
Citation: Galarza, B.R.; Ayala, P.;

Manzano, S.; Garcia, M.V. Virtual

Reality Teleoperation System for

Mobile Robot Manipulation. Robotics

2023, 12, 163. https://doi.org/

10.3390/robotics12060163

Academic Editor: Chris Lytridis

Received: 27 September 2023

Revised: 16 November 2023

Accepted: 24 November 2023

Published: 29 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Virtual Reality Teleoperation System for Mobile
Robot Manipulation
Bryan R. Galarza † , Paulina Ayala † , Santiago Manzano † and Marcelo V. Garcia *,†

Faculty of Systems, Electronics and Industrial Engineering, Universidad Tecnica de Ambato (UTA),
Ambato 180206, Ecuador; bgalarza7735@uta.edu.ec (B.R.G.); ep.ayala@uta.edu.ec (P.A.);
victorsmanzano@uta.edu.ec (S.M.)
* Correspondence: mgarcia294@ehu.eus or mv.garcia@uta.edu.ec; Tel.: +593-998-267-906
† These authors contributed equally to this work.

Abstract: Over the past few years, the industry has experienced significant growth, leading to what
is now known as Industry 4.0. This advancement has been characterized by the automation of
robots. Industries have embraced mobile robots to enhance efficiency in specific manufacturing
tasks, aiming for optimal results and reducing human errors. Moreover, robots can perform tasks in
areas inaccessible to humans, such as hard-to-reach zones or hazardous environments. However, the
challenge lies in the lack of knowledge about the operation and proper use of the robot. This work
presents the development of a teleoperation system using HTC Vive Pro 2 virtual reality goggles.
This allows individuals to immerse themselves in a fully virtual environment to become familiar
with the operation and control of the KUKA youBot robot. The virtual reality experience is created
in Unity, and through this, robot movements are executed, followed by a connection to ROS (Robot
Operating System). To prevent potential damage to the real robot, a simulation is conducted in
Gazebo, facilitating the understanding of the robot’s operation.

Keywords: KUKA youBot; virtual reality; unity; gazebo; ROS; teleoperation; kinematics; Industry 4.0

1. Introduction

Virtual reality (VR) and mobile platforms have emerged as pivotal technologies in rev-
olutionizing industrial applications, particularly in the realm of robotics. The integration of
VR with robots offers an unprecedented level of human–robot interaction and control [1,2].
Through immersive VR environments, operators can remotely guide and monitor robotic
systems with enhanced precision and efficiency [3]. This not only mitigates the physical
constraints of traditional human–machine interfaces but also minimizes the need for on-
site presence, thereby improving safety in hazardous industrial settings. The symbiotic
relationship between VR and robots facilitates intricate tasks, such as manipulation of
objects in complex environments, with an unparalleled level of dexterity and adaptability.
This convergence of technologies has significant implications for industries ranging from
manufacturing to logistics, where the seamless collaboration between human operators
and robotic entities leads to heightened productivity and operational excellence [4].

Simultaneously, the incorporation of mobile platforms in robotics amplifies the flexibil-
ity and versatility of industrial automation. Mobile robots equipped with advanced sensors
and intelligent algorithms can navigate dynamic environments autonomously, optimizing
workflows and reducing human involvement [5–7]. These platforms are particularly adept
at performing tasks in unstructured or changing environments, such as warehouses or
assembly lines. The synergy between mobile platforms and robotics contributes to a more
agile and responsive industrial ecosystem, capable of adapting to evolving demands [8,9].
Furthermore, the integration of mobile robotics enhances the scalability of automated
processes, allowing for the swift reconfiguration of production lines and the efficient han-
dling of diverse tasks. In the academic pursuit of advancing industrial automation, the

Robotics 2023, 12, 163. https://doi.org/10.3390/robotics12060163 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12060163
https://doi.org/10.3390/robotics12060163
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0009-0003-7533-6545
https://orcid.org/0000-0002-6676-1959
https://orcid.org/0000-0002-3919-7176
https://orcid.org/0000-0002-7138-3913
https://doi.org/10.3390/robotics12060163
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12060163?type=check_update&version=1

Robotics 2023, 12, 163 2 of 26

fusion of virtual reality with robots and the strategic deployment of mobile platforms rep-
resent a transformative paradigm, offering novel solutions to challenges in contemporary
manufacturing and logistics [10,11].

Robotics, as a field, aims to establish reliable relationships and effective interactions
between humans and machines, seeking to fully harness the capabilities of advanced
machines while empowering workers with new skills and innovative tools within the
framework of Industry 4.0 technologies on a global scale [12]. While the ultimate goal
of robotics is to achieve fully autonomous robots, practical applications of such systems
remain limited. Consequently, there is a growing emphasis on advocating for remote-
controlled robotics with human involvement to address these challenges [13]. These robots
offer the advantage of executing tasks without the need for physical presence, ensuring the
health and safety of human operators, particularly in inaccessible areas [14].

In the pursuit of advancing Industry 4.0, virtual reality (VR) has emerged as a trans-
formative tool within the realm of robotics. Defined as a medium of human–technological
interaction that facilitates the creation and simulation of complex scenarios, VR holds
significant potential for robot training [15,16]. Beyond training, VR applications extend
to various sectors, enhancing internal operations in settings such as operating rooms and
hospitals, exemplified by the HoloSurg system developed by Exovite [17]. Furthermore,
VR’s reach expands into non-industrial domains, such as the Thyssen-Bornemisza Mu-
seum, where visitors can explore visual representations of paintings in a realistic virtual
environment [18].

The efficacy of enabling humans to control robots remotely hinges on the development
of a robust human–robot interface. This interface is essential for providing operators with
heightened situational awareness and intuitive control mechanisms that do not impose
an additional cognitive load, forming the foundation for intelligent decision-making [19].
In collaborative environments between humans and robots, an intuitive control system
translates to more efficient task execution and safer performance [20]. Notably, in the
context of industrial robot control interfaces, there exists a noticeable gap that limits human
operators’ perception of the situation [21]. Current solutions, relying on visual feedback
like camera feeds, pose challenges in spatial comprehension, including the assessment of
distances between robots and obstacles [22].

Human–robot interfaces have increasingly focused on visually recreating scenarios
and transferring image data into an immersive environment for remote robot control [23].
Techniques such as depth-sensing RGB cameras, LiDAR, and photogrammetry have been
evaluated to generate three-dimensional models of the scene, with virtual reality serving
as an immersive and intuitive user interface that provides a sense of presence [24]. In this
context, our work contributes by developing a virtual reality interface using Unity and HTC
Vive Pro 2 goggles, allowing individuals to immerse themselves in a virtual world to learn
about the operation and control of the KUKA youBot manipulator. The communication is
facilitated through the ROS TCP Connector, enabling data transfer from Unity to ROS.

This paper unfolds several critical highlights at the intersection of virtual reality and
robotics in industrial applications.

• Advancements in human–robot interaction: the paper emphasizes the significance
of effective human–robot interfaces, crucial for remote robot control. It stresses the
need for interfaces that provide operators with heightened situational awareness and
intuitive control mechanisms, promoting efficient task execution and enhanced safety.

• Transformative role of virtual reality (VR): virtual reality is identified as a transforma-
tive tool, particularly in the training of robots. By creating and simulating complex
scenarios, VR proves instrumental in providing a realistic and immersive environment
for learning about the operation and control of robotic systems.

• Addressing limitations in current control interfaces: the research addresses the existing
gap in industrial robot control interfaces, highlighting limitations associated with
conventional visual feedback solutions like camera feeds. It advocates for the use of

Robotics 2023, 12, 163 3 of 26

VR as an intuitive and immersive user interface, offering a solution to challenges in
spatial comprehension and perception in remote robot control scenarios.

