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Abstract: Due to the accelerated growth of the world’s population, food security and sustainable
agricultural practices have become essential. The incorporation of Artificial Intelligence (AI)-enabled
robotic systems in cultivation, especially in greenhouse environments, represents a promising solution,
where the utilization of the confined infrastructure improves the efficacy and accuracy of numerous
agricultural duties. In this paper, we present a comprehensive autonomous navigation architecture
for holonomic mobile robots in greenhouses. Our approach utilizes the heating system rails to
navigate through the crop rows using a single stereo camera for perception and a LiDAR sensor for
accurate distance measurements. A finite state machine orchestrates the sequence of required actions,
enabling fully automated task execution, while semantic segmentation provides essential cognition
to the robot. Our approach has been evaluated in a real-world greenhouse using a custom-made
robotic platform, showing its overall efficacy for automated inspection tasks in greenhouses.

Keywords: autonomous navigation; agricultural robots; mobile robots; greenhouse navigation; semantic
segmentation

1. Introduction

With the rapid expansion of the global population, the imperative to address the issues
of food security and sustainable farming techniques has gained significant urgency. To
meet the growing demand for food production, the agricultural sector has been driven
to the excessive use of pesticides and herbicides [1], resulting in a significant impact on
the environment and the surrounding ecosystem [2]. Consequently, it is imperative to
employ alternative approaches to pest control by embracing innovative technologies and
procedures that enhance effectiveness while minimizing negative ecological impacts. In the
present context, the integration of robotics into the agricultural industry has emerged as a
highly promising and transformational option, leading to significant changes in traditional
farming methods. Additionally, current threats to agriculture, such as climate change and
invasive pests, need to be urgently solved and AI-enabled robotic systems can significantly
contribute to that, even though there are still numerous challenges and limitations to be
solved [3].

The utilization of greenhouses, which include regulated settings, has historically been
crucial in the optimization of agricultural development and the efficient management of re-
sources. They provide a controlled environment that protects crops from the unpredictable
fluctuations of the external climate and facilitates optimal conditions for crop growth,
leading to extended growing seasons, increased yields, and reduced potential hazards
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associated with extreme climate-related occurrences, such as storms, frost, and excessive
heat [4]. Moreover, greenhouses contribute to the establishment of a more secure and
conducive working environment for agricultural workers [5]. Through the use of strategies
such as limiting exposure to outdoor elements and employing controlled pest management
techniques, the potential health hazards linked to chronic chemical exposure are mitigated.
Nevertheless, the effective administration of greenhouses has its own array of difficulties.
The conventional approaches frequently prove inadequate in attaining accurate manage-
ment of variables such as temperature, humidity, and irrigation, resulting in unsatisfactory
crop production and inefficient use of resources [6]. The implementation of autonomous
navigation for robotic platforms in greenhouses promises a paradigm shift in tackling these
difficulties, heralding a novel era of intelligent and environmentally-friendly agriculture.

In recent times, the agricultural sector has experienced a significant transformation due
to the integration of robotics technology. This advancement has facilitated the automation
of labor-intensive and repetitive activities, such as spraying, resulting in reduced labor
expenses and enhanced operational effectiveness [7]. According to Fountas et al. [8],
wheeled mobile robots possess notable attributes such as swift locomotion, extensive
operational independence, and substantial load-carrying capacity. Additionally, these
robots demonstrate the capability to navigate through challenging topographies and the
implementation of omnidirectional kinematics enhances the versatility of wheeled robots,
enabling them to effectively perform multiple tasks, including spot spraying.

Greenhouse environments are well adapted for automation using mobile robots since
they are structured and are not frequently modified. Typically, plant benches are arranged
in long, parallel aisles. These benches are interspersed with corridors, which typically
contain a pair of long pipelines for controlling the temperature. Intriguingly, these pipes
also serve as rails for diverse varieties of plant treatment equipment and serve as an ideal
guide for the robot’s course, assuming it can utilize them effectively [9]. In addition, the
greenhouse’s headland, which is the area outside of the corridors, is typically covered with
a durable flat concrete floor.

By leveraging the existing infrastructure within greenhouses, mobile robots can navi-
gate along these rails, enhancing their efficiency and precision during various tasks. This
utilization of the greenhouse layout not only provides a well-defined path for the robot
but also ensures that it can operate seamlessly alongside the existing infrastructure. The
successful autonomous navigation of a mobile platform relies heavily on factors such as
localization and mapping accuracy, path planning, and motion control. In the case of
greenhouses, their semi-indoor nature poses limitations on the effectiveness of conven-
tional approaches used in outdoor scenarios, such as those based on the Global Navigation
Satellite System (GNSS) [10], due to restricted satellite reception. Additionally, standard
indoor approaches [11] are sub-optimal due to the rapidly changing environment caused
by plant growth.

