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Abstract: When humans and robots work together, ensuring safe cooperation must be a priority.
This research aims to develop a novel real-time planning algorithm that can handle unpredictable
human movements by both slowing down task execution and modifying the robot’s path based on
the proximity of the human operator. To achieve this, an efficient method for updating the robot’s
motion is developed using a two-fold control approach that combines B-splines and hidden Markov
models. This allows the algorithm to adapt to a changing environment and avoid collisions. The
proposed framework is thus validated using the Franka Emika Panda robot in a simple start–goal
task. Our algorithm successfully avoids collision with the moving hand of an operator monitored by
a fixed camera.

Keywords: human–robot interaction; obstacle avoidance; splines; hidden Markov models

1. Introduction

In modern industries, the demand for collaborative robots is constantly increasing
because of their versatility and precision in a wide variety of applications. In a collaborative
cell, humans and robots work together, sharing the same workspace. Therefore, the robot
must adapt to external events while complying with safety regulations [1]. Safe human–
robot cooperation can be achieved if the control system can gather information about the
state of the robot as well as the state of the worker inside the collaborative workspace.
Obstacle avoidance algorithms are employed whenever the presence of a target, such as
an object or an operator, should be accounted for in the proper and safe operation of the
robot. The latter must be able to adapt its behavior in real time with respect to dynamically
changing environments [1,2].

In general obstacle avoidance applications [3], the robot uses the position of a target
object to modify its path and avoid colliding with it. Although safety distance margins
can be imposed on the target object, unexpected movements can cause the robot to collide
if the algorithm is not reactive enough to prevent the impact [4]. On the other hand, the
planning algorithm should consider restoring the original path once the operator is outside
the workspace so the robot can run its task in nominal conditions [5].

In this work, the moving obstacle is represented by the hand of a human operator who
shares the same workspace as a cobot and whose position is monitored by a fixed camera.
The robot must repeat a preplanned task, but according to the proposed framework, when
the risk of a collision occurs, it can either modify the geometry of the path or reduce its
velocity according to the requirements of the specific application. Then, when the obstacle
is no longer within the robot’s reach, the programmed motion is restored.

The literature is full of methods that guarantee obstacle avoidance and the safe co-
existence of humans and robots. To highlight the contribution of our proposal, the main
state-of-the-art techniques are reviewed and briefly discussed in the following.
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1.1. Related Work

Collision avoidance methods for robotic systems operating in dynamic environments
with obstacles moving at high velocity typically rely on a combination of real-time trajectory
planning and reactive control. These methods may vary in their level of integration, ranging
from pure re-planning to the use of repulsive forces that act directly on the robot.

Collision avoidance motion planning problems can be, first of all, treated as an op-
timal control problem [6]. These approaches are widely used because they allow for the
minimization of cost functions subject to disparate constraints, such as danger fields, tem-
poral aspects, or even metrics for evaluating safety in collaborative manufacturing [4,7].
Optimization methods can be applied to both motion planning and control problems.
A noteworthy optimization-based algorithm is CHOMP [8], i.e., Covariant Hamiltonian
Optimization for Motion Planning, which guarantees collision-free and locally optimal
trajectory generation by means of a covariant gradient update rule. Another example is
presented in [9], where a parallel optimization scheme is successfully used to manipulate a
cable-towed load with multiple collaborative quadrupeds.

Probabilistic inference methods [10–12] optimize trajectories subject to task constraints,
goals, and motion priors, replacing classical cost functions with joint distributions formu-
lated as conditional dependencies. In [13], the author introduces a Learning by Demonstra-
tion (LbD) framework that exploits Gaussian Mixture Models (GMM) to encode multiple
tasks and retrieve the associated skill by means of regression techniques.

A different class of methods for motion planning and collision avoidance is composed
of so-called sample-based planning algorithms [14]; according to these approaches, the
environment is randomly sampled using techniques such as probabilistic road maps or
exploring random trees. An example is given in [15], where sampled via-points are trans-
formed into a set of candidate collision-free trajectories subject to predefined kinodynamic
limits. In [16], if a moving obstacle collides with the manipulator, the motion is locally
re-planned by using a Bi-RRT-based algorithm connecting the current robot position with a
target on the unperturbed trajectory.