This article is structured as follows: Section 2 presents different works related to the
subject of study. Section 3 explores the kinematic model of the KUKA youBot, examining
both the omnidirectional platform and robotic arm through detailed equations and the
Denavit–Hartenberg method. Section 4 shows how the simulation of the robot is developed
in Gazebo software 11.0.0. The creation of a virtual reality environment within Unity
represents a pivotal component of this study, facilitating the seamless interaction between
the physical world and the digital realm sowed in Section 5. The results of the platform are
shown in Section 6. Finally, Section 7 details the conclusions and future work.

2. State of the Art

In this section, a set of related works is presented concerning the application of virtual
reality technologies and the use of robots.

In the article by Peppoloni et al. [25], they highlight the development of an augmented
reality control interface using the CoCo framework. This interface enables the teleoperation
of a robot through gestures and hand movements, making user interaction with the virtual
environment more accessible. Visual feedback is obtained through Kinect sensors and an
HMD (Head-Mounted Display), and communication with the robot is achieved through
ROS (Robot Operating System) and the Leap ROS interface. This proposal focuses on
gesture-based and visual interaction for robot control. Carlos A. García et al. [26] present
an augmented reality interface for controlling a Scorbot ER 4U. In this work, kinematic
analysis is conducted to define the robot’s control method. A Raspberry Pi card is used for
control, utilizing the MQTT protocol to ensure security and message transmission quality
from the virtual environment to the controller.

Caiza et al. [27] focus on a teleoperation system for robots in the oil and gas industry,
where tasks such as equipment maintenance or inspection are challenging due to the remote
and harsh environments. This project is applied in Petroamazonas EP to enable remote
maintenance and pipeline inspection by operators. The virtual reality environment is
developed in Unity, utilizing a Leap Motion sensor to detect motion commands, including
both arm position and speed for the robotic arm. In Botev [28], the development of an
immersive virtual reality interface for manipulating the Turtlebot 2 robot is emphasized.
The Turtlebot 2 operates on the ROS Kinetic operating system. Before testing the robot, a
simulation is conducted in Gazebo 7, allowing for an understanding of its operation and
analysis of its behavior in different situations. Communication between ROS and the Unity
virtual environment is established using the TCP-IP protocol, with the aid of a package
known as ROS Rosbridge and the RosSharp library in Unity. Additionally, an Extended
Reality (XR) plugin is employed to quickly create the virtual reality scenario.

On the other hand, in Rakita et al. [29], the research focuses on the effects of de-
lays in the teleoperation interface of an imitation-control robot. Teleoperation involves
a user moving their arms to directly guide the robot. The study includes an experiment
with human subjects that reveals how different types and amounts of delays impact task
performance. Movements under different delay conditions are compared to identify strate-
gies operators employ to adapt to these conditions and explain performance differences.
In Kim Eishi et al. [30], a study examines the impact of communication latency on tele-
operation performance and the mental workload of operators in remote environments.
Two tasks are conducted with a group of participants to assess the effects of different
levels of communication latency: a duration reproduction task and a maze navigation task.
The results revealed that an increase in communication latency resulted in a significant
deterioration in performance. Additionally, participants reported a decrease in their self-
assessment of their performance and an increase in frustration, effort, and mental demands
as latency increased.

The study by di Lanzo et al. [31] presents the creation and use of virtual reality learning
objects in the fields of robotics, mechanics, and electronics. They employed two virtual

Robotics 2023, 12, 163 4 of 26

reality approaches, one for mobile devices and another immersive one with Oculus Rift.
They developed 3D objects for robotics and mechanics, accessible on both mobile devices
and laptops through the “Virtual Bullet Time” application. For electronics, they created
an Immersive Virtual Laboratory using Oculus Rift and Leap Motion. Preliminary results
indicate that this technology enhances the learning process for students. In Pañe-Tapia
et al. [32], they designed a virtual reality control interface to manipulate the Kinova Jaco
robot using HTC Vive virtual reality goggles. This interface allows the user to monitor
the robotic arm, obtain information on joint states, locate the end-effector’s position, and
control it. For arm movement planning, they employ the Open Motion Planning Library, an
open-source library with planning algorithms. Additionally, they use MoveIt for kinematic
analysis and collision checking between various objects.

In summary, these research studies demonstrate a growing interest in the use of
virtual reality in education, particularly in the fields of robotics, mechanics, and electronics.
Virtual reality learning objects have been developed for both mobile devices and immersive
headsets, enhancing students’ understanding and learning experiences in these areas.
Additionally, the importance of addressing communication latency in robotic teleoperation
environments is emphasized. Latency can have a negative impact on operator performance
and increase their mental workload.

3. KUKA youBot Kinematic Model

This section explores the kinematic model of the KUKA youBot, focusing on both the
omnidirectional platform and the robotic arm. The omnidirectional platform, equipped
with mecanum wheels, is analyzed for unrestricted movement, with a detailed description
provided through equations and geometric dimensions. The robotic arm’s kinematics
are elucidated using the Denavit–Hartenberg method, presenting DH parameters and
reference frames for each link. The comprehensive Gazebo application developed simplifies
DH parameter calculations by allowing dynamic adjustments to link positions through a
graphical interface.

3.1. Omnidirectional Platform Kinematics

The platform is comprised of mecanum omnidirectional wheels, which enable unre-
stricted movement in any direction without the front of the platform rotating. To have an
appropriate kinematic model, it is essential to consider the arrangement of the rollers on
the wheels [33].

According to the research of [27,34], the kinematics of the platform are described
by Equations (1)–(3) and its parameters are shown in Figure 1. In this context, ẋ and ẏ
denote the velocities along the X and Y axes, respectively, while θb represents the angular
velocity of the platform. The term di refers to the individual linear velocity of each wheel.
Consequently, motion in the plane is determined through linear combinations of the
wheel velocities.

ẋ =
1
4
(d1 + d2 + d3 + d4) (1)

ẏ =
1
4
(−d1 + d2 + d3 − d4) tan(αb) (2)

θb =
1
4
(d1 + d2 + d3 + d4)β (3)

On the other hand, Figure 2 shows the parameters αb and β that are mentioned in
Equations (2) and (3), respectively, which are related to the angle of the wheel rollers. The
translational and rotational movements are represented in Figure 2 by a shaded platform.
This indicates the direction in which it will move based on the linear velocities.

Robotics 2023, 12, 163 5 of 26

Figure 1. Geometric dimensions of the mobile platform.

Figure 2. Visualization of parameters α and β governing wheel roller angles, with a shaded platform
depicting translational and rotational movements.

3.2. Kinematics of the Robotic Arm

For the analysis of robotic manipulators, it is more practical to assign reference frames
to each link to form a kinematic chain [27,35]. The fundamental method for assigning
reference frames is the Denavit–Hartenberg (DH) method, which describes the robot in
terms of the static parameters of the links and the variables of each joint. This method
is based on forward kinematics, which uses homogeneous transformation matrices to
calculate the position and orientation data of the robotic arm’s end-effector. This matrix
consists of a translation part that indicates the end-effector’s position and a rotation matrix
that determines the end-effector’s orientation through the calculation of Euler angles,
obtained using inverse trigonometric functions. The measurements of each link required
for DH parameter calculation, as well as the rotational limits, are presented in Figure 3.

Robotics 2023, 12, 163 6 of 26

Figure 3. Geometrical parameters of the KUKA youBot arm, illustrating key dimensions and features,
including arm length and end-effector specifications, providing a comprehensive overview of the
arm’s structural characteristics.

Figure 4 illustrates the positioning of the reference frames for each joint, which are
assigned at the end of each link, specifically at the joint connecting to the previous link. The
first reference frame is typically assigned to the base of the robot, and it remains as a fixed
coordinate system acting as the global reference frame. The positions and orientations of
all other parts of the robot are described in relation to this initial frame. In other words, all
the other reference frames are established with respect to the base reference frame. Table 1
presents the Denavit–Hartenberg parameters, which are used to get the five homogeneous
transformation matrices for each link [36].

Figure 4. Reference frame positioning in robotic arm kinematics, highlighting the assignment at each
joint and the fixed global reference frame at the base.

