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Abstract: The Delta robot is a parallel robot that is over-actuated and has a highly nonlinear dynamic
model, which poses a significant challenge to its control design. The inverse kinematics that maps
the motor angles to the position of the end effector is highly nonlinear and extremely important for
the control design of the Delta robot. It has been experimentally shown that geometry-based inverse
kinematics is not accurate enough to capture the dynamics of the Delta robot due to manufacturing
component errors, measurement errors, joint flexibility, backlash, friction, etc. To address this issue,
we propose a neural network model to approximate the inverse kinematics of the Delta robot with
stepper motors. The neural network model is trained with randomly sampled experimental data and
implemented on the hardware in an open-loop control for trajectory tracking. Extensive experimental
results show that the neural network model achieves excellent performance in terms of the trajectory
tracking of the Delta robot under different operation conditions, and outperforms the geometry-based
inverse kinematics model. A critical numerical observation indicates that neural networks trained
with the specific trajectory data fall short of anticipated performance due to a lack of data. Conversely,
neural networks trained on random experimental data capture the rich dynamics of the Delta robot
and are quite robust to model uncertainties compared to geometry-based inverse kinematics.

Keywords: delta robot; inverse kinematics; neural networks; stepper motor

1. Introduction

The Delta robot is an over-actuated parallel robot composed of three arms connected
to an end effector and mounted on the base. Delta robots are known for their high speed,
accuracy, and versatility, making them suitable for various tasks, such as assembly, pick-
and-place, and classification. One key aspect of controlling a Delta robot is the dynamic
model, which outlines the relationship between the joint inputs and the position of the
end effector. There are several approaches to modeling the Delta robot. One of the most
popular approaches is Lagrangian dynamics [1–3]. Another common approach to modeling
the Delta robot is to use inverse kinematics [4,5], with the help of the geometry of the
robot’s joints and links. Additionally, screw theory, which represents the motion of the
robot in terms of screw axes and twists, has been adopted to model the dynamics of the
Delta robot [6]. The dynamic model is essential for motion planning and trajectory tracking,
as it allows the controller to calculate the required joint inputs to achieve a desired end
effector position.

The inverse kinematics of the Delta robots describes the relationship between the input
joint angles of the motors and the position of the end effector in 3D space. It turns out that
the inverse kinematics in [4] cannot describe the algebraic relationship very accurately in
hardware applications. Several factors lead to large tracking errors, such as manufacturing
tolerances, assembly errors, joint flexibility, wear, and transmission errors [7]. Thus, it is
important to model the Delta robot with high precision, accounting for the manufacturing
errors and joint limits. In this study, neural networks are adopted to model the relationship
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between the joint angles and the position of the end effector. There are multiple ways
to obtain the solution of inverse kinematics. Except for numerical solutions, algebraic
solutions, geometric solutions, and neural networks have been extensively applied to
construct the forward or inverse kinematics solutions of different manipulators [8,9]. Going
back to the 1990s, researchers had already started adopting neural networks to address
the under-constrained and ill-conditioned problems of inverse kinematics [10]. A radial
basis function neural network is proposed in [11] to deal with the complexity involved
in deriving the inverse kinematics solutions for a 7-DOF manipulator. The weighted
least square method and the genetic algorithm are employed to search for the global
optimum solution. More recently, neural networks have also been adopted for the real-time
computation of the direct kinematic problem of the 3PRS robot [9]. Ref. [12] adopted the
adaptive neuro-fuzzy inference system (ANFIS) to a 7-link manipulator to track trajectories
in a narrow channel. In [13], the fruit fly optimization algorithm (FOA) is introduced as an
optimization technique for the backpropagation (BP) neural network algorithm. It aims to
address challenges related to low accuracy, slow convergence, and issues with local minima
when solving inverse kinematics. Ref. [14] adopted a multilayer perceptron to train the
neural networks and obtain the solution of inverse kinematics for a robotic manipulator.
Ref. [15] adopted the deep neural network combined with the new COVID-19 optimization
to find the optimal initial weights and bias values of the neural network. Furthermore,
neural networks have also been applied to approximate the inverse kinematics of the Delta
robot. Ref. [7] experimentally trained the neural networks with repeated trajectory data.
Neural networks can be applied to estimate the kinematics and workspace of the Delta
robot through a random sampled dataset [16,17]. A real-time neural network-based inverse
kinematics control is proposed in [18] by updating the input joint angle with the knowledge
of the current rotation angle, current position, and the position for the next step. Ref. [19]
leverages neural networks to approximate the general unknown nonlinear systems, thereby
enabling data-driven optimal tracking control. Ref. [18] makes use of the neural network
to predict the next moving angle of the stepper motor. The setup of the Delta robot in [18]
is similar to our setup with different geometries; however, the neural networks in [18] are
trained offline with simulation data. In contrast, our approach is more significant as it relies
on experimental data, enabling the robustness of our data-driven algorithm.