For the spraying task, different approaches have been introduced by the research com-
munity. Unmanned aerial vehicles (UAVs) have proven to be able to cover large distance
in minimal time, especially in open fields. Despite their wide adoption, UAV sprayers do
not tackle the problem of excessive pesticide use, since the spraying is performed from
high altitude, spreading the pesticides above the field [12]. Another approach is the use of
legged robots [13], which are highly flexible and well suited for applications with rough
terrain or steep slopes and can handle precise spot spraying. However, their payload is
limited and they usually move at slow speeds when operating in rough terrains. Wheeled
robots are characterized by fast moving speeds and high payload, while they are able to
move in rugged terrain [8]. Omnidirectional wheeled robots provide a versatile approach
in agriculture which is able to handle tasks precisely and efficiently without compromising
payload and speed both in open fields and greenhouses [9,14].

Considering the importance of automated processes within greenhouse settings and
the advanced capabilities of contemporary robotic systems, it becomes clear that there is
a substantial scope for further exploration in this direction. In this paper, we introduce
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a comprehensive autonomous navigation architecture of a holonomic mobile robot in
greenhouses. The proposed method relies on the rails formed by the heating system of the
greenhouse and can be performed using a single stereo camera. The overall architecture
consists of discrete states that are orchestrated by incorporating a finite state machine,
allowing the complete execution of a task in a fully automated manner.

The rest of this paper is organized as follows: Section 2 presents an overview of
the related work in the field of greenhouse navigation. Section 3 provides a detailed
description of the proposed methodology. The experimental setup, results, and discussion
are presented in Section 4, and Section 5 concludes this paper.

2. Related Work

Robotic systems and artificial intelligence methods have been widely adopted in every
aspect of agricultural operations, including apple picking [15], strawberries harvesting [16],
and grape detection [17].

Autonomous navigation of robotic platforms in agricultural environments still remains
an open issue, despite the plenty of related works present in bibliography. In contrast with
greenhouses, agricultural robots operating in outdoor open-fields might take advantage of
GNSS measurements, combined with crop row detection to perform accurate localization
and crop row following techniques [10]. An early work from González et al. [18] present
a map-based navigation technique, utilizing a voronoi diagram for path planning and
corridor centering using sonar measurements. A robotic system capable of navigating in
greenhouse environments for the purpose of ultraviolet (UV) treatment of cucumber plants
is described in [9]. The authors present its capability to navigate both in the headland and
the heating pipes, detect the corridor starting points from the given map and estimate
the robot’s pose relative to the rails given solely a 3D camera. Jiang et al. [19] combine
2D and 3D Simultaneous Localization And Mapping (SLAM) algorithms for greenhouse
positioning, through the conversion of 3D pointcloud data into laser scan format, in order to
perform navigation using Dynamic Window Approach (DWA) in a pre-defined occupancy
grid map. Indoor greenhouse navigation of a mobile robot is demonstrated by [20] with
the utilization of Hector SLAM for pose estimation and an Artifical Potential Field (APF)
for autonomous navigation. Another operation of an intelligent vehicle operating in a
commercial greenhouse is described in [21]. Navigation is performed both in rails and
horizontal surfaces using two separate wheel drive mechanisms, while localization heavily
relies on fiducial tags. Similarly, ref. [22] describes the operation of a spraying robot
equipped with both mecanum wheels and a roller mechanism for navigation, while QR
codes placed on the beginning and end of each corridor orchestrate the mission strategy.

The potential of combining navigation and perception has been demonstrated through
real-world applications involving outdoor field robots, as described in [23]. The robotic
system presented is capable of navigating between plant rows by taking advantage of
standardized planting schemes, and performs full coverage throughout the field, solely
using onboard cameras. A similar approach is presented in [24], with a visual-based
navigation scheme that utilizes multiple crop-rows to navigate a BonnBot-I robot in five
different fields. In [25], fundamental image processing algorithms, including Hough
transform and Otsu thresholding, are employed for the segmentation of soil and plants in
an image and, finally, the extraction of navigation trajectories in a greenhouse environment.
A recent work that combines semantic perception with navigation for a robotic platform in
agricultural fields is presented by [26]. This work is focused on open-field crops, such as
canola and cucumber, and utilizes an end-to-end neural network for semantic line detection
throughout the straight lines of crops.

It is evident from the preceding analysis of the current state-of-the-art that more and
more perception-based methods have been applied to agricultural robotics, demonstrating
the efficiency and necessity of developing methods that operate in real-time and adapt
to the perception of the current robot. Our work presents a navigation framework for
greenhouse-operating robotic platforms that does not rely on pre-installed fiducial markers
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and utilizes camera perception for autonomous navigation. To the best of our knowl-
edge, the aforementioned approach distinguishes our work from the existing cutting-edge
navigation algorithms employed in greenhouses.