Robotics 2023, 12, 163 7 of 26

Table 1. DH parameters.

Links θ d a α

1 2.94 0.147 0.0330 π
2

2 1.12 0 0.1550 0
3 −2.54 0 0.1350 0
4 3.35 0 0 π

2
5 2.92 0.2175 0 0

With the 4 DH parameters calculated, they are substituted into Equation (4) to obtain
the matrices for each link, where the parameters S and C correspond to the sine and cosine
functions, respectively [36].

Ai−1
i =

Cθi −SθiCαi SθiCαi aiCθi
Sθi CθiCαi −CθiSαi aiSθi
0 −Sαi Cαi di
0 0 0 1

 (4)

Finally, to get the overall transformation matrix, you multiply all the matrices for each
link, as shown in Equation (5).

T0
n = A0

1 An−1
n (5)

3.3. Gazebo Application for Simplified DH Parameter Calculation in Robotic Arm Kinematics

The method for calculating the various DH parameters can be an extensive and
somewhat complicated procedure. To avoid this, a Gazebo application is developed,
allowing you to change the positions of each of the links through a graphical interface.
Based on these positions, the total transformation matrix is calculated, which is necessary
to determine the position and orientation of the robotic arm’s end-effector.

Figure 5 shows the class diagram for the Python application. It consists of two classes
that depend on the main class, meaning this class has a composition relationship that
predominates over the others. This class depends on the rospy package, which is required
for working with ROS dependencies. It defines attributes for the DH parameters needed to
calculate the position and orientation of the robotic arm’s end-effector, which are of type
translation and rotation. The secondary class, “YouBotDHParameters”, consists of a single
constructor method for initializing the class. It has DH attributes of type vector, as these
values are entered in this format before being converted into matrices.

The “kinematics” class is responsible for calculating the homogeneous transfor-
mation matrices for each link of the arm, based on the positions of the links and the
provided 4 DH parameters. The translation matrix describes the displacement of a part of
the robot from one point to another in three-dimensional space and is used to determine
its new position when multiplied by the coordinate vector of a point. On the other hand,
the rotation matrix is used to represent the orientation of a specific part of the robot in
three-dimensional space.

Figure 6 displays the graphical interface where the positions of the links are presented,
and you can change these values. It is important to note that the parameters for forward
kinematics calculate the position and orientation of the robotic arm’s end-effector based
on a reference system, which would be the platform. It also depends on the positions
of the links. In other words, if the positions change, the position and orientation of the
end-effector will also change.

Robotics 2023, 12, 163 8 of 26

Figure 5. Kinematics class diagram.

Figure 6. Kinematics graphical interface.

Equation (6) presents the result of the total transformation matrix obtained through the
application. It extracts two key components: the translation matrix for the end-effector’s
position and the 3 × 3 rotation matrix to define the end-effector’s orientation. Table 2
provides the corresponding values for the position and orientation of the end-effector,
expressed in meters and radians, respectively. These data are essential for trajectory

Robotics 2023, 12, 163 9 of 26

planning and robotic arm control, as they enable precise movements to specific locations
and are used by algorithms to calculate the sequence of movements required to reach the
desired goal.

T0
n =

0.03 −0.0041 −0.99 −0.14
−0.21 0.97 −0.01 −0.001
0.97 0.21 0.036 0.44

0 0 0 1

 (6)

Table 2. Position and orientation data.

Links positions

arm_joint_1 2.9372
arm_joint_2 1.2772
arm_joint_3 −2.5586
arm_joint_4 0.1226
arm_joint_5 0

End effector position coordinates

x −0.1449
y −0.0017
z 0.4422

End effector orientation

x 1.4023
y −1.3495
z −1.3939

4. Managing Robotic Arm and Mobile Platform Movement in Gazebo

In this section, we embark on a comprehensive exploration of control systems gov-
erning two vital aspects of our robotic system: the manipulator arm and the mobile
platform. Effective control of the robotic arm is a foundational component of its function-
ality, involving precise positioning and movement. The accompanying class diagrams
and control mechanisms presented provide insight into how the robotic arm’s various
joints are manipulated and protected. Simultaneously, we delve into the intricate control
of the mobile platform, known for its omnidirectional capabilities and unique modes of
movement. This section encompasses the integrated control strategies for both these essen-
tial components, shedding light on the technology that powers their operation within a
dynamic environment.

4.1. Manipulator Arm Control

Figure 7 shows the class diagram for arm control, where there are two classes that
depend on the main class “arm_position”. This main class contains attributes for each link,
and they are visible to all elements of the class. In the secondary class “my_publisher”, the
node is initialized, along with the topic where the positions of the links will be published,
as well as acceleration, velocity, and effort values. Additionally, it controls the lower and
upper rotational limits of each link, as presented in Table 3, to prevent any damage to
the robot’s motors. The “main” class is responsible for calling the main class to execute
the received position data. The main class depends on the rospy package and uses the
following libraries for arm control:

• JointTrajectory: provides a message structure for representing joint motion trajecto-
ries of the robot, and it also includes information such as the trajectory’s start time,
duration, and a list of trajectory points.

Robotics 2023, 12, 163 10 of 26

• JointTrajectoryPoint: allows storing information about a specific joint position in a
motion trajectory. It contains data regarding the positions, velocities, accelerations,
and efforts of the joints at a particular point in the trajectory.

• std_msgs.msg: provides standard messages for data exchange, meaning it allows
standardized communication with other nodes in the ROS system [37].

Figure 7. Robotic arm control class diagram.

Figure 8 shows the movement of the arm according to the set positions. Initially, the
arm is in the resting state or initial position, and once the node responsible for sending the
data is executed, the Gazebo node starts receiving position data for arm movement. The
topic through which data are published and subscribed is of type “JointTrajectory”, which
provides the data structure for representing joint motion trajectories.

Figure 8. Arm movement in Gazebo.

Robotics 2023, 12, 163 11 of 26

Table 3. Rotational limits of the arm.

Link Name Lower Limit (Rad) Upper Limit (Rad)

1 arm_joint_1 0.0100692 5.84014
2 arm_joint_2 0.0100692 2.61799
3 arm_joint_3 −5.02655 −0.015708
4 arm_joint_4 0.0221239 3.4292
5 arm_joint_5 0.110619 5.64159

4.2. Mobile Platform Control

It is important to consider that the mobile platform is omnidirectional thanks to its
Mecanum wheels, which provide two different modes of movement. Firstly, there is
rotational or angular movement, where the platform rotates as a whole with the front part.
Secondly, there is linear movement, which allows the platform to move left or right without
the need for the front part to rotate. In Figure 9, the class diagram is presented, in which
we find a single main class that contains multiple float-type attributes. Additionally, this
main class establishes a composition relationship with the rospy package. Furthermore,
this rospy package contains the Twist library, which enables the expression of platform
velocity in terms of linear and angular velocity. Below is the description of each method
used within the main class:

• Constructor: this method is used to initialize the main class. Here, the node to be
created and the topic (cmd_vel) in which linear and angular wheel speeds will be
published are defined. Additionally, a time interval is set for each message sent, and a
while loop is implemented to continuously send velocity data.

• Shutdown: this method is used to stop the movement of the mobile platform. In other
words, once the script is executed, the platform starts moving and continues moving
until the user decides to stop it through an action in the console. To achieve this, a
function is created that sends a signal to the robot to stop.

• Main: this function calls the main class to start and stop the application, and also
displays a message in the console indicating that the robot has been stopped.

Figure 9. Class diagram of mobile platform movement.

Figure 10 shows the forward and backward movement of the platform using the
’geometry_msgs.msg’ library with the Twist module. This includes three components
(x, y, z) representing linear velocities. To move forward, a positive value is assigned to the
’x’ component, while a negative value is assigned to move backward. Lateral movement to
the left or right is achieved by simply adjusting the linear velocity in the ’y’ component.
To move to the right, a negative value is set, and to the left, a positive value. Regarding
rotational movement, the Twist library is also used. In this case, rotational movement in the
(x, y) components is not applicable, as the platform cannot perform that type of movement.
Therefore, only a value is assigned to the ’z’ component. The direction of rotation depends
on the positive or negative sign assigned to this component.

