and behavior are related to humans’ cognitive and emotional experiences [14].
Some features of robot movement like speed [12,30] and predictability of movements [30,33]
have been studied extensively in real-world studies. A comprehensive model identified
predictors of intention to use in the field of robots but focused on internal factors of
workers rather than characteristics of the robotic systems [34]. In subjective reports asking
representatives of manufacturing companies, the reliability of the robot, trust during
operation, predictability of movements, and appropriate speed were significant success
factors for the acceptance of collaborative robots in the production industry [5].

Still, these studies are limited to studying the effects of technically feasible and per-
missible features or, due to the slow technological development of safety features, rely
on survey studies. Given the fact that technological standards are rapidly changing and
developing, the loosening of safety requirements for HRC in the near future can be assumed.
To ensure the availability of design recommendations at that time, research should apply
safe simulation studies including real-world restricted features of HRC. This raises our
research question (RQ) 1:
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RQ1: How do HRC features affect the emotional experience, trust, and intention to
use in VR-simulated interactions with a heavy-load robot?

Focusing on real-world restricted features, this paper studies the effects of different
interaction levels, close interactions with the robot, and system failures.

Hypothesis 1. It is hypothesized that negative emotional experiences will increase and trust and
intention to use will decrease with increasing interaction levels.

For fenceless collaboration, a classification of four interaction levels in HRC with
heavy-load robots was introduced by [35], structured by the specification of the shared task.
The overview is given in Table 1. Current industrial applications and real-world research
studies (e.g., [19]) are limited to HRC-level 2 interactions, where the robot is not moving
during cooperation and simply acts as a third arm while assembling. Due to insufficient
safety engineering, systematic variation of the interaction level is currently impeded in the
real world.

Table 1. Classification of interaction levels in HRC.

HRC-Level Description

1 No shared task (e.g., because of limited space)

2 Shared task, no physical interaction (e.g., robot as simple
“Third arm” without movement in the shared workspace)

3
Shared task, “handing-over task” (e.g., robot hands over an
object or robot reacts to the motion of the humans’ hand;
still no physical contact during robot movement)

4 Shared task, physical interaction
(human forces are applied directly on the robot)

From the classification, it can be concluded that the higher the interaction level, the
higher the task dependency between humans and robots. Thus, subjective risk perception
is expected to increase in HRC even if safety standards increase with interaction level.
Additionally, the physical distance to the robot decreases as a result of direct interaction, so
humans have explicit control of the robot.

Hypothesis 2. Considering that a collision with these robots would result in serious physical harm,
it can be hypothesized that anxiety is increased while trust and intention to use are reduced in close
interactions with heavy-load robots.

In general, studies with heavy-load robots fall short and the effects of proximity on
trust and intention to use are unknown. [12] used a small industrial robot moving at regular
speed prior to collaboration and found that anxiety increased significantly for a distance of
one meter to the approaching robot in comparison to 1.5 or 2 m. As speed and proximity
to the robot seem to be significantly related to anxiety [12], remaining in the collaboration
zone during regular speeds of the robot should result in different emotional experiences.
As adaptive speed control of heavy-load robots is rarely implemented, robots usually move
at a fixed low speed as long as the worker is inside the collaboration zone or even more
often, workers completely leave the collaboration zone. Therefore, reactions to regular
speed at close distances are unknown.

Hypothesis 3. It can be hypothesized that real-world restricted safety-critical failures go along
with higher negative emotional experience, lower trust, and lower intention to use.

Hypothesis 4. Effects mentioned in hypothesis 3 are stronger the more a system failure could harm
a worker.
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As mentioned, the simulation of safe real-world failures or malfunctions of robotic
systems is hard to achieve. Therefore, failures resulting from motion planning mistakes
or a sensor breakdown resulting in unintended physical contact during interactions with
robots are unknown, likely because of ethical concerns as the safety of participants cannot
be assured. So, simulations of system failures in research currently often remain on the
breakdown of automation [29,36]. A first study with a humanoid robot compared the effects
of a technical error and an information processing error [37]. Both workers’ cognitive
and emotional reactions are dependent on personal experiences. Therefore, personal
experience must be evoked to study the effects of loosened safety restrictions on workers’
reactions in HRC. To overcome research gaps by applying VR technology, the suitability
and transferability of VR results for real-world applications have to be examined.

1.2. Virtual Reality in HRC Research

Virtual reality (VR) simulations allow to neglect real-world physical constraints and
enable think ahead of future technical developments. VR is cost-efficient and ensures
safety for human participants, all contributing to an appropriate ethical responsibility
in research. Nevertheless, applying VR technology in research in HRC to derive design
recommendations, especially to simulate scenarios beyond real-world restrictions, is only
appropriate if the transferability of results to the real world can be assured. Otherwise, this
would obstruct ethical responsibility including that research is only acceptable if valid and
appropriate methods are applied to tare subject’s effort of participation. This raises our
research question 2:

RQ2: Are experimental results from VR simulations transferable to real-world interac-
tions and therefore, are VR studies an appropriate methodology to estimate the effects of
features beyond real-world safety restrictions in HRC?

VR is being used increasingly to study human–machine interactions and social interac-
tions since it has been demonstrated that neural mechanisms in humans are comparable to
those in the real world when immersed in a virtual environment [38]. In this context, [39]
introduced the term ‘virtual presence’ and defined the concept as the “sense of being physi-
cally present with visual, auditory, or force displays generated by a computer” (p. 120). In
this regard, [40] states that presence is essentially a cognitive or perceptual parameter. Thus,
presence can be quantified only by the individual who encounters the virtual world [41]
and participants who are highly present should experience the virtual environment as
the engaging reality rather than the world surrounding them and view the environment
provided by the displays as places visited rather than images seen. Therefore, behaviors in
the virtual environment should be consistent with behaviors that would occur in reality
under similar circumstances. As a result, presence has been used as a control variable to
interpret results in most of the studies including VR scenarios ever since.

Although participants often report that the experience felt real, it is not known whether
identical reactions would be observed in the same scenario performed in the real world [42].
It should be considered that VR simulation is always limited as a reduction of information
to a presentable level takes place. This creates different levels of immersion, an objective
specification of technology that refers to the sensory information provided, for the viewer
which conveys presence [41]. High intensity of presence does ensure that participants’
interactions are as they would be in the real world [41]. However, there are exceptions.
For example, it was shown that participants with previous VR experience sometimes did
not react as strongly as inexperienced participants in risky situations in HRC [43]. This is
further amplified by a lack of physical feedback, which reduces reactions in the context of
HRC. Also, some participants without previous experience with VR technology did not
show an appropriate reaction because they were distracted by the virtual environment
and did not notice dangerous situations [43]. In addition, it should be noted that although
VR enables rapid development and testing of unique (HRC) scenarios while maintaining
the safety of all participants and eliminating physical risk, it also renders interactions
artificial. Despite this reduction and artificialization, VR scenes have been shown to



Robotics 2023, 12, 168 6 of 23

increase both experimental control and experienced realism, which increases participants’
engagement and thus increases experimental validity [44,45]. In the context of emotional
reactions in VR, several studies have shown a positive correlation between presence and
emotions, especially for negative emotions like anxiety, although the causal direction of
that relationship remains unresolved [46].