While the above-mentioned algorithms mainly work at the planning levels, an ap-
proach for reactive collision avoidance that acts directly on the robot control relies on
potential field methods, originally introduced in [17]. Virtual repulsive and attractive
fields are utilized to move the robot towards a target while avoiding obstacles. Specifically,
repulsive fields are associated with obstacles, while attractive fields are associated with the
target. The original concept has been further refined and applied to properly modify the
shape of motion trajectories, which are seen as elastic bands subject to virtual forces [18],
and is now a standard technique for real-time trajectory planning [3,19].

If all the techniques cited above modify the geometry of the robot motion, state-of-the-
art methods in the industrial practice for guaranteeing safety in human–robot applications
are based on a completely different philosophy [20]. They basically consist of stopping
or slowing down robot motion in the presence of humans. For instance, according to
ISO/TS 15066, the velocity and acceleration of the robot must be set to safe values based
on the minimum distance from the operator [21]. This approach is commonly used in
collaborative applications, where the position of human workers is continuously monitored
with different types of cameras and the timing along the curve is properly scaled. See, for
example, Refs. [7,22,23], among many other publications on this topic. Note that, in the
case of dynamic obstacles, this technique based on the velocity modulation of the robot can
also be a way to avoid obstacles that are currently on the desired geometric path but could
move in the following instants.

1.2. Methodology and Contributions

In this work, we propose a novel framework for collision avoidance that merges the
modification of the geometric path of the robot with a speed adaptation mechanism. The
basic idea, derived from observations reported in [24], is to split the task representation into
two fundamental categories: the trajectory and the symbolic level. The former comprises
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continuous signals that change over time, such as the position or orientation of the end
effector (EE); the latter uses sequential or hierarchical information to establish a discrete set
of movements with predefined rules. The goal of this work is to provide evidence, through
an obstacle avoidance application, that task performance can benefit from the merging of
these two domains.

The two basic tools used to implement this framework are B-splines, which encode spa-
tial data and modify the path in Cartesian space [25], and hidden Markov models (HMMs),
which encode temporal and sequential information by scaling down task velocity [26].

The main goals and contributions of this research work are to:

1. Design an online controller that can fit generic tasks and smoothly avoid collisions
with dynamic obstacles.

2. Include the possibility to restore the original task whenever the robot is not prone to
any collision.

3. Exploit a probabilistic framework to gather information about the obstacle and modify
the robot’s velocity accordingly.

4. Combine trajectory and symbolic domains in a unified framework.

The paper is structured as follows: Section 2 details the theoretical background of the
proposed solution. Section 3 describes the online control algorithm conceived in this work.
Section 4 describes the experimental setup and validates the results of our framework.
Finally, Section 5 concludes this work by discussing the results and possible future steps.

2. Task Encoding

The simplest way to define a robotic task is by specifying the trajectory, which is a
mapping between time and space, that the end effector or joints must track. However, a
task can also be interpreted as a sequence of action units or elements that follow loops or
rules, as is the case with a symbolic representation as seen in [27,28].

This work attempts to bridge and combine these two domains for an obstacle avoid-
ance application. This is achieved through a control system that modifies the nominal robot
path defined by B-spline functions [25] while also varying the phase of the task, and thus
its velocity, using an HMM [26]. The following paragraphs provide a brief review of the
theoretical background of these techniques.

2.1. Spatial Encoding Based on B-Splines

Spline functions are extensively used for generating smooth and optimal time trajecto-
ries in robotic applications [15,29,30]. B-splines are a particular representation of generic
spline curves based on a linear combination of N basis functions [29], i.e.,

p(s) =
N

∑
i=1

piβ
d
i (s), smin ≤ s ≤ smax (1)

where βd
i (s) are basis functions of degree d, which only depends on the phase variable s

(that in many applications coincides with time t), while pi are called control points and
determine the geometric shape of the curve. As shown in Figure 1, a B-spline is basically a
smooth approximation of the control polygon defined by the control points. Usually, they
are defined by imposing some interpolation condition p(si) = pi, i = 1, . . ., N, depending
on the desired task.