Robotics 2023, 12, 163 12 of 26

Figure 10. Linear and rotational movement.

Additionally, the velocity and acceleration of the platform are also taken into account,
as they are two crucial parameters in robot operation, and their careful consideration is
essential to ensure efficiency and safety. The KUKA youBot has a speed limit of 0.8 m/s and
an acceleration of 0.5 m/s2, which allows for smooth and controlled motion, minimizing
the risk of abrupt movements, vibrations, and detrimental collisions. Time is a factor that
depends directly on whether a constant acceleration is considered in the robot’s movement,
and with the right combination of time and acceleration, damage can be avoided when
transporting objects.

5. Virtual Reality Environment in Unity

The creation of a virtual reality environment within Unity represents a pivotal com-
ponent of this study, facilitating the seamless interaction between the physical world and
the digital realm. This section delves into the intricacies of this virtual realm and is fur-
ther divided into two critical subdomains. The first subsection details the techniques and
methodologies employed for motion tracking within Unity, outlining the fundamental
principles behind the precise measurement of physical object displacement in the virtual

Robotics 2023, 12, 163 13 of 26

space. The second subsection explores the communication architecture implemented to
ensure the real-time exchange of data between the HTC SteamVR Base Station 2.0 tracking
system, the HTC VIVE Pro headsets, and Unity, allowing for synchronized and accurate
immersion in the virtual environment. Together, these subsections elucidate the technical
underpinnings that underlie the successful integration of physical and digital realities.

5.1. Implementation of KUKA youBot Tracking System

For robot position detection, Lighthouse-tracking technology is employed to achieve
precise real-time tracking. Strategically placed Lighthouse base stations within the tracking
area facilitate the accurate determination of the robot’s position. These base stations emit
continuous infrared laser signals and synchronization pulses, effectively saturating the
surrounding space. Equipped with photosensors, the robot KUKA youBot, HTC Vive
Pro 2 headsets, and controllers capture these signals. The system operates based on the
principles of temporal synchronization and the time it takes for a laser beam to reach
a specific photosensor. As multiple base stations are involved in this process, precise
triangulation is performed to calculate the exact 3D spatial position. This is achieved
through the intersection of laser beams emitted by the base stations and detected by the
robot’s photosensors. When multiple lines of sight intersect, the point of intersection in 3D
space determines the precise robot position.

To carry out the displacement measurement of a KUKA youBot robot in a virtual
reality environment using HTC SteamVR Base Station 2.0 and HTC VIVE Pro, a metic-
ulous calibration process was implemented. This process consists of two main stages:
the calibration of the SteamVR Base Stations and the calibration of the HTC VIVE Pro
headsets. Calibration of the SteamVR Base Stations is performed to establish the necessary
spatial reference for measurement. During this phase, the base stations are adjusted and
positioned to ensure adequate coverage of the working area. Calibration of the HTC VIVE
Pro headsets involves configuring the infrared cameras in the headsets to detect and track
the reflective marker attached to the robot.

Once the calibration process has been completed, the KUKA youBot robot is placed
in the virtual environment, and a reflective marker is attached to the robot. This marker,
through its reflective surface, reflects the infrared light emitted by the SteamVR Base
Stations. Both the base stations and the HTC VIVE Pro headsets use this information to
track the position of the marker in real-time. The combination of these data enables accurate
calculation of the robot’s displacement in the 3D space of the virtual environment.

HTC Vive Pro 2 Lighthouse base stations utilize two rapidly rotating laser emitters,
operating at 60 revolutions per second, ensuring a high data sampling rate. Once the
infrared laser position data are acquired, they are transmitted to the ROS (Robot Operating
System) module. The Moon-wreckers framework is employed to publish the SteamVR
location data on the ROS topic. The optical data acquisition frequency is limited to 60 Hz
due to the laser rotation speed. However, to achieve faster updates, Unity’s SteamVR
plugin complements this data with that from an Inertial Measurement Unit (IMU). The
IMU operates at a significantly higher update frequency of 250 Hz, enhancing motion-
tracking precision. The fusion of optical data from base stations with IMU data ensures
an update frequency exceeding 60 Hz, thus providing real-time, high-fidelity position
detection (See Figure 11).

5.2. Communication Architecture

Figure 12 presents the general scheme of the virtual reality teleoperation system. The
master system consists of a virtual reality interface developed in Unity, where the SteamVR
package is imported to enable Unity to recognize the HTC Vive Pro 2 virtual reality headset.
Additionally, the URDF Importer package is used to obtain the URDF file of the robot,
which contains all the meshes, textures, and necessary files for robot control, and the ROS
TCP Connector package, which enables communication with the robot through the ROS IP

Robotics 2023, 12, 163 14 of 26

address and port 10,000. Robot control scripts and communication with ROS are developed
in C# using the Visual Studio code editor.

Figure 11. Tracking system architecture.

Figure 12. Scheme of the virtual reality teleoperation system.

The TCP/IP communication protocol enables the connection between the ’ROS TCP
Connector’ in Unity and the ’ROS TCP Endpoint’ node on the ROS side, both of which are
components of ROSbridge. The ’ROS TCP Connector’ serves as a ROS node that functions
as a TCP/IP server within the ROS environment. This node is responsible for accepting
incoming TCP connections from external applications. On the other hand, the ’ROS TCP

Robotics 2023, 12, 163 15 of 26

Endpoint’ acts as a TCP/IP client. TCP/IP addresses various weaknesses, such as high
error rates and reliability, by ensuring the orderly delivery of data through techniques like
packet retransmission.

To manipulate the physical robot, it is essential to receive data from Unity for each
joint, as well as data for the mobile platform’s wheel movements. To accomplish this, a
Python script is employed to initialize and subscribe to the Unity topic. Subsequently, these
data are published to the respective topics for the physical robot in ROS. This component
functions as a broker, receiving communications from one side (Unity) and transmitting
them to the other (ROS).

The primary libraries for communication include rospy, which enables interaction
with all ROS parameters, the msg library, which facilitates message exchange between
Unity and ROS, JointPositions for controlling robot links, and Twist for controlling robot
wheels. The slave system consists of ROS, and within it, there is a node that receives
messages from Unity, as well as the KUKA youBot driver node, which initializes the
topics for receiving messages from Unity and controlling the robot’s joint motors. It is
important to note that programming on the ROS side can be done in various languages,
including C++, Python, and Java. In this case, a Python script has been implemented,
which is run from the terminal and remains in listening mode until it receives data sent
from Unity.

Figure 13 illustrates the class diagram for the implemented communication code. In
this diagram, the main class ’ROSNode’ contains the necessary attributes for publishing
and receiving data. The ’callback’ and ’listener’ methods are employed to process data and
control the robot. The ’ROS Messages and Services’ class represents the messages used in
the code, serving to transmit information between ROS nodes. Each message is defined in
a file with a .msg extension, specifying the data structure to be sent or received, which can
include various types such as integers, floats, text strings, arrays, and nested structures. On
the other hand, services are utilized to request specific tasks, such as the execution of each
robot link or platform movement.

Figure 13. Communication class diagram.

In Figure 14, the node diagram illustrates the data reception process from Unity via the
“/unity_endpoint” node, which subscribes to the “/pos_rot" topic defined within the Unity
environment. The node responsible for receiving these data is denoted as “/listener”. Its
primary function involves processing the incoming data and transforming them into a range
that adheres to the upper and lower rotational limits of the physical robot. Once these data un-
dergo processing, they are subsequently published to their respective topics. Specifically, data
related to arm control are published to “/arm_1/arm_controller/position_command”, data
pertaining to the gripper are transmitted to “/arm_1/gripper_controller/position_command”,
and information concerning wheel movement is disseminated via “/cmd_vel”. It is note-
worthy that all these data are then routed to the “/youbot_driver” node, which orchestrates
movements for both the robot’s arm and the mobile platform.