Assuming these fundamentals, immersive VR simulations have been used in several
studies to investigate HRC (e.g., [45,47,48]. For example, [47] used VR to evaluate the end
user’s perception of a robot and its movement. Measurements like the accuracy of an
entry, users’ experience, and perception of input methods or perceived workload show no
significant differences in VR and real-world studies. This implies that users’ perception
of difficulty is not influenced by the virtual environment [49,50]. Research of [51] in
architecture also shows no difference in task performance and experience between a real-
world scenario and a VR scene. Those confirmed the transferability of VR studies to the real
world and findings are described as one of the first to use VR scenarios as a convenient and
methodologically valid medium for testing various human behaviors related to building
design tasks [51]. Further research in risk-taking assessment or crowd behavior during
high stress also confirmed the transferability of the results of a VR and the real world.
Perceived presence was cited as a quality factor of transferability (e.g., [52,53]). Still, studies
validating an equivalent evoking of emotional experience like anxiety by comparing VR
and real-world experiments are unknown.

Hypothesis 5. Based on before mentioned study results, it can be hypothesized that the results of
VR and real-world experiments are comparable and transferable.

To verify the transferability of virtual scenarios, it is often recommended to compare
the virtual to a real-world scenario. This leads to results that are specific to the particular
application and thus provide more detailed information to practitioners (e.g., [48,54].
Considering the use of VR in HRC, as well as the studies in other fields, it can likely be
assumed that VR scenarios have the potential to be representative of real-world scenarios
in which HRC takes place [43].

To answer research question 1 (simulation beyond restrictions), the subsequently
described VR experiment was conducted in study 1, containing the simulation of HRC
with a heavy-load robot. The methodology and results are reported in the following
Sections 3 and 4. The VR experiment was designed as a scale-to-scale replication of the
HRC testing field from a recently published real-world experiment [31]. Therefore, to
answer research question 2 (transferability), the results of the VR experiment are compared
to the results of equivalent scenarios of the real-world experiment in study 2. Hence, the
comparison of results examines the validity of data obtained from VR scenarios which is
the precondition to interpreting results of scenarios that cannot be studied in the real world.
The methodology and results of study 2 are reported in Sections 5 and 6. The paper closes
with an overall discussion of the results and implications for further research and practice.
Due to the scale-to-scale replication of the test field in both studies, the following section
describes it covering both experiments.

2. Specification of a VR Environment as Scale-to-Scale Reproduction of a Real-World
Test Field

A VR scene was created in the 3D engine Unity. To display the VR scene, HTC’s head-
mounted display VIVE PRO EYE was used with the corresponding handheld controllers
in combination with a powerful PC equipped with an Intel i5-12500 and a GeForce RTX
2080. The simulation consisted of a human–robot collaboration scenario that reflects a real
assembly task in the automotive industry ([31], see Figure 1).
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flexible layout [35] to perform two different interaction levels. HRC-level 1 contained an 
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that participants were not directly assembling at the robot. The robot moved to a waiting 
position after placing a front axle carrier on the table. In contrast, HRC-level 3 was realized 
by direct assembling at the front axle carrier located at the robot flange (see Figure 2). 
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The real-world application enabled the adjustment of assembling height for better 
ergonomics via gesture control and without applied forces. Thus, the robot could be 
controlled by humans during collaboration and move slowly at a close distance from the 
human. Due to safety reasons, the collaboration zone inside the robot cell had to be left 
before the robot moved at a regular speed of 1000 mm/s in the real-world test field. Each 
assembling cycle contained three robot phases: component admission and delivery (phase 
1), collaboration with assembling time (phase 2), and component removal (phase 3). In the 
area, the robot: (i) picked up the front axle carrier in the back from a rack; (ii) approached 
towards assembling position in the front; (iii) held in the assembling position in the front 
for collaboration; iv) moved to component removal position at the right side and returned 
to home position in the back by passing assembling position again (270° horizontal 
rotation). 

For scale-to-scale replication in VR, the real-world test environment was modeled in 
detail, together with the surrounding machines and other factory elements. To integrate 
the industrial KUKA robot into the virtual scene, CAD data was used to represent the 
robot in its entirety, which also allows for true-scale animations. To make the virtual scene 
look as realistic as possible, different features of Unity were used for visual optimization. 
High-resolution material textures and realistic shaders were applied to ensure a detailed 
object representation. Furthermore, realistic real-time lighting of the virtual scene with 

Figure 1. Comparison of real-world setting (left) and VR scenario (right).

The demo task contained the assembling of eight small parts on a front axle carrier.
An industrial robot (Manufacturer: KUKA; Model: Quantec prime KR 180, Augsburg,
Germany), classified as a heavy-load robot, was used in the test field which included a
flexible layout [35] to perform two different interaction levels. HRC-level 1 contained an
assembling table in the robot cell which also acted as a physical barrier and distance so
that participants were not directly assembling at the robot. The robot moved to a waiting
position after placing a front axle carrier on the table. In contrast, HRC-level 3 was realized
by direct assembling at the front axle carrier located at the robot flange (see Figure 2).

Robotics 2023, 12, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 1. Comparison of real-world setting (left) and VR scenario (right). 

The demo task contained the assembling of eight small parts on a front axle carrier. 
An industrial robot (Manufacturer: KUKA; Model: Quantec prime KR 180, Augsburg, 
Germany), classified as a heavy-load robot, was used in the test field which included a 
flexible layout [35] to perform two different interaction levels. HRC-level 1 contained an 
assembling table in the robot cell which also acted as a physical barrier and distance so 
that participants were not directly assembling at the robot. The robot moved to a waiting 
position after placing a front axle carrier on the table. In contrast, HRC-level 3 was realized 
by direct assembling at the front axle carrier located at the robot flange (see Figure 2). 

 
Figure 2. Visualization of HRC-level 1 (left) and HRC-level 3 (middle) during assembling position 
and top view (right). The path of component delivery (phase 1) and path to storage position are 
shown by blue arrows and returning to component admission (phase 3) is shown by grey arrows. 

The real-world application enabled the adjustment of assembling height for better 
ergonomics via gesture control and without applied forces. Thus, the robot could be 
controlled by humans during collaboration and move slowly at a close distance from the 
human. Due to safety reasons, the collaboration zone inside the robot cell had to be left 
before the robot moved at a regular speed of 1000 mm/s in the real-world test field. Each 
assembling cycle contained three robot phases: component admission and delivery (phase 
1), collaboration with assembling time (phase 2), and component removal (phase 3). In the 
area, the robot: (i) picked up the front axle carrier in the back from a rack; (ii) approached 
towards assembling position in the front; (iii) held in the assembling position in the front 
for collaboration; iv) moved to component removal position at the right side and returned 
to home position in the back by passing assembling position again (270° horizontal 
rotation). 