3. Materials and Methods

In this section, a detailed description of the essential elements of our navigation system
for robotic greenhouses is provided. The effectiveness of these systems is contingent upon
the coordination and integration of multiple components, each of which plays a crucial role
in the overall operational efficiency. A thorough analysis of our strategy follows, starting
with an explanation of the mobile platform that serves as the tangible foundation of our
robotic system. Subsequently, the fundamental elements of perception are elaborated upon,
involving the utilization of sensors and data collection methods to attain environmental
awareness. In the section that follows, localization and mapping techniques, which are
essential for the construction of an accurate representation of the greenhouse environment,
will be discussed. Finally, the complexities of navigation algorithms, which enable the
robot to navigate within the greenhouse environment with precision and efficiency, will be
investigated. By conducting an exhaustive analysis of these constituent elements, we aim
to provide a thorough understanding of our greenhouse robotic navigation system, thereby
shedding light on its capabilities and potential applications.

3.1. Robotic Platform

The mobile platform employed in the proposed navigation pipeline is an omnidi-
rectional fully Autonomous Mobile Robot (AMR), featuring a UR10e cobot placed on a
scissors lift platform. The UR10e cobot has a working envelope of 1.2 m and the scissors
lift has 2.5 m reach. This combination greatly extends the system’s workspace, reaching
from close to ground level up to 3.5 m high, making it suitable for inspection and 3D spot
spraying purposes in large-scale greenhouses. It allows for the use of biopesticides and non-
hazardous pesticides from an integrated spray tank. The AMR enables the detection and
identification of insects such as whiteflies and black aphids [27] and fungal diseases such
as Botrytis cinerea [28] using an AI-based system equipped with RGB and a multispectral
camera, tuned at 460, 540, 640, 700, 775, and 875 nm wavelengths to include wavelengths
from the visible and near infrared (NIR) spectrum. The data collected from the imaging
devices on the AMR are analyzed in a robust Decision Support System [29]. The robot is
equipped with four metallic wheels that provide a dual configuration, allowing the robot
to operate simultaneously on the greenhouse rails and the flat surface of the headland area.
These wheels are quickly exchangeable with rubber wheels, enabling this robotic platform
to navigate in outdoor environments and open fields. This configuration allows the robot
to target multiple use cases, both indoors and outdoors, and different crops including
cucumbers, tomatoes, lettuce, and peppers.

A fully integrated multisensory stack supports the autonomous navigation and map-
ping software components. A forward-facing 3D LiDAR sensor, Livox Avia, provides
dense and robust distance measurements in the main direction of movement, as depicted
in Figure 1. Two stereo RGB cameras, ZED2i, are placed on the front and rear sides of
the robot, providing both dense depth measurements as well as RGB images for semantic
purposes. Safety requirements for the robot are met through the strategic placement of two
2D YDLIDAR TG30 laser scanners positioned diagonally across from each other. Regarding
motion estimation, the robot is equipped with the Xsens MTi-680G Inertial Measurement
Unit (IMU) sensor, wheel odometry encoders, and a GNSS module for outdoor operations.
The robotic platform is depicted in Figure 1, while certain specifications are described in
Table 1. The payload is determined as an additional weight to the robot when it is fully
loaded. This includes a full tank of pesticide, the end effector attached to the UR10e robot,
which carries all the sensors, as well as the spraying mechanism. In addition, the robot
possesses the capability to transport an additional 15 kg.
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Figure 1. The mobile robotic platform used in the navigation pipeline. The left image displays the
front side of the robot while traversing on the greenhouse’s corridor rails. LiDAR and a stereo camera
are attached on this side. The right image displays the side view of the robotic platform with the
biopesticide tank and the 2D laser scanners.

Table 1. Specifications of the robotic platform.

Dimensions 2.2 × 0.7 m

Maximum velocity 3 km/h

Autonomy 4.5 h

Batteries’ type LiFePO4 Battery 48V-72A

Payload 15 Kg

3.2. Greenhouse Semantic Segmentation

To establish a seamless navigation framework, the main objective is to harness the
semantic information of the greenhouse environment within our solution’s perception
system. The focus is on the semantic attributes that are intrinsic to the greenhouse’s
structure, as they can serve as valuable resources for mapping and autonomous navigation
tasks. Specifically, two important greenhouse components are of interest: the heating
pipelines, also known as “rails”, and the bench start and bench legs, located at the beginning
of each corridor and referred to as “endpoints”. The former can be used as a landmark
for the lateral position and orientation of a corridor, while the latter indicates the corridor
start point in the longitudinal direction. Typically, the rails are placed in the middle of the
corridor, forming long horizontal lines with a fixed separation distance dr. The corridor
endpoints of the greenhouse used in the experimental evaluation are indicated by the
black plastic covers of the benches as shown in Figure 2 in purple, while the bench legs are
displayed in pink and the rails in blue.

YOLOv8 [30] is the most recent advancement in the YOLO series of architectures,
renowned for their object detection capabilities. In order to ensure real-time performance
for our system, the small architecture (YOLOv8s-seg) is selected. Despite its reduced size,
this architecture is still capable of effectively handling the segmentation task, while keeping
the inference time to a minimum.