In this study, we consider a Delta robot with stepper motors. We collect random
experimental data on motor angles and end effector locations. The neural networks are
trained with the data to model the inverse kinematics. It is found that the accuracy of
the inverse kinematics model can be checked in an open-loop control application. Several
open-loop trajectory-tracking controls are conducted and have demonstrated that the neu-
ral networks trained on the data in one operating condition can perform well in different
operating conditions. It appears that the neural networks trained on the random experi-
mental data capture the rich dynamics of the Delta robot, and are quite robust to model
uncertainties compared to geometry-based inverse kinematics. The neural network-based
inverse kinematics is entirely data-driven, effectively making full use of the data of the
specific hardware. The reason for using neural networks is to leverage the benefits of the
data-driven algorithm. The experimental data can capture all unmodeled factors, such as
manufacturing errors, frictions, and backlash during the operation of the Delta robot.

The paper is organized as follows. Section 2 presents the architecture of the Delta robot
and its inverse kinematics. Section 3 presents the inverse kinematics model approximation
using neural networks. Section 4 presents the experimental validations of the neural
network model with an open-loop control. Section 5 concludes the work.

2. Dynamic Model of the Delta Robot

The mechanical structure of the three-DOF Delta robot is shown in Figure 1. Figure 2
shows the geometry of the Delta robot in 3D. A typical Delta robot is composed of a
fixed platform, a moving platform, three active arms, and three passive arms connected
to an end effector mounted on the base. The active arms of the robot are driven by the
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rotation actuators, which are stepper motors in this study. The laser sensor VL53L1X
(STMicroelectronics, Geneva, Switzerland) is used to measure the position of the end
effector in x, y, and z directions. The details of the laser sensor setup can be found in
Figure 3. The communication protocol between the laser sensor and the Raspberry Pi
(Raspberry Pi Foundation, Cambridge, UK) is I2C. The parameters of the Delta robot are
given in Table 1 and the specifications of components used for fabricating the Delta robot
are shown in Table 2.

Figure 1. Mechanical structure of the Delta robot.

Figure 2. Illustration of the inverse kinematics of a Delta robot. (Left) 3D geometry of the Delta robot.
(Right) 2D geometry of the Delta robot joints and links.

Figure 3. Setup of the laser sensor VL53L1X.
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Table 1. Parameters of the Delta robot.

Description Notation Value

Radius of the fixed platform R 0.325 m

Radius of the moving platform r 0.075 m

Length of the active arm r f 0.5 m

Length of the passive arm re 0.25 m

Mass of the active arm m f 0.205 kg

Mass of the passive arm me 0.153 kg

Mass of the end effector mb 0.653 kg

Table 2. Specifications of the components of the Delta robot.