For scale-to-scale replication in VR, the real-world test environment was modeled in 
detail, together with the surrounding machines and other factory elements. To integrate 
the industrial KUKA robot into the virtual scene, CAD data was used to represent the 
robot in its entirety, which also allows for true-scale animations. To make the virtual scene 
look as realistic as possible, different features of Unity were used for visual optimization. 
High-resolution material textures and realistic shaders were applied to ensure a detailed 
object representation. Furthermore, realistic real-time lighting of the virtual scene with 

Figure 2. Visualization of HRC-level 1 (left) and HRC-level 3 (middle) during assembling position
and top view (right). The path of component delivery (phase 1) and path to storage position are
shown by blue arrows and returning to component admission (phase 3) is shown by grey arrows.

The real-world application enabled the adjustment of assembling height for better
ergonomics via gesture control and without applied forces. Thus, the robot could be
controlled by humans during collaboration and move slowly at a close distance from the
human. Due to safety reasons, the collaboration zone inside the robot cell had to be left
before the robot moved at a regular speed of 1000 mm/s in the real-world test field. Each
assembling cycle contained three robot phases: component admission and delivery (phase
1), collaboration with assembling time (phase 2), and component removal (phase 3). In the
area, the robot: (i) picked up the front axle carrier in the back from a rack; (ii) approached
towards assembling position in the front; (iii) held in the assembling position in the front for
collaboration; iv) moved to component removal position at the right side and returned to
home position in the back by passing assembling position again (270◦ horizontal rotation).

For scale-to-scale replication in VR, the real-world test environment was modeled in
detail, together with the surrounding machines and other factory elements. To integrate
the industrial KUKA robot into the virtual scene, CAD data was used to represent the
robot in its entirety, which also allows for true-scale animations. To make the virtual scene
look as realistic as possible, different features of Unity were used for visual optimization.
High-resolution material textures and realistic shaders were applied to ensure a detailed
object representation. Furthermore, realistic real-time lighting of the virtual scene with
dynamic point and directional light sources and soft shadows was performed. In general,
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all quality settings were set to maximum, and functions like anti-aliasing were used to
increase the quality of the visual representation (see Figure 1). A typical soundscape of
a large factory floor and the robot’s engine sounds were also added to the scene to make
the virtual recreation even more realistic. To turn the static 3D model of the KUKA robot
into an animated one, keyframe animations were created to represent the robot’s real
movements. The keyframe animations were first used to define the start and end points
of motion sequences. From the sequential order of these keyframes, Unity automatically
computes intermediate frames that form the illusion of smooth motion. Using Unity’s
Animator Controller and a script, these created animation clips were provided and played
in a controlled manner, making the robot appear to interact with the participant on its own.
All modeling and shaping actions were intended to ensure comparability to the real-world
test field and maximum presence which is especially important for equivalent emotional
attachment and experience.

3. Methodology Study 1—Simulation beyond Restrictions
3.1. Participants

Forty subjects (24 female, 16 male) participated in the experiment. The participants’
mean age was M = 28.0 years (SD = 6.48) and overall, the sample can be described as
medium technique affine (see Section 3.2, measured with [55]; M = 4.11, SD = 1.04). Only
three participants had interacted with an industrial robot before and 20% of participants
had ever worked in or were working in production at the time of the study. The participants
received financial compensation for the effort.

3.2. Measurements

Demographics: Demographic information like sex, age, experience with industrial
robots and production work, and Affinity for Technology Interaction (ATI; [55]; scale range
1 to 7) were captured in the pre-survey.

VR-specific measures (post-experiment): Due to possible confounding of physio-
logical and subjective reactions to the VR environment itself and actual reactions to the
content of scenarios, a German translation of the Virtual Reality Sickness Questionnaire
(VRSQ; [56]; scale range 1 to 4) was used. To validate experienced realness in VR, presence
was measured via a German version of the Igroup Presence Questionnaire (IPQ; [57]; scale
range 1 to 5).

Time progression measures of emotional experience: Specific emotions are intensive,
object-directed, and fleeting [58]. As each collaboration with a robot contains alternating
phases of activities performed separately or cooperatively and robots are alternately ap-
proaching and departing in relation to humans, various emotional states can occur. In
accordance with [23], a dimensional self-report measure of emotions over time was used as
these were argued to be sensitive for changes in valence and arousal while physiological
measurements like heart rate or skin conductance were shown to be sensitive, especially
for arousal. For example, the Circumplex–Model [59] describes anxiety as an emotion
characterized by strong negative valence and high arousal. Therefore, it is possible to show
a tendency towards specific emotions based on valence and arousal values. The Feeling
Scale (FS; [60]; scale range −5 to 5) and Felt Arousal Scale (FAS; [61]; scale range 1 to 12)
were used to quantify self-reported emotional experience. Combined single-item scales
were also applied in other studies as a continuous measurement of affect over time [62].
In a pretest, different time intervals (5, 10, 15, and 30 s) were tested and it was found that
a verbal report of valence and arousal every 10 s was possible for participants without
distraction from the main task. As detecting quickly fleeting emotional reactions was the
target, valence, and arousal were assessed every 10 s. Also due to the pretest, the original
scale of FAS was doubled to 12 points due to limited variance in values.

Outcome measures (post-scenario): Dependent variables were collected after each
interaction with the robot. Trust in automation was measured via a German translation
of the Jian-Scale [63] by [64] (scale range 1 to 7). The subscale measuring state anxiety in
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State–Trait Anxiety Inventory (STAI-S; [65]; scale range 1 to 8) was used. As suggested, the
STAI-S raw score was transformed to a scale from 0 to 100 to allow an interpretation as a
percentage of agreement [66]. Additionally, a German translation of the subscale ‘Intention
to Use’ [16] was applied (scale range 1 to 5) to measure overall willingness to interact with
the robot in the future (see UTAUT Model; [16]) as the preconditional stage of actual usage
and an indicator for technology acceptance.