Robotics 2023, 12, 163 16 of 26

Figure 14. ROS RQT diagram.

5.3. Development of User-Centric Virtual Reality Environment for Robot Control

The development of the virtual reality environment for robot control, as shown in
Figure 15, has taken into account the guidelines of the work present in [38] and ISO
standards of usability [39] of virtual reality, with the aim of ensuring a seamless experience
for the user. These regulations and guidelines focus on four fundamental aspects: ease of
use, the learning process, user appeal, and the degree of satisfaction.

Figure 15. Robot control within the virtual reality environment.

To enhance ease of use, text panels have been incorporated, describing the functions
of each control button, allowing the user to manipulate the robot efficiently. A translation
function has also been implemented, making it easier to navigate through the scene without
the need for physical movement.

Robotics 2023, 12, 163 17 of 26

Regarding the learning process, relevant data about the position of the robot’s parts
have been provided so that the user can control it precisely. Additionally, a task of pick-
ing up and placing objects has been designed, allowing the user to observe the robot’s
movement while reaching a goal.

To enhance user engagement, a feature has been implemented that highlights the part
or joint of the robot being controlled, providing a clear and visually appealing experience.

User satisfaction when interacting with virtual reality is related to physical comfort.
Excessive camera speeds that can cause discomfort, eye fatigue, or motion sickness have
been avoided.

Within the virtual reality environment, objects that encapsulate the functionality of
the system have been incorporated, with dependency relationships that ensure the proper
functioning of each component.

The control of each joint of the robot is carried out using the buttons on the right
controller, similar to the control of the mobile platform, which uses the gyroscope of the
same controller. Additionally, once the joint movements are completed, it is possible to
return them to their initial position using the back button (trigger) on the same controller.
On the other hand, the selection of the robot’s joints and the control of translational
movements, which allow the person to move closer or farther away from the robot in the
virtual reality environment, are performed through the left controller.

5.4. Measuring Robot Movement Time in the Unity VR Environment

To evaluate the effectiveness and user experience of the virtual reality (VR) environ-
ment designed for robot control, a task measuring the robot’s time to reach a target needs
to be implemented. The overall objectives of guaranteeing a flawless user experience, ad-
hering to usability guidelines, and raising user happiness are all in line with this work. The
task developed to measure the usability of the VR platform and the time of the movement
of the KUKA youBot robot is detailed below:

Step 1: User interaction. In the initial phase of this task, the user engages with
the virtual reality (VR) environment. They are presented with an intuitive VR interface
designed to enhance user-friendliness. This interface includes the incorporation of text
panels, strategically positioned to offer clear and concise instructions on the functions of
every control button available in the VR system. This meticulous design aims to maximize
the ease of use, ensuring that users can interact with the VR environment effortlessly. By
providing explicit guidance on control functions, users are empowered to manipulate the
robot with precision and confidence. The overarching objective here is to establish an
environment where users can seamlessly navigate and control the robot, setting the stage
for a positive user experience.

Step 2: Setting the goal. Following the initial interaction with the VR environment,
users are presented with a goal-setting scenario. Within this scenario, users are supplied
with pertinent data about the current positions of various components of the robot. This
information equips users with the necessary insights to make informed decisions about
their desired robot movement. The primary aim is to engage users in a goal-oriented
exercise, where they are tasked with instructing the robot to reach a specific location or
target within the virtual environment. The goal-setting step significantly contributes to the
learning process, as it provides users with practical, hands-on experience in articulating
their intentions to the robot. This not only enhances user engagement but also fosters a
deeper understanding of robot control.

Step 3: Task execution. Once the user has formulated their goal and transmitted the
corresponding instructions to the VR system, the task moves into the execution phase. At
this stage, the VR system orchestrates the robot’s movement, initiating the journey towards
the user-defined target location. Simultaneously, a timer is activated to record the elapsed
time from the moment the user’s instruction is relayed to the robot to the instant the robot
successfully attains the specified goal. The real-time tracking of the robot’s movement
provides users with a dynamic visual representation of the robot’s progress towards the set

Robotics 2023, 12, 163 18 of 26

target. This dynamic visualization enhances user engagement, as it offers users immediate
feedback on the robot’s response to their commands and enables them to monitor the
robot’s movement in real-time.

Step 4: User satisfaction assessment. User satisfaction is a paramount consideration
in the VR environment. To ensure a high level of user satisfaction, it is essential to address
factors that could potentially lead to user discomfort, eye fatigue, or motion sickness.
One critical aspect that requires vigilant attention is the camera speeds during the robot’s
movement. It is imperative to maintain these camera speeds within the acceptable comfort
limits defined by VR usability standards. Ensuring that users can view and interact with
the robot comfortably and without experiencing adverse physical effects is central to
maintaining their satisfaction with the VR environment.

Step 5: Data collection and analysis. Throughout the entire task, comprehensive data
regarding the time taken by the robot to reach the user-specified goal are systematically
recorded and stored for further analysis. These data serve as pivotal performance indicators,
offering valuable insights into the effectiveness of the VR environment. They provide a
measurable metric for assessing the system’s capability to enable precise control and
efficient execution of robotic tasks. Data collection and subsequent analysis also pave the
way for potential optimizations and improvements to enhance the user experience and the
overall performance of the VR system.

Step 6: Task completion. As the robot successfully reaches the user-defined goal, the
recorded time is presented to the user. This final step offers users direct feedback on the
efficiency of their instructions and the responsiveness of the VR environment. It provides
a tangible result that can be used to evaluate the accuracy and timeliness of the robot’s
execution, allowing users to gauge the effectiveness of their control and providing a sense
of accomplishment upon task completion.

This task serves as an essential component for evaluating the performance of the VR
environment for robot control, ensuring that it meets the established standards of usability
and user satisfaction (See Figure 16). By providing a clear metric for measuring the time it
takes for the robot to execute user commands, the task contributes to the overall assessment
of the VR system’s effectiveness and user experience.

Figure 16. Implementation of the task for robot movement using the VR environment.

6. Experiments and Results

In the following section, we delve into the comprehensive analysis of the experiments
and results obtained in the context of our research. This section is divided into several key
aspects, each shedding light on critical facets of the study’s outcomes. Firstly, we investigate
“Response Times” to gain insight into the efficiency and reliability of data transmission and
execution times within the Unity–ROS framework. Subsequently, we turn our attention to
the “Usability of the System”, employing the System Usability Scale (SUS) method to assess
the acceptability and satisfaction of users with our virtual reality environment. This section
further encompasses an exploration of the “Manipulation of the Robot”, where we gauge
the students’ proficiency in controlling the robot, providing an in-depth perspective on their

Robotics 2023, 12, 163 19 of 26

performance levels. Additionally, we delve into “Packet Traffic Analysis” using Wireshark,
evaluating the communication robustness and identifying potential packet losses. Lastly,
the “Delay in Data” analysis uncovers variations in data delay during robot movement
execution, offering insights into the underlying factors contributing to these temporal
discrepancies. These findings collectively contribute to a comprehensive understanding of
the research’s empirical outcomes.

6.1. Response Times

Data acquisition involves measuring the execution time from when the process is
triggered in Unity until the robot’s movement is executed. In the article by Rassolkin A
et al. [40], it is indicated that to obtain statistically significant results, one should follow
the statistical rule that requires a sample size larger than 30. This rule is based on the
central limit theorem, which states that when the sample size is greater than 30, the
distribution of sample means approximates a normal distribution regardless of the original
data distribution’s shape.