Product Model Specification

Stepper Motor
(Stepperonline,

New York, NY, USA)
23HS30-5004D-E1000

Motor type: Bipolar
Holding torque: 2.00 N·m

Step accuracy: ±5%
Resistance: 0.42 ± 10%
Inductance: 1.72 ± 20%

Micro-steppping: 1600 pulses/rev

Stepper Motor Driver
(Stepperonline) CL57T

Weight: 290 g
Input voltage: 24–48 VDC

Pulse input frequency: 0–500 kHz
Min. Pulse width: 1 µS

Planetary Gearbox
(Stepperonline) PLE23-G10-D8

Gear ratio: 10
Efficiency: 94.00%

Max. Permissible Torque: 10 N·m
Moment permissible torque: 20 N·m

Backlash (arcmin): ≤15
Noise ≤ 60 dB

Laser Sensor VL53L1X

50 Hz ranging frequency
Field-of-View : 27◦

Ranging error (mm): ±25
I2C interface

Raspberry Pi 4 Model B 64-bit Cortex-A72 processor
4 GB LPDDR4 RAM

Inverse Kinematics

When modeling the Delta robot, inverse kinematics is one of the most important issues
to consider because inverse dynamics provide a mathematical platform for control design,
path planning, and error corrections in various applications. The inverse kinematics of the
Delta robot can theoretically be solved by making use of the geometry of links and joints.
From Figure 2, the relationship between the positions of the joints and the joint angles θi
can be given as follows:

θi = arctan
(

ZJi

YFi −YJi

)
(1)

where YFi and YJi are the positions of points Fi and Ji in the Y direction, ZJi is the position
of point Ji in the Z direction. The positions of joints YFi and YJi satisfy the geometric
conditions or constraints,{

(YJi −YFi)
2 + (ZJi − ZFi)

2 = r2
f

(YJi −YE′i)
2 + (ZJi − ZE′i)

2 = r2
e − x2

0.
(2)
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From all these geometric conditions, it is possible to find the relationship between the
position x of the end effector and the joint angles of the stepper motors θ = [θ1, θ2, θ3]

T .
The functions describing these relationships are highly complex and are not readily useful
for control design. Furthermore, this geometry-based inverse kinematics model does
not account for inaccuracies in link and joint dimensions. Hence, when it is applied in
the experimental setting, the geometry-based inverse kinematics model is not robust to
uncertainties. To overcome this deficiency, we present a neural network inverse kinematics
solution, where the stepper motor angles θ are treated as control inputs for the Delta robot.

3. Neural Network Model

We now present the neural networks to describe the inverse kinematics of the Delta
robot in a wide range of operation conditions. The input to the neural networks is the
position, x, of the end effector, and the output is the rotation angle of the motor, θ(i). The
objective function is defined as

J =
1
2

ns

∑
i=1

(θ̂(i)− θ(i))2 (3)

where θ̂(i) is the prediction from the neural networks at the ith time step, θ(i) denotes the
step motor angle data collected from the experiment, and ns denotes the total sampling
points. We consider a deep neural network to model the relationship between the input
angles and motion measurements of the end effector. After some numerical experiments,
we chose the number of hidden layers to be 8. The activation function is sigmoid. The
number of neurons is 50 for each hidden layer. The number of training epochs is 5000. The
dataset is divided into a training set, comprising 75% of the data, and a validation dataset,
with 25% of the data. The Adam algorithm is adopted as the optimization algorithm to
train the neural networks in this study. It is one of the most popular stochastic optimization
methods in the machine learning community [20].

To cover a typical workspace of the Delta robot, the joint angles are randomly generated
within a bounded range, θi ∈ [−20◦, 110◦], as shown in Figure 4. Since stepper motors
rotate step by step, the angle is converted to the total counts of steps based on the micro-step
resolution of the step motors. This figure also indicates the maximum workspace of the robot
with the parameters listed in Table 1. These joint angles are inputs to determine the position
of the end effector x = [x, y, z]T. The PWM time width of the stepper motors is set to be
TPWM = 0.006 s. The generated position points of the end effector are shown in Figure 5.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2000

4000

6000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2000

4000

6000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2000

4000

6000

Figure 4. Simulated random joint counts for the Delta robot. (Top) Joint count θ1c for stepper motor
1. (Middle) Joint count θ2c for stepper motor 2. (Bottom) Joint count θ3c for stepper motor 3.
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Figure 5. Random positions of the end effector of the Delta robot in 3D corresponding to the input
angles in Figure 4.