3.3. Experimental Design

A 2 × 2 × 2 × 2 mixed design was conducted. It included variations in interaction
level, participants’ proximity to the robot, temporal position of failure, and type of failure.
Within-factor interaction level was used for block randomization. VR technology allows
neglecting technological insufficiencies. Still, a simulation of HRC-level 4, containing the
physical forces of workers on the robot or assembling component, is impeded in VR. The
simulation of an immersive perception of weight and forces in the research field of haptics
is presently limited to single solutions and it is even argued that full-body perception of
haptic feedback cannot be achieved by external devices [67]. For this reason, a comparison
of the effects of HRC levels 1 and 3 as the most different and feasible levels was applied.
Participants performed one block with assembling on a component placed on the table
(HRC-level 1—further abbreviated as ‘HRC1’) and one block with direct assembling at
the robot (HRC-level 3—further abbreviated as ‘HRC3’). Before each block, a baseline
(‘BL’) without robot movement in the assembling position was conducted. Within-factor
proximity was equally operationalized in both interaction levels and not randomized
within each experimental block. Similar to the study of [12], participants first kept a
distance of 2 m to the moving component at the robot flange during component delivery in
robot phase 1 and removal in robot phase 3 (‘with distance’—further abbreviated as ‘WD’).
Afterward, they remained at the assembling position, resulting in a distance of one meter to
the moving component at the robot flange at a speed of 1000 mm/s (‘close’). The temporal
position of system failure (after block 1 vs. block 2) was conducted as a between-subject
factor. The type of system failure determined the second between-subject factor. One
part of the participants experienced the sound of a defective compressed air cylinder to
simulate mechanical malfunction. The failure event was triggered by assembling the first
small part of the component while the robot did not move (‘sound’; low risk). The other
part experienced a robot path causing a virtual collision with the robot during component
delivery (‘collision’, high risk) if participants did not intentionally get out of the way of
the robot. Table 2 illustrates the experimental design for exemplary scenario orders. Each
participant completed seven interactions.

Table 2. Experimental Variations and Design—Example Orders (BL = baseline, WD = with distance).

Participant A Participant B

Block 1
HRC1: BL HRC3: BL

HRC1: close HRC3: close
HRC1: WD HRC3: WD

HRC3: failure-collision
Block 2

HRC 3: BL HRC1: BL
HRC 3: close HRC1: close
HRC3: WD HRC1: WD

HRC3: failure-sound

3.4. Experimental Procedure

In advance, participants were informed about the procedure of the study. At the
beginning of the experiment, participants were welcomed, a declaration of consent was
signed, and a pre-survey was completed. Subsequently, participants watched two videos
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for the cover story (enlargement of the existing workplace through HRC). Video 1 showed
the real work environment with a handling device before the enlargement by HRC. Video
2 was taken from a pretest showing an exemplary robot movement to lower the possible
excitement of participants due to personal anticipation of robot actions. Participants learned
the combined FS and FAS items by reading instructions with examples. Afterward, they
needed to complete a ten-item check for understanding.

The head-mounted device (HMD) was given to the participants, and they were able
to get used to the VR environment for a while. Afterward, instructions including the
assembling task and gesture control via upward and downward movements (only in
HRC-level 3) of a VR controller were given. Two controllers were used, the controller
in the dominant hand enabled component assembling as well as gesture control and the
second controller contained a storage box with small parts for component assembling.
To help participants remember the FS and FAS scales, the combined emotion scale was
virtually tagged to the assembling controller. Participants verbally answered the FS and
FAS scale following an acoustic beep every 10 s. Subject to any further instructions by the
experimenter, participants were told that they were only allowed to leave the start position
(marked by a red circle) and consequently enter the robot zone when the robot stopped
its movement. Participants completed seven scenarios, each containing three assembling
cycles (except for scenario ‘failure’ ending after the failure occurred in assembling cycle
1) and paused by post-scenario questionnaire. At the end of the experiment, participants
completed a post-experiment questionnaire (see Section 3.2).

3.5. Data Analysis

A Statistic Software R (R version 4.0.5; [68]) was used for data analysis. In the case of
non-symmetric distribution of data, median values are reported. Authors’ suggestions in
reference papers for the calculation of scores for scales or subscales (means of item values)
were applied. If the distribution of scores was skewed, median values of scores are used to
report results across participants. Consequently, nonparametric significance testing was
applied. If not specified otherwise, the independent or paired Wilcoxon Signed-Rank Test
was used, according to experimental design. As test statistics V from paired Wilcoxon is
not comparable between different tests, Z-scores calculated from p-values are reported and
effect size r is used according to [69]. Package ‘ggplot2′ [70] was used to visualize data
over time. To smooth data curves, a generalized additive model (GAM; [71]) was used.
According to the relatively low number of data points, the adaption of the GAM model
in [71] was applied and the function parameter ‘formula = y ~ s(x, bs = “cs”, fx = T, k = 10)’
was used within the function geom_smooth() by setting k value to 10 for all graphs aiming
at visual comparability.

4. Results—Study 1—Simulation beyond Restrictions
4.1. Participants’ Perception of the VR Scene

Scales to examine VR sickness and presence were included to ensure that emotional
experience was related to the content of the VR scenarios in contrast to relatedness to
participants’ discomfort resulting from the VR environment. The mean of all nine items of
the VRSQ was used as a score (positively skewed distribution) to measure VR sickness. On
a scale from 1 to 4, results across participants showed Mdn = 1.44 (MAD = 0.22, Min = 1.00,
Max = 2.44). Fatigue and strained eyes were the most likely symptoms, showing low
median values of Mdn = 2.0 on a scale from 1 to 4. Overall, VR sickness was at a low level.

The Igroup Presence Questionnaire was used to measure the presence within the
virtual environment with a scale range of 1 to 5. The overall item ‘In the computer-generated
world I had a sense of “being there”’ showed an M = 4.08 (SD = 0.86) which indicates an
overall high presence across participants. Across all 14 items of the IPQ (inverted items
recorded), results showed M = 3.31 (SD = 0.33). Subscale values are reported in Table 3.
The authors of the IPQ provide reference data for the comparison of research data (IPQ
Database, http://www.igroup.org/pq/ipq/data.php) which has been filtered for stereo

http://www.igroup.org/pq/ipq/data.php
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video and audio data as well as the perspective from the first person. For the 38 revealing
reference cases, the overall item shows M = 3.21, and across all 14 items M = 2.92. In a
comparison of both data, a medium to high presence for the presented experiment can be
concluded which is comparable to previous studies using the IPQ.

Table 3. Descriptive results of the IPQ (subscales and overall, scale 1 to 7).

IPQ Subscales M SD Min Max

Spatial Presence 3.72 0.41 3.00 4.20
Involvement 2.73 0.50 1.75 4.00
Experienced Realism 3.19 0.68 1.25 4.25
Overall 3.31 0.33 2.64 3.93

4.2. Simulation beyond Restrictions: Effects of Experimental Variations

To answer research question 1, results for state anxiety (STAI-S), trust (Jian scale [63]),
and intention to use (from the UTAUT model) are reported. Figure 3 visualizes effects and
Table 4 shows descriptive statistics on the dependent variables state anxiety, trust, and
intention to use across scenarios.

Robotics 2023, 12, x FOR PEER REVIEW 11 of 24 
 

 

The Igroup Presence Questionnaire was used to measure the presence within the 
virtual environment with a scale range of 1 to 5. The overall item ‘In the computer-
generated world I had a sense of “being there”’ showed an M = 4.08 (SD = 0.86) which 
indicates an overall high presence across participants. Across all 14 items of the IPQ 
(inverted items recorded), results showed M = 3.31 (SD = 0.33). Subscale values are 
reported in Table 3. The authors of the IPQ provide reference data for the comparison of 
research data (IPQ Database, http://www.igroup.org/pq/ipq/data.php) which has been 
filtered for stereo video and audio data as well as the perspective from the first person. 
For the 38 revealing reference cases, the overall item shows M = 3.21, and across all 14 
items M = 2.92. In a comparison of both data, a medium to high presence for the presented 
experiment can be concluded which is comparable to previous studies using the IPQ. 