 

 

 

 

Figure 1. Example of B-spline trajectory: p(s) (black line) is an approximation of the control polygon
(red dashed line) defined by the control points pi.
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A noteworthy property of the basis functions βd
i (s) is that their value is zero every-

where except in the interval defined by knots [si, si+d+1]. As a consequence, a change in
the i-th control point pi only influences the B-spline in this interval, allowing for local
modifications in the trajectory described. Another useful property of B-splines is time-
scaling, i.e., the possibility of changing the velocity along the curve by simply applying the
transformation ŝ = αs to the knot vector s, where α is a constant. For more details, see [25].

2.2. Temporal and Sequential Encoding Based on Hidden Markov Models

Hidden Markov models (HMMs) are based on a Markov chain, which describes the
probabilities of sequences of random variables, called states, that take values from a defined
set [31]. In many applications, such as gesture and speech recognition [26,28], HMMs are
used to model human behavior, with the aim of identifying gestures or predicting the
most likely pattern of subsequent control states. Specifically, given a set of hidden states
H = h1, h2, . . . , hM and a sequence of T observations O = o1, o2, . . . , oT , the purpose
of HMMs is to analyze sequences of events in terms of a reduced set of parameters
λ = [Π, A, B], where:

• Π is called the prior distribution, which tells us about the probability of starting a
sequence in state hi;

• A is the transition probability matrix, where each element ai,j encodes the probability
of moving from state i to state j;

• B are the observation likelihoods, also called emission probabilities, where each element
bi(ot) expresses the probability of an observation ot being generated from state i.

Note that, according to the usual definition of HMMs, λ describes a model in terms
of discrete observation likelihoods [32]. However, since the proposed framework deals
with a continuous observation space, i.e., trajectories in Cartesian space, the HMM can be
represented as

λ = [Π, A, µi, Σi] i = 1, . . ., M (2)

where M is the number of components characterized by mean and covariance values
(µi, Σi) of the multivariate Gaussian Mixture Model (GMM). Thus, the λ parameters can be
learned to encode the desired robot task, such that the regression of the model resembles
the desired end effector path [33].

The proposed methodology can be explained as follows: using control points pi as
hidden states hi, a forward-chained left–right HMM is adopted (see Figure 2) to account
for the evolution of the trajectory [34]. With this model, in nominal conditions (i.e., no
obstacles in the workspace), π1 = 1 and transition probabilities ai,i+1 ≈ 1, meaning that
the robot evolves from one control point to the other with a probability close to one. In
particular, let us analyze the transition matrix A for the HMM in Figure 2:

A =


a11 a12 0 · · · 0 0
0 a22 a23 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · aM−1M−1 aM−1M
0 0 0 · · · 0 aMM

 (3)

    

Figure 2. Example of forward-chained left–right HMM: being in state hi, it is only possible to move
to the next state hi+1 or remain in the current state.
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Here, the elements of each row of A sum up to 1. Parameter ai,i is the probability of
staying in state hi, while ai,i+1 is the probability of moving from state hi to state hi+1. Thus,
the transition probabilities ai,i+1 can be used to slow down or eventually stop the robot
every time their values warn the system about a potential collision, as is explained in the
next section.

3. Proposed Method

We consider a typical industrial scenario in which a robot is required to perform a
specific task within a monitored workspace, using a fixed camera. When an obstacle enters
the workspace, such as the hand of a human operator, its actual position is tracked, filtered
through a Kalman filter, and sent to the controller that implements the proposed framework
in order to prevent possible collisions. The functional blocks of the entire algorithm are
displayed in the scheme shown in Figure 3, while the working principles are detailed below.

Tracking Algorithm
Cartesian  pose

controller

B-Spline HMM
Kalman Filter

Desired Task

Figure 3. Block scheme representation of the proposed framework for collision avoidance.