The stepper motor joint angles in Figure 4 are the input to the neural networks, while
the end effector positions in Figure 5 are the output. We found that 1000 or 3000 data points
are inadequate for training the proposed neural networks; a minimum of 5000 data points
is necessary to ensure proper training of the neural networks. After the neural networks
are trained, they are saved as the TensorFlow Lite model to allow the implementation on
the microprocessor. TensorFlow Lite [21] is a platform that enables the implementation
of machine learning models on mobile, embedded, and edge devices. In this study, the
Raspberry Pi model 4 is used as the microprocessor to realize real-time neural network
computing with the help of TensorFlow Lite. See Figure 6. The upper section in Figure 2
illustrates the offline training process for the neural networks. The desired trajectories of
the end effector are generated randomly in MATLAB (R2022b). These random positions
are used as input for inverse kinematics to calculate the corresponding stepper motor
steps. Subsequently, the stepper motor steps are saved as .mat files and employed in the
Delta robot hardware through Raspberry Pi, which generates PWM signals for controlling
the rotation angle and frequency of the stepper motor. The random experimental dataset
obtained from this process is then used to train the neural networks offline. The lower
section of Figure 2 represents the online training phase. The well-trained neural network
model is saved as the TensorFlow Lite model and further implemented back on Raspberry
Pi. This enables real-time trajectory tracking, allowing the system to dynamically respond
to achieve the desired trajectories.

Figure 6. An open-loop control of trajectory tracking for validation of the data-driven inverse
kinematics of the Delta robot.



Robotics 2023, 12, 135 7 of 12

4. Experimental Validations

The trained neural networks are implemented on the hardware of the Delta robot
to track different trajectories in an open-loop control, including the circular curve, heart
curve, and logarithmic spiral curve. During the operation of the Delta robot, the desired
trajectories serve as inputs to the trained neural networks at each time step. We have found
that the open-loop tracking control is a remarkable way to directly check the accuracy of
the inverse kinematics in an experimental setting.

The trajectory-tracking results of different curves are shown in Figures 7–9. The track-
ing errors with the neural networks and the geometry-based inverse kinematics for dif-
ferent curves are shown in Figures 10–15. From these figures, we can see that the neu-
ral networks perform better than geometry-based inverse kinematics for different trajec-
tories. Moreover, it is worth noting that the trained neural network model with random
data is able to generalize well in different trajectory-tracking applications. The tracking
errors of circular curves from neural networks are bounded under 1 cm for the x-, y-, and
z-axes, as shown in Figure 11. However, when comparing these results to those depicted in
Figure 10, it is observed that the tracking error for the x-axis is bounded under 2 cm, but the
tracking errors for the y- and z-axes can reach up to around 4 cm and 110 cm, respectively.
This represents an increase of 50% for the x-axis, 75% for the y-axis, and 98% for the z-axis
compared to the neural network-based trajectory tracking. For the heart curve, as shown in
Figures 12 and 13, the neural network trajectory-tracking performance increases by roughly
50%, 50%, and 80% for the x-, y-, and z-axes, respectively. Similarly, for the logarithmic curve,
the neural networks exhibit improved trajectory-tracking performance, with performance
increases of around 33% along the x-axis, 40% along the y-axis, and 42.5% along the z-axis, as
shown in Figures 14 and 15. All the calculations regarding the performance enhancements are
based on the maximum tracking error for the respective axis. Some tracking errors observed
with the neural network model may be attributed to factors such as the 5% step accuracy of
stepper motors, errors in sensor measurements, and joint backlashes. It should be noted that
if a closed-loop control is used, the tracking error can be made as small as possible.