Table 3. Descriptive results of the IPQ (subscales and overall, scale 1 to 7). 

IPQ Subscales M SD Min Max 
Spatial Presence 3.72 0.41 3.00 4.20 
Involvement 2.73 0.50 1.75 4.00 
Experienced Realism 3.19 0.68 1.25 4.25 
Overall 3.31 0.33 2.64 3.93 

4.2. Simulation beyond Restrictions: Effects of Experimental Variations 
To answer research question 1, results for state anxiety (STAI-S), trust (Jian scale [63]), 

and intention to use (from the UTAUT model) are reported. Figure 3 visualizes effects and 
Table 4 shows descriptive statistics on the dependent variables state anxiety, trust, and 
intention to use across scenarios.  

 

 

Robotics 2023, 12, x FOR PEER REVIEW 12 of 24 
 

 

 
Figure 3. Results of dependent variables across scenarios (BL = baseline, WD = with distance). The 
red line for state anxiety shows the reference value from [19] as well as the scale mean for trust and 
Intention to Use. The lower and upper boundary of the y-axes represents the scale range. 

The state anxiety was low across all conditions with a mean value of around 30 
percent but showed a significant increase in failure scenario (Z > −2.17, p < 0.030, r > 0.34) 
in comparison to all other scenarios. Trust was medium to high across scenarios without 
simulated failure. Failure scenarios resulted in a visible dropdown of trust values and 
significant differences in comparison to all other scenarios (Z > −3.38, p < 0.001, r > 0.53) 
Intention to Use was also high across scenarios. Failure scenario resulted in a significant 
decrease only in comparison to ‘HRC3: WD’ (Z = −3.31, p < 0.001, r = 0.52) and ‘HRC3: 
close’ (Z = −3.72, p < 0.001, r = 0.59). 

Table 4. Descriptive Statistics for Dependent Variables Across Scenarios. 

 State Anxiety (break/) 
(Scale 0–100) 

Trust (break/) 
(Scale 1 to 7) 

Intention to Use 
(break/) 

(Scale 1 to 5) 
 M SD M SD M SD 

HRC1: BL 32.0 14.6 5.32 1.13 4.08 0.74 
HRC1: WD 26.8 14.1 5.92 1.00 4.13 0.76 
HRC1: close 30.3 17.1 5.54 1.03 4.02 0.92 
HRC3: BL 32.3 18.0 5.20 0.92 4.06 0.67 
HRC3: WD 27.3 14.5 5.90 0.88 4.32 0.63 
HRC3: close 27.3 15.5 5.93 0.85 4.39 0.60 
Failure (overall) 40.3 20.3 4.17 1.39 3.86 0.96 
(BL = baseline, WD = with distance). 

4.2.1. Effects of Interaction Level and Proximity to the Robot 
Close interactions resulted in significantly increased state anxiety (Z = −2.00, p = 0.045, 

r = 0.32), significantly reduced trust (Z = −2.85, p = 0.004, r = 0.45) but a non-significant 
difference for intention to use (Z = −1.35, p = 0.176, r = 0.21) in comparison to interactions 
with distance in HRC-level 1. Likewise, for HRC-level 3, no significant effects of proximity 
occurred for State Anxiety, Trust, and Intention to Use. Due to a lack of nonparametric 
ANOVA with a two-factorial repeated-measure design, a parametric ANOVA was used 
to utilize the likely interaction effect of both independent variables. Besides all the non-
significant main effects, non-significant interaction effects of proximity and interaction 
level were found for state anxiety (F = 0.506, p = 0.478, ηP2 < 0.01) and trust (F = 0.597, 
p = 0.441, ηP2 < 0.01). For Intention to Use, ANVOA showed a significant main effect for 
interaction level (F = 9.05, p = 0.003, ηP2 = 0.06), a non-significant main effect for proximity 
(F = 0.09, p = 0.770, ηP2 < 0.01) and a non-significant interaction effect (F = 0.07, p = 0.787, 
ηP2 < 0.01). Therefore, Intention to Use was higher for HRC-level 3 compared to HRC-level 1. 

Figure 3. Results of dependent variables across scenarios (BL = baseline, WD = with distance). The
red line for state anxiety shows the reference value from [19] as well as the scale mean for trust and
Intention to Use. The lower and upper boundary of the y-axes represents the scale range.



Robotics 2023, 12, 168 12 of 23

Table 4. Descriptive Statistics for Dependent Variables Across Scenarios.

State Anxiety
(Scale 0–100)

Trust
(Scale 1 to 7)

Intention to Use
(Scale 1 to 5)

M SD M SD M SD

HRC1: BL 32.0 14.6 5.32 1.13 4.08 0.74
HRC1: WD 26.8 14.1 5.92 1.00 4.13 0.76
HRC1: close 30.3 17.1 5.54 1.03 4.02 0.92
HRC3: BL 32.3 18.0 5.20 0.92 4.06 0.67
HRC3: WD 27.3 14.5 5.90 0.88 4.32 0.63
HRC3: close 27.3 15.5 5.93 0.85 4.39 0.60
Failure (overall) 40.3 20.3 4.17 1.39 3.86 0.96

(BL = baseline, WD = with distance).

The state anxiety was low across all conditions with a mean value of around 30 percent
but showed a significant increase in failure scenario (Z > −2.17, p < 0.030, r > 0.34) in
comparison to all other scenarios. Trust was medium to high across scenarios without
simulated failure. Failure scenarios resulted in a visible dropdown of trust values and
significant differences in comparison to all other scenarios (Z > −3.38, p < 0.001, r > 0.53)
Intention to Use was also high across scenarios. Failure scenario resulted in a significant
decrease only in comparison to ‘HRC3: WD’ (Z = −3.31, p < 0.001, r = 0.52) and ‘HRC3:
close’ (Z = −3.72, p < 0.001, r = 0.59).

4.2.1. Effects of Interaction Level and Proximity to the Robot

Close interactions resulted in significantly increased state anxiety (Z = −2.00, p = 0.045,
r = 0.32), significantly reduced trust (Z = −2.85, p = 0.004, r = 0.45) but a non-significant
difference for intention to use (Z = −1.35, p = 0.176, r = 0.21) in comparison to interactions
with distance in HRC-level 1. Likewise, for HRC-level 3, no significant effects of proximity
occurred for State Anxiety, Trust, and Intention to Use. Due to a lack of nonparametric
ANOVA with a two-factorial repeated-measure design, a parametric ANOVA was used
to utilize the likely interaction effect of both independent variables. Besides all the non-
significant main effects, non-significant interaction effects of proximity and interaction level
were found for state anxiety (F = 0.506, p = 0.478, ηP

2 < 0.01) and trust (F = 0.597, p = 0.441,
ηP

2 < 0.01). For Intention to Use, ANVOA showed a significant main effect for interaction
level (F = 9.05, p = 0.003, ηP

2 = 0.06), a non-significant main effect for proximity (F = 0.09,
p = 0.770, ηP

2 < 0.01) and a non-significant interaction effect (F = 0.07, p = 0.787, ηP
2 < 0.01).