For our specific task, the primary interest lies in the acquisition of a binary mask,
denoted as Mc, which is used to represent the pixels belonging to each individual class c
(in this case, rails and endpoints). The output of the YOLOv8s-seg network consists of a list
of pixel mask instances, along with their respective assigned class labels. This output can
be represented asM = {Mc,0, Mc,1, . . . , Mc,N |c ∈ 0, 1}, where N represents the number of
instances of class c present in the image.
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Figure 2. The classes of interest in the greenhouse semantic segmentation task. With blue, we denote
the corridor rails; with pink, the bench legs; and with purple, the corridor end points.

To obtain the desired binary mask Mc, a union operation is applied over all instances
of class c identified by the network. This is represented as follows:

Mc =
N⋃

i=0

Mc,i. (1)

Through this approach, the individual masks associated with each instance of class
c are effectively combined into a single comprehensive mask Mc, thereby providing the
desired segmentation result. Each individual mask Mc for the segmentation categories
(rails, bench legs, and bench start) is depicted in Figure 3.

(a) (b) (c)
Figure 3. The resulting binary masks for each category of the semantic segmentation task. (a) Rails;
(b) Bench legs; (c) Bench start.

The pre-trained YOLOv8 models do not by default include the classes’ rails and end-
points. Therefore, a process of fine-tuning was required to utilize the network segmentation
capabilities. A small dataset of fewer than 200 images was acquired manually inside the
greenhouse, with images depicting views from multiple operational areas. The simplicity
of this task allowed YOLOv8 to be instantly fine-tuned using the default parameters, using
a small set of images and without extensive human annotation. Rails and corridor end-
points have an unchanged appearance, the lighting conditions remain the same throughout
the day and the shapes of these objects are clearly separated from the background scene,
leading to an overall simple task that can be handled easily by state-of-the-art segmentation
neural networks, such as YOLOv8.
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3.3. Mapping & Localization

The operation of the robotic platform in the greenhouse requires the generation of
an accurate occupancy grid map, especially for the headland area, in order to localize
efficiently within the environment. As depicted in Figure 4, the greenhouse area consists
of six crop rows and, consequently, six row corridors. Each corridor contains a set of
rails extending up to the end of the crop row, while on the end of the row there is a flat
vertical surface, the wall of the greenhouse. The beginning of all rows is connected to the
greenhouse headland, a flat surface where the robot can freely navigate. The generated
occupancy grid map is utilized in order to properly localize in the greenhouse headland
and support the placement of the robot at the beginning of each row. Localization within
the crop rows is handled differently, and an occupancy grid map is not needed in this case.

Figure 4. The greenhouse environment consisting of six crop rows and the headland.

The headland area is characterized by aligned corners and distances well within the
sensors’ range, making it well-suited for employing standard 2D mapping algorithms
relying on laserscan measurements. The output of the mapping procedure is depicted in
Figure 5, which is generated using GMapping [31]. Localization inside the headland is
performed using Adaptive Monte Carlo Localization [32], which uses a particle filter to
track the robot’s pose within the known 2D map.

Figure 5. The resulting occupancy grid map from the greenhouse headland using GMapping.
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Mapping in between the corridors is not needed since the operation of the robot in
the corridors is fully constrained and a map will not provide any additional positional
information. The corridors are characterized by a high degree of repeatability, and the actual
freespace can vary significantly due to the crop state. For this reason, localization cannot be
handled by approaches such as the Adaptive Monte Carlo Localization (AMCL), and we
employ a different module that utilizes the current robot perception. Since the greenhouse
rails have a fixed length and standardized distance from the greenhouse boundaries, they
are used in order to localize the robot while traversing the rows.

Specifically, for this process, called in-row localization, the robot needs to calculate its
distance from the vertical wall that is located within its field of view. In order to properly
calculate that distance, the average range of all valid laser measurements that are located
within the angle of interest is calculated. In Figure 6, the measurements of the robot
while approaching the corridor end are depicted. The in-row localization module becomes
operational after the robot has successfully completed the transition onto the tracks. The
initial pose of the robot before to transitioning into the in-row state is recorded and then
supplied to the AMCL algorithm when the robot switches back to headland navigation.

Figure 6. The robot calculating its distance from the front wall. Closer points are depicted with red,
while the furthest points of interest are colored in purple.

The objective of the localization process is to extract the complete 2D pose of the robot
(x, y, θ) throughout time. We approach this as a nonlinear dynamic system, described as:

xk = f (xk−1) + wk−1, (2)

where xk is the robot’s pose for a given time k, f describes a nonlinear transition function
and wk−1 represents the process noise, which is normally distributed.

The overall localization system leverages a fusion of the aforementioned two cases
along with the robot’s sensor data obtained by the robot. Specifically, an Extended Kalman
Filter (EKF) performs the fusion of wheel odometry with IMU measurements and either the
output of AMCL for headland operation or the output of in-row localization for corridor
traversal. The 15-dimensional vector xk contains the following states:

• Three dimensional (3D) pose (x, y, z);
• Three dimensional (3D) orientation (Φ, ψ, θ);
• The corresponding velocities of the above (x′, y′, z′, Φ′, ψ′, θ′);
• The acceleration of the 3D pose (x′′, y′′, z′′).