In Figure 17, the response times for various robot movements once the data are
processed from Unity are presented. On average, the robot takes approximately 10.4 ms
to execute a movement, with a maximum peak of 18.5 ms in the worst-case scenario. It is
important to note that this time is influenced by various factors such as network latency,
network traffic, and data processing capacity. The standard deviation value of 0.00295
indicates that there is not much dispersion in response times relative to the mean. Since
you have a sample size greater than 30, and the data tend to follow a normal distribution
resembling a Gaussian curve, you can apply a statistical test known as the Shapiro–Wilk
test to validate the data. This is useful for predicting and estimating future values regarding
execution times or system performance.

Figure 17. Response times for robot movements. The red line represents the average time for the
processing of the robot’s movements.

In Figure 18, the Q-Q normal plot compares the quantiles of the data sample with
the theoretical quantiles of the distribution being tested. If the data follows a normal
distribution, the points on the Q-Q plot will roughly fall along a diagonal line. The more
the points deviate from this line, the greater the difference between the sample distribution

Robotics 2023, 12, 163 20 of 26

and a normal distribution. If the points are above the line, it indicates that the sample has
heavier tails than a normal distribution. If they are below the line, it indicates that the
sample has lighter tails. Using SPSS software version 29.0, the Shapiro–Wilk statistical test
is calculated, where the null hypothesis suggests that the data follow a normal distribution,
and the alternative hypothesis suggests that the data do not follow a normal distribution.
The software is set with a 95% confidence level, indicating a high degree of confidence that
the results are representative of the underlying population, and a significance level (alpha)
of 5%, which indicates the probability of making a Type I error by incorrectly rejecting
a true null hypothesis. The obtained p-value is 0.227, and this test indicates that if the
calculated value is greater than 0.05, the null hypothesis is accepted. This ensures that these
data are reliable for effective communication between Unity and ROS, as there is not much
difference or discrepancy from the calculated mean.

Figure 18. Shapiro–Wilk normality test.

6.2. Usability of the System

Usability is evaluated using the SUS (System Usability Scale) method developed by
Blattgerste et al. [41]. This method consists of 10 predefined questions that serve to assess
the usability of any system. Responses to each statement follow the Likert scale, so there are
five response options for each question, this serves to measure attitudes, opinions, and the
level of acceptability of a person on a specific topic. It is generally presented in a series of
options ranging from “Strongly Disagree” to “Strongly Agree”, and respondents choose the
option that best reflects their opinion or attitude. A survey was administered to a sample of
39 students, and the results obtained are presented in Figure 19, where the horizontal axis
represents the number of survey questions, and the vertical axis represents the number of
students who chose each response option. Once the survey was completed, the individual
score for each question was calculated. It should be noted that odd-numbered questions
1, 3, 5, 7 are positive, and even-numbered questions 2, 4, 6, 8 are negative, as this method
frames questions this way to avoid response bias.

To evaluate the SUS score, you sum the responses from the odd-numbered statements
within the Likert scale, subtract 5, sum the responses from the even-numbered statements,
and subtract 25. Finally, you add both results and multiply by 2.5. The obtained score
results in a score of 75, which indicates a “B” grade with a descriptor of “Good”. The
acceptability is “Acceptable”, and the Net Promoter Score (NPS) is “Passive”, indicating
user loyalty to the system, meaning they are satisfied with the virtual reality experience. In
Figure 20, you can see the percentile distribution of the SUS score, which corresponds to
the 73rd percentile. The percentile is useful for understanding the usability of the system. If

Robotics 2023, 12, 163 21 of 26

the SUS score is in a high percentile, it indicates that the majority of users are satisfied with
the usability of the system, while a low percentile suggests that several usability aspects
need improvement.

Figure 19. Results of system usability.

Figure 20. Distribution of SUS score.

6.3. Manipulation of the Robot

The aim of this test is for students to freely control each part of the robot using the
virtual reality environment. This test has five performance levels of control, and scores
are assigned to each level to determine the achieved control. These scores are assigned
based on their proficiency in manipulating the robot, the accuracy, and whether they
require supervision or support to reach the goal. The description of each of these levels is
presented below:

• Excelent: 5 points (students who demonstrate complete and precise mastery of all parts
of the robot. They can move the robot smoothly with high accuracy and dexterity).

Robotics 2023, 12, 163 22 of 26

• Good: 4 points (students who demonstrate a good mastery in manipulating the robot.
Although they may make some minor errors, overall, they can manipulate the robot
with precision and efficiency).

• Acceptable: 3 points (students who can control the robot to some extent but may make
significant errors. They may require partial guidance and support).

• Limited: 2 points (may struggle to manipulate it correctly and perform tasks accurately.
They require constant supervision and assistance to achieve the objectives).

• Low: 1 point (have no control over the robot, struggle significantly to understand
robot control, displaying performance well below the expected level).

In Figure 21, the results of each student’s robot control performance are presented.
There are two students with a 40% control performance, meaning they have difficulties
manipulating the robot and require constant supervision. A student has a 60% control
performance, indicating they can control the robot to some extent but make significant
errors, requiring partial assistance. A total of 17 students have an 80% control performance,
meaning they show good mastery of the robot with minor errors that do not affect robot
manipulation. Finally, 19 students have a 100% control performance, indicating they can
control the robot without any issues, demonstrating great skill and fluency in robot control.
The average score is 4.36, considering that 5 is the highest level, which represents an 87.18%
mastery of robot control. In other words, students can manipulate the robot with good
mastery but may make certain minor errors that do not affect robot control.

Figure 21. Results of robot control performance.

6.4. Packet Traffic Analysis

The open-source software Wireshark version 4.2.0 is used to capture packet traffic
data. This software allows you to obtain the number of packets processed for the robot’s
movement and the time between each of these packets. To capture the packets of interest,
a filter is applied to only capture traffic on TCP port 10,000, as this is the port used for
communication between Unity and ROS. In Figure 22, you can see the captured packets
along with the time elapsed for each packet. It shows the sending of 715 packets from
Unity and the capture of 693 packets in ROS, resulting in a total loss of 22 packets. These
losses can be attributed to factors like network latency and congestion. The horizontal axis
represents the time of capture for each packet, with the last packet captured at 80.35 s. The
time elapsed since the previous captured packet was 0.0204 ms. On the vertical axis, the
times elapsed between each packet are represented every 100 ms.

Robotics 2023, 12, 163 23 of 26

Figure 22. Packet traffic capture.

6.5. Delay in Data

In Figure 23, the network delay during the execution of robot movements is shown.
This graph illustrates the variation in round-trip time (RTT) between sent and received
packets. The horizontal axis represents the time elapsed between packets, and the vertical
axis displays the RTT value in milliseconds for each packet. The average data delay is
0.115 ms, with a maximum peak value of 1.65 ms, indicating that, at times, packets may
experience higher delays than the average. There is also a minimum peak value of 0.032 ms,
indicating that, at times, packets may experience very low delays. These variations in delay
can be attributed to factors such as hardware performance, as the devices involved can
affect performance depending on the hardware used, as well as physical distance between
the operator and network congestion.

Figure 23. Delay in data.

7. Conclusions and Future Work

The analysis of a robot’s kinematics proves to be a cornerstone in optimizing its per-
formance in various industrial applications. By thoroughly understanding the movements
and positions of its joints and end effector, efficient and safe motions can be achieved.
Simulation in Gazebo has proven to be an invaluable tool in this process, allowing for tests
and experiments that facilitate the understanding of fundamental kinematic concepts, as
well as the identification of potential collisions with the environment.

Robotics 2023, 12, 163 24 of 26

The methodology employed in virtual environments for robot manipulation, which
combines technologies like virtual reality and teleoperation, proves to be an effective and
versatile solution. The immersive virtual reality interface allows for intuitive and precise
control of the robot, with acceptable usability according to the SUS scale. This scalable
and adaptable technology holds promising potential in various fields, including industry,
medicine, education, and agriculture.