Therefore, Intention to Use was higher for HRC-level 3 compared to HRC-level 1.

4.2.2. Effects of Type and Temporal Position of Failure

The type and temporal position of system failure were used as between-subject fac-
tors. The two subsamples of participants with conditions ‘sound’ (NS = 20) and ‘collision’
(NC = 20) did not significantly vary regarding age or affinity to technology. Due to the viola-
tion of the normal distribution assumption, non-parametric tests were applied. Comparison
of independent groups revealed a non-significant difference of the type of system failure
neither for state anxiety (MdnS = 44.29, MdnC = 38.57, W = 186.5, p = 0.725, r = 0.08) nor trust
(MdnS = 4.17, MdnC = 4.00, W = 159.5, p = 0.279, r = 0.24) or Intention to Use (MdnS = 4.00,
MdnC = 4.00, W = 189, p = 0.774, r = 0.06). The position of system failure was used as a
between-subject factor. Comparison of independent groups with early failure (after block
1, N1 = 20) and late failure (after block 2, N2 = 20) revealed a significant difference for
state anxiety (Mdn1 = 53.57, Mdn2 = 34.29, W = 273, p = 0.050, r = 0.44) but non-significant
difference for trust (Mdn1 = 3.92, Mdn2 = 4.33, W = 178.5, p = 0.570, r = 0.13) and Intention
to Use (Mdn1 = 4.00, Mdn2 = 4.00, W = 195.5, p = 0.913, r = 0.02).

4.2.3. Effects of Interaction Time on Dependent Measures

To further evaluate the effects of interaction time with the robotic system, valence and
arousal values based on the circumplex model were analyzed depending on the scenario.
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To evaluate the progression of emotional experience, each assembling cycle was divided
into three robot phases: Component delivery (phase 1), assembling time (phase 2), and
component removal (phase 3).

Figure 4 shows the time progression of valence and arousal values in different se-
lected scenarios. Timelines show actual real-time robot periods (phase 1 and phase 3) and
normalized assembling time (phase 2; visualized green in Figure 4) towards the median
assembling time across all included participants. Additionally, the valence and arousal
values of each participant were normalized as deviation from initial values queried prior to
each scenario starting at t0. A decrease in valence and a simultaneous increase in arousal
values indicate the occurrence of negative emotional experiences.
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Baseline scenarios (see Figure 4A) without robot movements show an initial, slight
increase in arousal, followed by a slow decrease. Overall, valence and arousal values
did not change decisively in the progression of time. The same tendency was visible in
both scenarios with a greater distance to the robot. In scenarios with close interaction see
Figure 4B), assembling cycle 1 shows an increase in arousal during the approaching of the
robot relative to the participant in phase component delivery (phase 1) and assembling time
(phase 2). This increase is not visible in the following assembling cycles. Failure scenarios
contained only one assembling cycle (as explained in Section 3.4). In the failure scenario
with failure type ‘collision’ (see Figure 4C), a strong increase in arousal is visible while
the robot approaches relative to participants (phase 1) until the collision event. During
assembling (phase 2), valence is increasing, and arousal is decreasing again but remains
on levels indicating the occurrence of negative emotional experience compared to initial
values. Due to the close distance in the collision scenario, a second collision after the
assembling phase occurred while the robot picked up the component again. Therefore,
another strong increase in arousal values is visible. The same progression is observable in
the failure scenario with failure type ‘sound’ (see Figure 4D). Valence and arousal values
remain constant until the sound event occurs, triggered by the assembling of the first out of
eight small parts on the component. It causes a strong decrease in valence and an increase
in arousal, indicating a negative emotional experience. Until the end of a scenario, arousal
remains high whereas valence is slowly recovering to initial values.

5. Methodology Study 2—Transferability
5.1. Participants

Participants included the sample from Study 1 (‘VR sample’, see Section 3.1). To exam-
ine transferability, results are compared to a recently published study with 25 participants
(10 female, 15 male) [31] (‘real-world sample’). Sample statistics of this comparative sample
of 25 participants can be found there as well. Independent t-tests showed non-significant
differences in age (MVR = 27.8, Mreal = 30.2, t = −1.39, p = 0.169) or affinity for technology
usage (ATI; MVR = 4.11, Mreal = 4.17, t = −0.21, p = 0.838). In both samples, only three par-
ticipants had interacted with an industrial robot before and previous or current work in the
production industry at the time of the study was slightly higher in real-world experiments
(23% in the VR sample, 32% in the real-world sample).

5.2. Measurements & Experimental Design

Equivalent demographics, time progression measures of emotional experience, and
outcome measures were applied in the VR and real-world experiments (see Section 3.2).
Scenarios replicated scale-to-scale in the VR experiment (Study 1) and real-world ex-
periment [31] were used to examine transferability. For testing hypothesis 5, Scenario
‘HRC1: WD’ was the most comparable condition in the VR and real-world experiment.
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In addition, the means of baseline conditions were comparable. For testing hypothesis 6,
scenario ‘HRC1/3: failure–sound’ was used to show the non-equivalence of the VR and
real-world results.

5.3. Data Analysis

Equivalent statistical data analysis compared to study 1 (see Section 3.5) was applied.
Additionally, function ttestBF() from the R package ‘BayesFactor’ [72] was used to compare
independent groups. According to the authors, a parameter value of 0.707 for ‘rscale’
was defined as ‘medium’ [72]. With the aim of equivalence testing, in this paper, unless
otherwise specified, ‘rscale’ was set to 0.3 to test the null hypothesis against a rather small
effect and BF01, showing the evidence of the null hypothesis over the alternative hypothesis,
was reported.

6. Results

Table 5 shows the comparison of means of dependent variables for the VR and real-
world experiment. The Bayes factor (see Section 5.3) was calculated for comparable condi-
tions to test the equivalence of the VR and real-world results (hypothesis 5). For scenario
‘HRC1: WD’, a value of BF01 = 2.07 ± 0% resulted in state anxiety, showing that the null
hypothesis is two times likelier than the alternative. The Bayes factor for trust showed BF01
= 2.09 ± 0%, showing the null hypothesis to be two times likelier. Finally, for intention to
use, the Bayes factor was BF01 = 1.73 ± 0%; therefore, the null hypothesis was 1.7 times
likelier. The effects are in line with hypothesis 5 and are visualized in Figure 5.