Table 2 provides a detailed configuration of the modalities that contribute to the EKF
localization module, mentioning only the states that are directly related to the estimated
2D pose of the robot.
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Table 2. Configuration of inputs used by EKF.

Sensor x y θ x′ y′ θ′ x′′ y′′

Odometry × × × X X X × ×

IMU × × × × × X X X

AMCL X X X × × × × ×

In-row X X X × × × × ×
Xrepresents inputs that affect specific EKF states, while × indicates inputs that do not affect those states.

The input of the EKF from all modalities is expressed as:

zk = h(xk) + uk, (3)

where zk is the sensor measurements at time k, h is a nonlinear sensor model that maps
the state into measurement space, and uk represents the sensor noise model. As shown in
Table 2, absolute pose and orientation information are only reported by AMCL and in-row
localization. Wheel odometry and IMU measurements provide linear and angular velocities
and linear accelerations, due to the nature of IMU devices that measure differential values.

3.4. Navigation Strategy

A well-defined policy is essential for the robot’s operation within the greenhouse,
necessitating a meticulous inspection process that is orchestrated through a Finite State
Machine that dictates the sequence of actions the robot must execute and the specific targets
it must visit. The overall pipeline and the procedures that need to be organized are depicted
in Figure 7.

Figure 7. The overall pipeline for greenhouse navigation.

The initial stage in the pipeline commences with robot initialization, encompassing the
acquisition of both the greenhouse occupancy grid map and the user’s mission instructions,
which specify the rows to be inspected. This phase also includes the configuration of
crucial operational components such as localization and the determination of the action
sequence required to complete the designated mission. The navigation of the robotic
platform towards the target row first requires the navigation within the headland, at one
of the pre-known targets on the map. Details regarding this navigation step are described
in Section 3.5. The next step is to perform the robot alignment with the corridor rails
(Section 3.6) in order to prepare for the in-row forward navigation task (Section 3.7), which
follows. The robot iteratively performs all the required inspection tasks within the operating
row and, once these targets are completed, the robot performs in-row backward navigation
in order to place itself back on the headland. This process is repeated for all required rows
that the robot must inspect until the completion of the mission.

In order to orchestrate the sequence of actions effectively and combine it with the
Robot Operating System (ROS) navigation stack, we utilize the SMACH library (http:
//wiki.ros.org/smach (accessed on 5 October 2023)). SMACH serves as an interface for

http://wiki.ros.org/smach
http://wiki.ros.org/smach
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modular software components, providing direct communication with the complete ROS
architecture, upon which the robotic platform is built. Regarding the navigation tasks of
the robot, we employ Move Base Flex [33] in order to allow the simultaneous operation
of multiple planners while providing feedback for all requested actions. Through this
approach, an integrated solution for both task planning and navigation operations is
provided. A visualization of the complete State Machine is shown in Figure 8.

Figure 8. The Finite State Machine that controls the strategy execution.

The robot initialization is equivalent to the WAIT_FOR_GOAL state. When a mission
is provided to the robot, there is a transition to the PLAN_EXEC block, which contains
the headland planning that is performed by the Timed Elastic Band (TEB) Local Planner.
When that block finishes successfully, there is a transition to the VISUAL_SERVOING
block, which is responsible for the in-row processes. Specifically, the robot performs the
TARGET_ALIGNMENT phase once, followed by an iterative process between the states
TRAVERSE_FORWARD, INSPECT and TRAVERSE_BACKWARD. When the in-row task is
completed, the FSM returns to the WAIT_FOR_GOAL state again. It must be noted that any
failure that may occur throughout the entire operation returns to a common state, which is
reported as invalid, aborted, or a failure, and then to the initialization state.

3.5. Headland Navigation

The headland navigation task requires the robot to efficiently navigate through the
predefined targets that are located at the beginning of each corridor while avoiding any
potential obstacles in the area. As shown in Figure 9, the greenhouse environment consists
of six corridors, and the corresponding six different target waypoints are depicted on
the map with green arrows. The user manually annotates these targets on the generated
occupancy grid map, which facilitates switching between corridors and pinpointing their
precise locations.
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Figure 9. The waypoints located on the start of each corridor.

During the mission execution, the robot is not required to visit all N targets that
are available on the map. According to the mission description, a sequence between the
required targets ni, i ∈ (0, N) is generated using linear segments to connect the waypoints.
A TEB local planner is responsible for generating new trajectories that respect the robot
kinematics as well as keeping the essential distance from obstacles. The local planner
operates on a local costmap that updates in real-time with the input from the laser scanners
and provides accurate, collision-free trajectories within the restricted headland area. The
omni-directional platform enables simple transitions between waypoints without requiring
complex path planning strategies. It is expected and efficient for the local plan to coincide
with the linear segments of the global plan when there are no obstacles nearby.