The neural networks are trained on the data collected from a given PWM frequency
with step time TPWM = 0.006 s. The neural network model is implemented on the hardware
at different operating speeds, including TPWM = 0.002 s, TPWM = 0.006 s, TPWM = 0.01 s,
and TPWM = 0.02 s. A summary of the root mean squares of tracking errors ex, ey, and
ez, of different trajectories with different operating speeds, is shown in Table 3. To better
understand the trajectory tracking in the Cartesian space, the operating speed is also
expressed as mm/s, as shown in Table 4. The trajectory-tracking results at the operation
speed TPWM = 0.006 s are highlighted to emphasize the performance of the neural networks.
From the table, we can see that the neural network model also has the ability to track the
trajectory with either a higher or lower operating speed. Compared to the results from
the geometry-based inverse kinematics, in general, the neural network model significantly
improves the tracking accuracy and has excellent flexibility.

Figure 7. Circular curve trajectory tracking from the neural network model and the geometry-based
inverse kinematics.
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Figure 8. Heart curve trajectory-tracking results from the neural network model and geometry-based
inverse kinematics.

Figure 9. Logarithmic curve trajectory-tracking results from the neural network model and geometry-
based inverse kinematics.
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Figure 10. Circular curve trajectory-tracking errors of x-, y-, and z-axes from geometry-based in-
verse kinematics.
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Figure 11. Circular curve trajectory-tracking errors for x-, y-, and z-axes from the neural network-
approximated model.
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Figure 12. Heart curve trajectory-tracking errors for x-, y-, and z-axes from geometry-based
inverse kinematics.
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Figure 13. Heart curve trajectory-tracking errors for x-, y-, and z-axes from the neural network-
approximated model.
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Figure 14. Logarithmic curve trajectory-tracking errors for x-, y-, and z-axes from geometry-based
inverse kinematics.
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Figure 15. Logarithmic curve trajectory-tracking errors for x-, y-, and z-axes from the neural network-
approximated model.

Table 3. A summary of the trajectory-tracking errors of the Delta robot with different
operating speeds.

Algorithm Curve TPW M RMSex RMSey RMSez

Circle

Neural networks 0.002 0.0038 0.0056 0.0112
0.006 0.0045 0.0057 0.0112
0.01 0.0059 0.0064 0.0111
0.02 0.0041 0.0047 0.0115

Inverse Kinematics 0.006 0.0122 0.0238 0.1015

Heart Curve

Neural networks 0.002 0.004 0.0067 0.0128
0.006 0.004 0.0069 0.0128
0.01 0.004 0.0068 0.0126
0.02 0.0072 0.0081 0.0132

Inverse Kinematics 0.006 0.0148 0.0125 0.0447
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Table 3. Cont.

Algorithm Curve TPW M RMSex RMSey RMSez

Logarithmic Spiral

Neural networks 0.002 0.0086 0.0041 0.0124
0.006 0.0097 0.0068 0.0068
0.01 0.0183 0.0101 0.0069
0.02 0.0125 0.0079 0.0100

Inverse Kinematics 0.006 0.0149 0.0087 0.0271

Table 4. Operating speed of the Delta robot in mm/s.

TPW M (s) mm/s

0.002 46.5250
0.006 15.5083
0.01 9.3050
0.02 4.66525
0.006 0.0122

5. Conclusions

A novel data-driven approach is proposed in this study for approximating the inverse
kinematics of the Delta robot. We generated random data experimentally to train neural
networks for approximating the inverse kinematics with stepper motor angles as inputs.
This work, to the best of our knowledge, is the first attempt in the Delta robot studies. The
neural networks were validated in different open-loop trajectory-tracking applications at
varying operating frequencies. The results show that the use of the proposed neural net-
works significantly improves the trajectory-tracking performance of the Delta robot when
compared to the results obtained from the geometry-based inverse kinematics approach.
These findings demonstrate the efficacy of using neural networks as valuable and efficient
tools to enhance the control performance of the Delta robot.
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