Table 5. Mean Comparison for Dependent Variables Across Scenarios in Comparison of VR and
Real-world Experiment.

State Anxiety
(Scale 0 to 100)

Trust
(Scale 1 to 7)

Intention to Use
(Scale 1 to 5)

VR Real VR Real VR Real

HRC1:
BL

32.0
(N = 40)

30.7
(N = 25) 5.32 5.21 4.08 3.97

HRC1:
WD

26.8
(N = 40)

27.5
(N = 25) 5.92 5.90 4.13 4.28

HRC1/3:
failure–sound

40.6
(N = 20)

29.9
(N = 25) 4.49 5.29 3.92 4.16

(BL = baseline, WD = with distance).
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‘HRC1: WD’ (with distance).

Furthermore, the Bayes factor was used to compare the results of simulated failures
in the VR and real-world experiment to test equivalence in scenario ‘failure–sound’. The
Bayes factor returned BF01 = 0.62 ± 0% for state anxiety, BF01 = 0.82 ± 0.01% for trust, and
BF01 = 1.47 ± 0% for intention to use. Therefore, the Bayes factor only favored the null
hypothesis for intention to use while, contrary to hypothesis 5, favored the alternative
hypothesis for state anxiety and trust. Therefore, tests were repeated by testing against a
‘wide’ effect (rscale = 1, [73]). The Bayes factor returned BF01 = 0.81± 0.01% for state anxiety
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and BF01 = 0.82 ± 0.01% for trust. Therefore, the Bayes factor still favored the alternative
hypothesis for state anxiety and trust even when testing against a wide effect, showing a
non-equivalence which is also shown by the mean scores in scenario ‘failure—sound’ in
Table 5.

Figure 6 compares the subjectively reported valence and arousal values based on
the circumplex model for the VR and real-world experiments in equivalent scenarios.
Measurement of valence and arousal was analogous in both experiments. The assembling
time of VR and real-world data was normalized according to the median assembling
time of the VR experiment. Additionally, only the first assembling cycle is displayed to
ensure detailed visual comparison. In scenario ‘HRC1: BL’, valence and arousal values
in both experiments show an equivalent progression (see Figure 6A). The same holds
true for the scenario ‘HRC1: WD’ (see Figure 6B) but the VR experiment misses a visible
decisive increase in arousal values at the beginning of the scenario during robot phase
1 (component delivery and approaching). In scenario ‘failure—sound’, the sound event
(highlighted in dark green) could be triggered individually in the VR experiment by the
first assembling action of the participant. In contrast, it was attached to the arrival of the
robot at the assembling position in the real-world experiment (dashed line), explaining
slightly different temporal occurrences of failures. A stronger increase in arousal and a
stronger decrease in valence values is visible in VR in comparison to the real-world scenario.
Arousal in the VR experiment continues at a high level until assembling time ends while
arousal quickly recovers to a medium level in the real-world experiment.
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7. Overall Discussion
7.1. Summary of Study Results and Interpretation

To answer research question 1, real-world restricted robot features in HRC with heavy-
load robots and their effects on the cognitive and emotional experience of participants were
studied in VR. VR sickness for participants remained at a low level and presence was high
across participants. Hence, effects on cognitive and emotional experience can be overall
attributed to the content of the VR experiment.

Overall, state anxiety was low and trust and intention to use were high in all conditions
without system failure. Equally, emotional experience quantified by valence and arousal
values did not decisively change over time. Contrary to the hypothesis, HRC-level 1
resulted in significantly higher state anxiety and lower trust, but only in close interactions.
Hypothesis 1 cannot be supported by the data. Close distance of participants to the robot
moving at regular speed resulted in significantly reduced state anxiety and increased trust
but only in HRC-level 1. Therefore, hypothesis 2 can only partly be supported. One possible
explanation for inconsistent effects of proximity and interaction level is differing robot
motion trajectories. [33] distinguish between the so-called ‘predictable’ and ‘legible’ robot
paths. In HRC-level 3, the robot followed a straight path in all robot phases, resulting
in a quick inferring of the robot’s target destination and can therefore be assigned to
legible paths. In contrast, the robot trajectory of HRC-level 1 was characterized by placing
the component on the assembling table and picking up the component after assembling.
Whereas the assembling table as the target destination of the robot was obvious, various
robot paths are conceivable to approach the table and place the component as well as pick up
the component. Therefore, robot paths in HRC-level 1 can be assigned to predictable paths.
In literature, legible paths were preferred and associated with higher trust [33]. Due to the
legible robot path in HRC-level 3, the proximity to the quickly moving robot could have
been of smaller relevance as participants always felt safe. As a result, closer interactions
increase anxiety and lower trust in HRC-level 1 but not in HRC-level 3. Inconsistently,
intention to use was significantly higher in close interactions compared to interactions with
distance in HRC-level 1 which cannot currently be explained by theory.

In line with expectations, failure scenarios caused anxiety to significantly increase and
trust to decrease, despite the intention to use was not affected. Therefore, hypothesis 3
can partly be supported by the data. It can still be implied that the VR scene generates
sufficient presence to evoke real reactions. This is confirmed by the generally high value
of presence measured among participants. The ceiling effect of presence measurement
likewise explains the weak correlations with the dependent measures. Additionally, valence
and arousal values indicated the occurrence of negative emotional experience for both
failures but stronger effects occurring for failure ‘sound’. Arousal values already increased
prior to the collision event in scenario failure ‘collision’, indicating that participants were
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aware of the unusual event already prior to occurrence due to monitoring of the robot,
again supporting high presence in the VR scene. Still, the type of system failure did not
significantly affect post-scenario measures and hypothesis 4 cannot be supported by the
data. Also, the position of system failure did not significantly affect dependent measures.

To study the transferability of the results from VR scenarios and answer research
question 2, results showed the superiority of the null hypothesis for state anxiety, trust,
and intention to use in a scale-to-scale replication of one specific scenario (‘HRC1: WD’)
in the VR and real-world experiment. Additionally, the time progression of valence and
arousal values were comparable. Therefore, hypothesis 5 (transferability) can be supported
by the data. Still, time progression data in the VR experiment misses an initial increase
in arousal while the robot approaches the participants for the first time in the scenario,
probably indicating lower risk perception in VR compared to real-world interactions. A
comparison of ‘HRC3: WD’ was not possible due to technical problems of gesture control
in the real-world experiment (see [31]), explicitly showing an advantage of VR studies
in human factors research as VR allows the simulation of perfect technical capabilities of
automated systems that are error-prone and not robust in reality. Comparing the results
of scenario ‘failure—sound’ in the VR and real-world experiment, the superiority of the
null hypothesis was shown for intention to use, but contrary to hypothesis 5, not for state
anxiety and trust. State anxiety was higher, and trust was lower in the VR experiment (see
Table 5). As it was shown that participants experienced a good level of presence in the
VR experiment, differences in means can be explained by a more impressive simulation of
failure ‘sound’ in the VR experiment, further supported by a stronger decrease in valence
and increase in arousal values in VR over time compared to the real-world scenario (see
Figure 6C). Failure event ‘sound’ was individually triggered during the assembling of the
first small part of the component in VR. Failure occurrence directly during collaboration can
explain stronger reactions as participants were attached to the situation. This further adds
an advantage of VR studies as failure simulation was equal for all participants, increasing
standardization. Additionally, in contrast to the real-world experiment, participants did not
visually perceive the attendance of the experimenter during practical HRC tasks, further
enhancing the realness of the situation. All in all, research question 2 can be answered by
supporting the transferability of VR results in the field of emotional experience.