3.6. Rails Alignment

The navigation of the robot through the greenhouse rows necessitates the precise
alignment of the platform with the rails in order to safety traverse the heating pipes and
complete the inspection task. Inaccurate alignment may result in severe problems with
regards to the operation’s safety and the robotic platform’s stability. The rails alignment
task uses the results of semantic segmentation on the greenhouse environment, specifically
the position of the rails in 2D and 3D space, to calculate the optical velocity and steering
commands that will align the robot precisely with the rails.

The primary objective of this task is to transform the binary mask M, which represents
the rails, into a set of three-dimensional points. The aforementioned process of transfor-
mation is accomplished through the integration of the outcomes of semantic segmentation
with the depth data obtained from the stereo camera system. Given that the depth image
D is readily available from the camera, it is possible to immediately convert each pixel
m(i, j) ∈ M into a three-dimensional point p(x, y, z) by utilizing the camera’s intrinsic
parameters cx, cy, fx, fy. The depth z of a point m(i, j) in the binary mask can be obtained di-
rectly from the point d(i, j) ∈ D. The utilization of a back-projection technique between the
two coordinate systems yields the final set of points that constitute the rails in real-world
coordinates. Equation (4) describes the process of transforming all pixels value m(i, j) into
three-dimensional points p(x, y, z) using the depth information d(i, j).

x = d(i, j)× i− cx

fx

y = d(i, j)×
j− cy

fy
.

z = d(i, j)

(4)

The generated point cloud P is post-processed to eliminate outliers and provide the
alignment module with only pertinent 3D points. The point cloud is initially transformed
into the robot’s coordinate system, and the whole problem is from now on expressed
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relative to the robot body. Since the points of interest are in close proximity to the area in
front of the robot, a passthrough filter on the x-axis is implemented and all points beyond
a predetermined distance are discarded. In addition, the robot’s approximate location
within the corridor enables the use of a passthrough filter on the y-axis to disregard noisy
measurements from the robot’s sides. Lastly, the headland’s flat surface and the known
height of the rails permit the use of a passthrough filter on the z-axis to remove the floor
seamlessly and reject points above the rails. The resultant point cloud is converted into a
voxel grid, which downsamples the cloud while preserving its structure.

The subsequent phase entails the transition from discrete data points into a mathemat-
ical representation suitable for the alignment procedure. This is accomplished through a
RANSAC [34] filtering process that iteratively formulates linear segments that effectively
encapsulate the salient features within the 3D point cloud. RANSAC is a robust and widely
adopted algorithm, renowned for its ability to identify these linear structures amidst po-
tential noise and outliers within the data.The equation for the line model is denoted by
Equation (5). The line coefficients comprise the coordinates of a point x0, y0, z0 residing on
the line, as well as the three-dimensional vector a, b, c that describes the line direction.

Li = a · x + b · y + c · z + d = 0

d = −(a · xo + b · y0 + c · z0).
(5)

The lines extracted, denoted as Li, are arranged in ascending order based on their
vertical location relative to the robot, and a search process is initiated in order to extract
the pair that the robot must align with. The outcome of RANSAC filtering might generate
linear segments that belong on the same line but are expressed with a slightly different
equation due to noisy measurements. For this reason, a simple filtering process is applied
in order to perform a thresholding comparison regarding the orientation and the parallel
distance of line pairs. Each linear segment that does not satisfy the minimum distance
and angle difference among neighboring linear segments is identified as a duplicate and
is removed.

The prior knowledge of the precise distance dr between corridor rails facilitates a pair
matching algorithm for all lines expressed in 3D coordinates. Given N linear equations
and by taking advantage of their sorted placement, we compare the distance between
Li and Li+1. where i ∈ (0, N − 1). Each pair whose distance is almost equal to dr is
considered a rail. In the case of multiple rails being detected, it becomes essential to match
the rail’s position with the desired row’s target waypoints and to keep the closest one,
which comprises Lright and Lle f t. For both Lright and Lle f t we extract the closest point to the

robot body, pright and ple f t, and their average is calculated as pmiddle =
pright+ple f t

2 .
The alignment procedure involves an initial tuning of the robot’s angle, followed by

the adjustment of the y-axis and subsequently the x-axis, with the possibility of iterative
refinement if necessary. At each timestep the robot calculates its divergence from pmiddle,
which is expressed as dθ , dy and dx. The velocity components that must be calculated
are υθ , υy and υx. The adjustment of each one relies on the definition of a control gain, a
discrete value that affects directly the speed and the precision of the robot movements and
is defined separately as gθ , gy and gx. The three conditions that are consistently checked
for their value are the following:

dθ ≈ 0

dy ≈ 0

dx ≈ 0.