Furthermore, the data obtained through TCP show consistency in robot execution
times, with average times staying within acceptable limits. The normal distribution of these
data, supported by statistical tests, ensures stability in execution times, which is essential
for precise and safe robot control. The implementation of a teleoperation system with
virtual reality not only improves the operability of the robot but also provides opportuni-
ties for training and risk assessment in virtual environments, thereby reducing exposure
to hazardous situations in the real world. Collectively, these conclusions highlight the
importance of combining kinematics, virtual reality, and teleoperation in the control and
safe management of robots in various applications.

The development of a virtual reality system with improvements in the quality of the
experience, latency reduction, and the incorporation of more intuitive user interfaces for
more efficient and precise teleoperation is a research area for the future. Additionally,
the incorporation of elements of social interaction in virtual reality teleoperation is worth
exploring, which could be valuable in applications such as assisting the elderly or distance
education. Furthermore, ensuring data transmission security and robot control through
ROS Security is another area of future research, especially in critical applications where
robots interact with sensitive environments and systems. This helps establish authorization
policies to define who can access what resources and perform what actions within the ROS
system, ensuring that critical operations are restricted only to authorized users.

Author Contributions: Conceptualization, B.R.G. and M.V.G.; methodology, B.R.G.; software, B.R.G.,
S.M. and P.A.; validation, M.V.G.; investigation, B.R.G., P.A. and M.V.G.; writing—original draft
preparation, B.R.G. and M.V.G.; writing—review and editing, P.A. and M.V.G.; visualization, S.M.;
supervision, M.V.G.; funding acquisition, S.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is unavailable due to privacy restrictions

Acknowledgments: The authors would like to acknowledge the support received from the Univer-
sidad Tecnica de Ambato (UTA) and their Research and Development Department (DIDE) under
project PFISEI32. Additionally, the authors would like to express their gratitude to the research
network INTELIA, supported by REDU, for their valuable assistance throughout the course of this
work. Their collaboration and expertise contributed significantly to the success of the project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Caiza, G.; Garcia, C.A.; Naranjo, J.E.; Garcia, M.V. Flexible robotic teleoperation architecture for intelligent oil fields. Heliyon 2020,

6, e03833. [CrossRef] [PubMed]
2. Matsas, E.; Vosniakos, G.C. Design of a virtual reality training system for human–robot collaboration in manufacturing tasks. Int.

J. Interact. Des. Manuf. 2017, 11, 139–153. [CrossRef]
3. Chu, C.Y.; Patterson, R.M. Soft robotic devices for hand rehabilitation and assistance: A narrative review. J. Neuroeng. Rehabil.

2018, 15, 9. [CrossRef] [PubMed]
4. Bilberg, A.; Malik, A.A. Digital twin driven human–robot collaborative assembly. CIRP Ann. 2019, 68, 499–502. [CrossRef]
5. Oyekan, J.O.; Hutabarat, W.; Tiwari, A.; Grech, R.; Aung, M.H.; Mariani, M.P.; López-Dávalos, L.; Ricaud, T.; Singh, S.; Dupuis,

C. The effectiveness of virtual environments in developing collaborative strategies between industrial robots and humans.
Robot.-Comput.-Integr. Manuf. 2019, 55, 41–54. [CrossRef]

6. Makhataeva, Z.; Varol, H.A. Augmented reality for robotics: A review. Robotics 2020, 9, 21. [CrossRef]
7. De Abreu, A.; Ozcinar, C.; Smolic, A. Look around you: Saliency maps for omnidirectional images in VR applications.

In Proceedings of the 9th International Conference on Quality of Multimedia Experience (QoMEX), Erfurt, Germany,
31 May 2017–2 June 2017. [CrossRef]

http://doi.org/10.1016/j.heliyon.2020.e03833
http://www.ncbi.nlm.nih.gov/pubmed/32373738
http://dx.doi.org/10.1007/s12008-015-0259-2
http://dx.doi.org/10.1186/s12984-018-0350-6
http://www.ncbi.nlm.nih.gov/pubmed/29454392
http://dx.doi.org/10.1016/j.cirp.2019.04.011
http://dx.doi.org/10.1016/j.rcim.2018.07.006
http://dx.doi.org/10.3390/robotics9020021
http://dx.doi.org/10.1109/QoMEX.2017.7965634

Robotics 2023, 12, 163 25 of 26

8. Zhang, T.; McCarthy, Z.; Jowl, O.; Lee, D.; Chen, X.; Goldberg, K.; Abbeel, P. Deep imitation learning for complex manipulation
tasks from virtual reality teleoperation. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, 21–25 May 2018; pp. 5628–5635. [CrossRef]

9. Havard, V.; Jeanne, B.; Lacomblez, M.; Baudry, D. Digital twin and virtual reality: A co-simulation environment for design and
assessment of industrial workstations. Prod. Manuf. Res. 2019, 7, 472–489. [CrossRef]

10. Fernandez, G.; Gutierrez, S.; Ruiz, E.; Perez, F.; Gil, M. Robotics, the New Industrial Revolution. IEEE Technol. Soc. Mag. 2012,
31, 51–58. [CrossRef]

11. Yang, G.Z.; Bellingham, J.; Dupont, P.E.; Fischer, P.; Floridi, L.; Full, R.; Jacobstein, N.; Kumar, V.; McNutt, M.; Merrifield, R.; et al.
The grand challenges of science robotics. Sci. Robot. 2018, 3, eaar7650. [CrossRef]

12. Romero, D.; Stahre, J.; Wuest, T.; Noran, O.; Bernus, P.; Fast-Berglund, Å.; Gorecky, D. Towards an operator 4.0 typology: A
human-centric perspective on the fourth industrial revolution technologies. In Proceedings of the International Conference on
Computers and Industrial Engineering (CIE46), Tianjin, China, 29–31 October 2016; pp. 29–31.

13. Xu, S.; Moore, S.; Cosgun, A. Shared-control robotic manipulation in virtual reality. In Proceedings of the 2022 International
Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 9–11 June 2022.
[CrossRef]

14. Luo, Y.; Wang, J.; Shi, R.; Liang, H.N.; Luo, S. In-Device Feedback in Immersive Head-Mounted Displays for Distance Perception
During Teleoperation of Unmanned Ground Vehicles. IEEE Trans. Haptics 2022, 15, 79–84. [CrossRef]

15. Julio Becerra, J.R.; Peñaloza, M.E.; Rodríguez, J.E.; Chacón, G.; Martínez Molina, J.A.; Saquipay Ortega, H.V.; Cas-
tañeda Morales, D.H.; Pesantez Placencia, X.M.; Salazar, J.; Añez, R.; et al. La realidad virtual como herramienta en el
proceso de aprendizaje del cerebro. Arch. Venez. Farmacol. Ter. 2019, 38, 98–107.

16. Sousa Ferreira, R.; Campanari Xavier, R.A.; Rodrigues Ancioto, A.S. Virtual reality as a tool for basic and vocational education.
Rev. Cient. Gen. Jose Maria Cordova 2021, 19, 223–241.

17. Zhou, T.; Zhu, Q.; Du, J. Intuitive robot teleoperation for civil engineering operations with virtual reality and deep learning scene
reconstruction. Adv. Eng. Inform. 2020, 46, 101170. [CrossRef]

18. Gorjup, G.; Dwivedi, A.; Elangovan, N.; Liarokapis, M. An Intuitive, Affordances Oriented Telemanipulation Framework for
a Dual Robot Arm Hand System: On the Execution of Bimanual Tasks. In Proceedings of the 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 3611–3616. [CrossRef]

19. Endsley, M.R. Toward a theory of situation awareness in dynamic systems. Hum. Factors 1995, 37, 32–64. [CrossRef]
20. Scholtz, J.; Antonishek, B.; Young, J. Evaluation of a human-robot interface: Development of a situational awareness methodology.

In Proceedings of the 37th Annual Hawaii International Conference on System Sciences, Big Island, HI, USA, 5–8 January 2004;
Volume 37, pp. 2077–2086.

21. Arthur, K.W. Effects of Field of View on Performance with Head-Mounted Displays; The University of North Carolina at Chapel Hill:
Chapel Hill, NC, USA, 2000.