7.2. Limitations of Study Results and Transferability for Real-World Industrial Settings

The simplified representation of the real world in the applied VR scene is a limiting
factor. For example, environmental factors like noise or airflow of the robot during its
movement cannot be simulated. Although the real sound of the robot was integrated into
the VR scene, spatial orientation was not possible from records. Still, participants’ presence
was medium to high. Another factor is the omission of an assessment of participants’
prior experiences with VR. This introduces a limitation, as varying levels of familiarity
with virtual environments may impact the participants’ interaction and performance.
Nevertheless, as VR technology in the home sector was still very limited at the time of data
collection, we assume that this effect is rather small.

A methodological factor was the design of the demo assembling task. Participants were
free in assembling time. Therefore, no external factors like time pressure were present but it
is plausible that time pressure through pacing is resulting in different emotional experiences
than without [73]. Additionally, scenario-based design with post-scenario measurement is
probably impeding a subjective experience of workflow which could lower the emotional
attachment to the situation. Each scenario consisted of three assembling cycles that together
lasted for around three minutes. As a result of post-scenario measurement and laboratory
setting, it could be assumed that participants were aware of experimental variations and
expected some sort of manipulation. Although pre-study has shown that participants
were able to simultaneously concentrate on a task and report valence and arousal, it is
possible that workload raised due to the dual task and participants anchored to previous
answers on valence and arousal or they got saturated from answering the scales. Still, both
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effects are expected to lower the variance in valence and arousal measurements. This is a
reasonable explanation for the little alternating course during scenarios without relevant
events (see Figure 4A,B), but also implies that small quantitative changes in valence and
arousal should represent significant changes in emotional experience like it was found
during failure scenarios (see Figure 4C,D). Also, developments in the long term cannot be
estimated and both experiments took place in a laboratory setting. [37] summarized that
ecological validity, especially in case of error simulation, is low in laboratory settings as
participants perceive the setting as artificially controlled and therefore safe.

7.3. Relevance for Further Research

The measurement of valence and arousal values to assess negative emotional experi-
ence during interaction with an industrial robot showed great potential in the presented
studies. Participants were able to report valence and arousal values every 10 s while per-
forming an HRC task. Consistent with expectation, valence and arousal did not decisively
alternate in baseline conditions without robot movement but showed changes after sys-
tem failures occurred. As emotions are fleeting [58], the possibility of directly associating
emotional experience with specific robot motions or behavior arises.

Overall high values of trust in scenarios without failure in both the VR and real-
world experiments are in line with previous findings on over-trust. This tendency was
found in HRC research [74] and human–automation interaction in general (e.g., [25,75]).
This ‘positivity bias’ [26] should be considered when HRC workplaces are designed and
implemented. As over-trust is related to reduced situation awareness [14], objective sensor-
based monitoring of workers’ behavior due to robot actions can increase safety in HRC.
The transferability of results for real-world implementation in actual workplaces has to
be researched in case of sufficient technological development. Although this over-trust
could also result from the artificial, laboratory setting, it can be assumed that workers
equally trust in guaranteed safety due to safety-related authorization processes prior to the
technical release of work equipment. Still, longitudinal field studies should be conducted
to investigate ecological validity in the case of technological functioning.

Overall, emotional experiences did not show high intensities. A lack of strong negative
emotional experience is a promising result for future widespread adoption of HRC in the
workplace. Still, showing similar and strong fluctuation of valence and arousal values
in VR and real-world scenarios is preferable to further support the transferability of VR
results. Therefore, further experiments should include events evoking positive and nega-
tive emotional experiences. In the present study, presence was measured via self-report
at the end of the experiment after participants experienced a failure scenario that was
hypothesized to evoke strong emotional experience and be related to state anxiety. The
hypothesis was supported by the data and participants showed an increase in arousal
and state anxiety. Current research states that emotional reactions possibly cause presence
rather than inversely. In detail, the personal perception of own arousal, for example when
experiencing a system failure, results in the perception of a situation as ‘real’ [46]. To further
study this causality, applying presence measures multiple times in experiments prior to,
during, and following an evoking of strong emotional experience is desirable.

Inconsistent effects for interaction level and proximity should be further studied
systematically with heavy-load robots. In the scope of methodology, information about
the applied distances from humans to the robot and the respective reference points for
distance measuring (e.g., component versus robot flange or robot base) are rarely reported.
Reporting reference points needs to be mandatory when studying the effects of proximity
to ensure a comparison of results across studies.

8. Conclusions

The paper presents an experimental study on workers’ reactions to real-world safety-
restricted features of HRC with heavy-load robots. Therefore, a VR scene was created as a
scale-to-scale replication of a real-world test field. Additionally, to post-scenario measure-
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ments, emotional experience operationalized by valence and arousal values was studied
over time to examine the effects of different phases of interaction and robot behavior. Col-
laborations without simulated failures resulted in overall low state anxiety, high trust, and
intention to use. Also, valence and arousal values did not decisively change. Inconsistent
effects were found for the independent variables’ interaction level and proximity to the
robot, indicating significantly higher state anxiety and trust in close interactions with the
robot moving at high speeds in HRC-level 1 (component assembling on the table after
robot placed the component, no direct interaction) but not for HRC-level 3 (direct control
of robot via gesture control and assembling directly at the component on robot flange).
Still, no significant interaction effect was found for proximity and interaction level and
absolute differences in means of dependent measures were low. In contrast, simulated
failures revealed a significant increase in state anxiety and a significant decrease in trust.
The non-significant effects were found for the type of system failure (sound vs. collision)
and temporal position of system failure (early failure vs. late failure) in all dependent mea-
sures. Equally, emotional experience showed a decisive decrease in valence and increase in
arousal values following a simulated failure, indicating negative emotional experience in
accordance with results for state anxiety in post-scenario measurement. The comparison
of the results of the VR and a previous real-world experiment revealed non-significant
differences in scenarios for all dependent measures. Likewise, valence and arousal values
showed comparable progression curves over time. Both results support the transferability
of VR scenarios and the suitability of applying VR technology to study workers’ cognitive
and emotional reactions in HRC beyond real-world safety restrictions. The ecological
validity of laboratory studies in HRC is discussed and methodological recommendations
for HRC research and applying VR scenarios are deduced from study results.
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