(6)

Based on the results obtained from the aforementioned conditions, the velocity vector
that is supplied to the robot undergoes modification. When there is misalignment in the
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orientation angle θ, the velocity vector primarily comprises angular commands, restricting
motion to the z-axis:

υ = (υx, υy, υθ) = (0, 0, kθ). (7)

Conversely, when there is proper angular alignment but misalignment in the y-axis
placement, the velocity vector assumes a configuration emphasizing lateral motion along
the y-axis:

υ = (υx, υy, υθ) = (0, ky, 0). (8)

Finally, when both proper angular alignment and y-axis placement are achieved, the
velocity vector is adjusted to prioritize motion along the x-axis:

υ = (υx, υy, υθ) = (kx, 0, 0) (9)

The alignment process is completed when all three conditions of Equation (6) are met,
which implies that the robot is located on the greenhouse rails and the navigation method
is performed differently, as described in Section 3.7 below.

3.7. Rails Navigation

The navigation of the mobile platform within the rows of the greenhouse environment
is rather straightforward due to the strict limitations imposed by the current infrastructure.
Within the confines of this particular scenario, the mobility of the robot is constrained to
only two directions: forward and backward. Consequently, any instructions related to
velocity that do not belong to the linear x-axis are deemed inconsequential and swiftly
disregarded. As the robot traverses the greenhouse rails with diligence, determining its
precise location becomes crucial. This precision is necessary to ensure that the robot can
stop with pinpoint accuracy in predetermined areas where essential inspection duties
are scheduled. To achieve this, the robot incorporates an in-row localization process, as
described in Section 3.3.

After successfully navigating an entire corridor, the robot transitions into a backward
movement mode. The provision of negative linear velocity commands to the robot con-
troller serves the purpose of directing the robot towards the initial point of the row. Upon
dismounting from the rails, the robot is capable of either moving to an alternative row or
terminating the mission. The termination of backward movement, and rail navigation in
general, is triggered when the robot’s field of view encompasses the endpoints of the rows,
as detected by the semantic segmentation module.

4. Experimental Evaluation

This section provides a comprehensive overview of the trials that have been performed
to evaluate the performance and efficacy of our greenhouse robotic navigation system.
Our experimental setup includes a real-world hydroponic greenhouse environment in the
University of Thessaly, where the robot, which was described in Section 3.1, was assigned
with the task of autonomously navigating rows of crops and performing inspection tasks.
To assess its navigation precision and adaptability, we introduced varying degrees of
misalignment and obstacles, simulating real-world challenges.

4.1. Semantic Segmentation

In order to evaluate the fine-tuning efficiency of YOLOv8 on the desired semantic
segmentation task, an 80/20 split was applied in order to extract the validation data. So,
160 images from the greenhouse were used for training purposes and 40 of them were
used for validation, all captured using a handheld system with a ZED2 camera. As already
mentioned in Section 3.2, the simplicity of the segmentation task resulted in high accuracy
segmentation results in the validation set. The actual efficiency of the proposed method
was evaluated using data that were collected during the actual operation of the robotic
platform within the greenhouse environment. In Figure 10, qualitative results on the
YOLOv8 segmentation task taken directly from the robot camera are depicted, where it
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becomes evident that the robot is able to efficiently segment the rails, the bench start ,and
the bench legs within the image. For an input image size of 640 pixels, the inference of
YOLOv8n required only 11.1 ms for a low-end GPU device.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10. Qualitative results on the semantic segmentation task. Subfigures (a–i) show different
views in the greenhouse. Rails are colored in red, bench legs in magenta and branch start in purple.

The issues that can be easily perceived from the qualitative results are that the robot
does not always properly segment the branch start (Figure 10a,b), side rails can be detected
while the robot is aligned with the desired rail (Figure 10c), and bench legs are not always
detected for the legs that are located in the middle of the corridor (Figure 10d,h). However,
such issues do not affect the robustness of the navigation method, as will be shown in the
following section.

4.2. Rails Alignment

The evaluation of the rails alignment process was performed with two different
approaches. The initial one is to evaluate the qualitative results that occur from the rails
extraction algorithms during the actual operation of the robotic platform. Apart from the
segmentation of the rails, the algorithm must select the appropriate set of rails that is visible
within its field of view and extract the linear segment properly. Finally, the algorithm
extracts an alignment target that directly affects the extraction of the velocity commands.
The above results are depicted in Figure 11. Specifically, for three given scenes, we visualize
the outputs of the rails alignment algorithm. The nodes that comprise the topological map
are shown with the green arrows. The selected rails are visualized with the blue lines, while
the alignment target is shown with the red arrow. The robotic platform can successfully
extract the alignment target properly from different viewing points, resulting in the proper
placement of the robotic platform in front of the corridor rails.
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Figure 11. Qualitative results on the rails alignment task. On the left image, the output of the semantic
segmentation is depicted. Rails are colored in red, bench legs in magenta and branch start in purple.
On the right image, the topological map nodes are denoted with green arrows, the selected rails with
blue lines, and the alignment target with a red arrow.

The second part of the evaluation is the observation of the velocity commands that
were provided to the robotic platform, so as to align with the rails and transfer itself on the
heating pipes. It is important that the robot receives continuous velocities and that there
are no spike measurements that could affect the overall smooth operation of the robot.