22. Zhou, T.; Xia, P.; Ye, Y.; Du, J. Embodied Robot Teleoperation Based on High-Fidelity Visual-Haptic Simulator: Pipe-Fitting
Example. J. Constr. Eng. Manag. 2023, 149, 13916. [CrossRef]

23. Stotko, P.; Krumpen, S.; Schwarz, M.; Lenz, C.; Behnke, S.; Klein, R.; Weinmann, M. A VR system for immersive teleoperation and
live exploration with a mobile robot. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Macau, China, 3–8 November 2019; pp. 3630–3637.

24. Riva, G.; Mantovani, F.; Capideville, C.S.; Preziosa, A.; Morganti, F.; Villani, D.; Gaggioli, A.; Botella, C.; Alcañiz, M. Affective
interactions using virtual reality: The link between presence and emotions. Cyberpsychol. Behav. 2007, 10, 45–56. [CrossRef]

25. Peppoloni, L.; Brizzi, F.; Avizzano, C.A.; Ruffaldi, E. Immersive ROS-integrated framework for robot teleoperation. In Proceedings
of the 2015 IEEE Symposium on 3D User Interfaces (3DUI), Arles, France, 23–24 March 2015; pp. 177–178.

26. Caiza, G.; Bonilla-Vasconez, P.; Garcia, C.A.; Garcia, M.V. Augmented reality for robot control in low-cost automation context
and IoT. In Proceedings of the 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),
Vienna, Austria, 8–11 September 2020.

27. Blumenthal, S.; Shakhimardanov, A.; Nowak, W. KUKA youBot User Manual; Locomotec: Augsburg, Germany, 2012; p. 7.
28. Botev, J.; Lera, F.J.R. Immersive Robotic Telepresence for Remote Educational Scenarios. Sustainability 2021, 13, 4717. [CrossRef]
29. Rakita, D.; Mutlu, B.; Gleicher, M. Effects of onset latency and robot speed delays on mimicry-control teleoperation. In

Proceedings of the HRI’20: 2020 ACM/IEEE International Conference on Human-Robot Interaction, Cambridge, UK, 23–26
March 2020.

30. Kim, E.; Peysakhovich, V.; Roy, R.N. Impact of communication delay and temporal sensitivity on perceived workload and
teleoperation performance. In Proceedings of the ACM Symposium on Applied Perception 2021, Virtual, 16–17 September 2021;
pp. 1–8.

31. Di Lanzo, J.A.; Valentine, A.; Sohel, F.; Yapp, A.Y.; Muparadzi, K.C.; Abdelmalek, M. A review of the uses of virtual reality in
engineering education. Comput. Appl. Eng. Educ. 2020, 28, 748–763. [CrossRef]

32. Peña-Tapia, E.; Roldán, J.J.; Garzón, M.; Martín-Barrio, A.; Barrientos, A. Interfaz de control para un robot manipulador mediante
realidad virtual. In Proceedings of the XXXVIII Jornadas de Automática, Gijón, Spain, 6–8 September 2017; Universidade da
Coruña, Servizo de Publicacións: Corunha, Spain, 2020. [CrossRef]

http://dx.doi.org/10.1109/ICRA.2018.8461249
http://dx.doi.org/10.1080/21693277.2019.1660283
http://dx.doi.org/10.1109/MTS.2012.2196595
http://dx.doi.org/10.1126/scirobotics.aar7650
http://dx.doi.org/10.1109/hora55278.2022.9800046
http://dx.doi.org/10.1109/TOH.2021.3138590
http://dx.doi.org/10.1016/j.aei.2020.101170
http://dx.doi.org/10.1109/IROS40897.2019.8967782
http://dx.doi.org/10.1518/001872095779049543
http://dx.doi.org/10.1061/JCEMD4.COENG-13916
http://dx.doi.org/10.1089/cpb.2006.9993
http://dx.doi.org/10.3390/su13094717
http://dx.doi.org/10.1002/cae.22243
http://dx.doi.org/10.17979/spudc.9788497497749.0829

Robotics 2023, 12, 163 26 of 26

33. Meshkov, A.; Gromov, V. Adaptive nonlinear motion parameters estimation algorithm for digital twin of multi-link mechanism
motion trajectory synthesis. Sci. Tech. J. Inf. Technol. Mech. Opt. 2022, 22, 889–895. [CrossRef]

34. Nagatani, K.; Tachibana, S.; Sofne, M.; Tanaka, Y. Improvement of odometry for omnidirectional vehicle using optical flow
information. In Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat.
No.00CH37113), Takamatsu, Japan, 31 October–5 November 2000. [CrossRef]

35. Ghaf-Ghanbari, P.; Taghizadeh, M.; Mazare, M. Kinematic and dynamic performance evaluation of a four degrees of freedom
parallel robot. Amirkabir J. Mech. Eng. 2021, 53, 2055–2072.

36. Dwiputra, R.; Zakharov, A.; Chakirov, R.; Prassler, E. Modelica model for the youBot manipulator. In Linköping Electronic
Conference Proceedings, Proceedings of the 10th International Modelica Conference, Lund, Sweden, 10–12 March 2014; Linköping
University Electronic Press: Linköping, Sweden, 2014. [CrossRef]

37. Müggler, E.; Fässler, M.; Scaramuzza, D.; Huck, S.; Lygeros, J. Torque Control of a KUKA youBot Arm. Master’s Thesis, University
of Zurich, Zurich, Switzerland, 2013.

38. Yeu, T.K.; Han, J.B.; Lee, Y.J.; Park, D.G.; Kim, S.S.; Hong, S. Preliminary Study on DEVELOPMENT of CPOS(cyber physical
operation system) for underwater robots. In Proceedings of the OCEANS 2023, Limerick, Ireland, 5–8 June 2023. [CrossRef]

39. Quiñones, D.; Rusu, C.; Roncagliolo, S.; Rusu, V.; Collazos, C.A. Formalizing the process of usability heuristics develop-
ment. In Advances in Intelligent Systems and Computing; Springer International Publishing: Berlin/Heidelberg, Germany, 2016;
pp. 1279–1282. [CrossRef]

40. Rassolkin, A.; Rjabtsikov, V.; Kuts, V.; Vaimann, T.; Kallaste, A.; Asad, B.; Partyshev, A. Interface Development for Digital Twin of
an Electric Motor Based on Empirical Performance Model. IEEE Access 2022, 10, 15635–15643. [CrossRef]

41. Blattgerste, J.; Behrends, J.; Pfeiffer, T. A web-based analysis toolkit for the system usability scale. In Proceedings of the 15th
International Conference on PErvasive Technologies Related to Assistive Environments, ACM, Corfu, Greece, 29 June–1 July 2022.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.17586/2226-1494-2022-22-5-889-895
http://dx.doi.org/10.1109/iros.2000.894648
http://dx.doi.org/10.3384/ecp140961205
http://dx.doi.org/10.1109/oceanslimerick52467.2023.10244254
http://dx.doi.org/10.1007/978-3-319-32467-8_113
http://dx.doi.org/10.1109/ACCESS.2022.3148708
http://dx.doi.org/10.1145/3529190.3529216

	Introduction
	State of the Art
	KUKA youBot Kinematic Model
	Omnidirectional Platform Kinematics
	Kinematics of the Robotic Arm
	Gazebo Application for Simplified DH Parameter Calculation in Robotic Arm Kinematics

	Managing Robotic Arm and Mobile Platform Movement in Gazebo
	Manipulator Arm Control
	Mobile Platform Control

	Virtual Reality Environment in Unity
	Implementation of KUKA youBot Tracking System
	Communication Architecture
	Development of User-Centric Virtual Reality Environment for Robot Control
	Measuring Robot Movement Time in the Unity VR Environment

	Experiments and Results
	Response Times
	Usability of the System
	Manipulation of the Robot
	Packet Traffic Analysis
	Delay in Data

	Conclusions and Future Work
	References