In Figure 12, the velocities that the robot received while performing a route are
depicted. The time moment t that the robot enters row n1 is depicted with the first vertical
black dashed line. From that moment, the robot was moving only forward and backward,
as can be seen by the linear-y and angular-z commands that are equal to 0. The time
moment t′ when the robot exited the row n0 and moved to the right for switching to row n2
is annotated with the second black dashed line. The robot reached the beginning of n2 and
stopped its motion. In Figure 13, we depict the trajectory that the robot followed through
the above-mentioned velocity commands in order to align with the corridor rails. This
information is provided by the localization module and outlines how the robot approaches
the desired row and docks on the rails.

4.3. In-Row Localization

For the above-mentioned route that the robot executed, the in-row localization output
is depicted in Figure 14. The straight and continuous position estimates indicate the overall
smooth calculation of the robot’s distance to the greenhouse wall.
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Figure 12. The velocity commands of the robot for the given route that was followed autonomously.
Linear x and y velocities are depicted in blue and green respectively, while angular velocity is depicted
in red. Dashed black lines visualize two different time moments when the robot entered and exited a
specific row corridor.

Figure 13. The trajectory of the robot during the corridor alignment process. Discrete robot poses are
colored in blue points in map and the complete trajectory is shown with a continuous blue line.

4.4. Closed-Loop Navigation

The successful evaluation of the aforementioned software components allows for the
full deployment of the robot towards a fully autonomous mission within the greenhouse
environment. The robot was assigned to visit a whole row of crops and then perform
its backward movement, until it returns to the headland area. A video demonstrating
the closed-loop operation of the robot in a hydroponic greenhouse is available in the
Supplementary Material of this paper. The robotic platform is capable of navigating
autonomously to the desired row, successfully aligning with the corridor rails, traversing
the entire row and finally exiting the row and aligning with the next one.
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Figure 14. The results from the in-row localization module while traversing row n1 and switching to n2.
With green we denote the pre-defined topological map nodes that are placed in the beginning of each
row. With red we denote the robot position during row traversal, as resulted from in-row localization.

5. Conclusions

This paper presents a comprehensive navigation framework for holonomic robots
operating in confined agricultural environments, namely greenhouses. The well-defined
features of the environment, such as the existence of heating pipes that can be used as rails,
the flat surface of the headland, and the constant distances within the operating area, enable
the full employment of robotic systems towards the automation of tasks such as inspection
and spraying. Our navigation framework is based on a custom-built holonomic platform
equipped with a robotic manipulator for spraying tasks and wheels that permit operation
on both the metallic rails and the headland without the need to switch wheels. The robot’s
entire operation is dependent on a well-defined, finite-state machine that coordinates
the sequence of actions that must be carried out in accordance with user specifications.
The robot’s perception system primarily uses semantic segmentation based on YOLOv8
to segment and comprehend the existence of rails and bench endpoints within its field
of view. The robot’s localization is based on an Extended Kalman Filter that integrates
sensor measurements with the result of AMCL localization on the headland map and laser
measurement-based in-row localization outputs. The robot’s navigation in the headland
region is based on the TEB local planner, while in-row navigation is rigidly limited to
one-axis velocity commands. Prior to performing in-row navigation, the robot aligns itself
with the corridor rails using semantic and depth information from its stereo camera to
generate the optimal velocity commands. The efficacy of our navigation framework has
been evaluated in a real-world scenario with a robotic platform operating autonomously
within a hydroponic greenhouse environment. The evaluation showed that the robot is
capable of effectively switching from headland to in-row navigation autonomously while
ensuring its safe operation in the environment.

Future work in this domain offers opportunities to enhance and expand our naviga-
tion framework for holonomic robots in confined agricultural settings like greenhouses.
One promising avenue is the exploration of multi-robot collaboration, allowing multiple
robots to work seamlessly within the same environment. Furthermore, ensuring safe and
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efficient human–robot interaction, enhancing energy efficiency, and integrating with crop
monitoring and data analytics systems can further enhance the system’s utility. Finally,
scaling up deployment in larger greenhouse facilities and considering commercialization
aspects will be pivotal in realizing the full potential of robotic automation in agriculture,
ultimately revolutionizing precision agriculture practices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/robotics12060146/s1, Video S1: Closed-loop operation of the robot,
demonstrating its efficiency in navigating autonomously in a hydroponic greenhouse environment.
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The following abbreviations are used in this manuscript:

AMR Autonomouw Mobile Robot
AMCL Adaptive Monte Carlo Localization
APF Artificial Potential Field
DWA Dynamic Window Approach
EKF Extended Kalman Filter
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
LiDAR Light Detection and Ranging
RANSAC RANdom SAmple Consensus
RGB Red Green Blue
TEB Timed Elastic Band
UAV Unmanned Aerial Vehicle
UV Ultraviolet
YOLO You Only Look Once
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