3.1. Spatial Modulation with Dynamical Control Points

Given the presence of moving obstacles, we assume that the task is modified only
if they interfere with the nominal trajectory. However, if the obstacles move far from
the robot, the task should be restored to its original trajectory. To achieve this, we use
B-spline functions to induce a reversible deformation on the original trajectory. Specifically,
a dynamical system is associated with each control point pi [5]:

Mi, ¨̃pi + Bi, ˙̃pi + Ki, p̃i = Frep,i (4)

where, p̃i = p(i) − pi represents the displacement of the actual position p(i) of the i-
th control point with respect to its original location pi. The matrices Mi = diag{mi},
Bi = diag{bi}, and Ki = diag{ki} are 3-by-3 diagonal matrices, where mi, bi, and ki are
positive constants such that the system in (4) is critically damped. This can be performed

by choosing, for example, mi = m̂i and ki = k̂i, then computing bi as b̂i = 2
√

m̂i · k̂i.
Finally, Frep,i is a virtual repulsive force applied in the direction from the obstacle to the
i-th control point.

This idea is explained in Figure 4. The module of the repulsive force Frep,i acting on
the i-th control point does not depend on its Cartesian distance from the obstacle but varies
in intensity according to the Mahalanobis distance:

DM(x, µ, Σ) =
√
(x− µ)TΣ−1(x− µ) (5)
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that accounts for the occupation probability of the obstacle p̂obs ∼ N (µobs, Σobs), caused by
uncertainties in the estimation of its location [6,35]. The module of the force can therefore
be computed as follows [6]

|Frep,i| =
χi

DM(p(i); µobs, Σobs )
(6)

where χi is a free parameter that enables the repulsive force field intensity to be varied.
Finally, the path is encoded with a third-order B-spline such that its derivatives are continu-
ous until the acceleration, with limited jerk. This is of fundamental importance and should
be designed carefully as, from a practical point of view, the internal inverse kinematics
algorithm could lead to a joint acceleration discontinuity error if the trajectory overcomes
the robot’s limitations [29].

 
 

 

 

Figure 4. B-spline with associated dynamical systems to control points pi: when an external force
Frep,2 acts on p2, it locally changes the desired path.

3.2. Temporal Modulation with Varying Transition Probabilities in HMM

In our framework, the path of the task is encoded by p(s) in (1), while velocity is
varied through the HMM’s parameters λ, accounting for the temporal modulation.

The connection between B-splines and the HMM domains is established through the
continuous observation likelihoods N (µi, Σi) = bi(ot), i = 1, . . ., M, as shown in (2). In
particular, (µi, Σi) are the components of a GMM that encodes the likelihood of a point
r ∈ R3 being described by the HMM’s model λ:

B ∼ P(r) =
M

∑
i=1
Wi(r)N (r; µi, Σi) (7)

where the weighting factor W i with ∑M
i=1Wi = 1 is called the mixing coefficient and

represents the influence of the i-th component [13]. Gaussian distributions are encoded
such that their regression corresponds to the nominal trajectory p(s) [36]. Furthermore,
in (7), B accounts for the variability introduced by the movement of control points, thus
giving a stochastic topological representation of the task. Figure 5 illustrates a graphical
representation of this approach. It is worth noting that the number of states M of the HMM
is generally different from the number of control points N that define the B-spline. For
instance, it is possible to encode with the same state a segment of the trajectory curve,
corresponding to a subtask, composed of several control points. However, for the sake of
simplicity, it is convenient to assume M = N.

As explained in Section 2, the evolution of the B-spline trajectory can be modified by
applying the transformation ŝ = αs to the knots vector of p(s). In this way, the desired
velocity ṡ is multiplied by a factor α ∈ [0, 1] and reduced accordingly. To implement a
mechanism that is able to slow down the robot and eventually stop it in the case of a
collision risk, the transition probabilities of the HMM are directly mapped into proper
values of α, as explained below. Assume that the robot’s trajectory is in state hi (associated
with the control point pi), and consider the transition probability ai,i+1 to the next state
hi+1. For the purposes of this project, it is required that:
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• If ai,i+1 = 1.0, the robot moves at nominal velocity.
• If 0.0 < ai,i+1 < 1.0, the robot slows down.
• If ai,i+1 = 0.0, the robot stops.

 

 

 
 

Figure 5. B-spline and HMM combined together: while the former describes the nominal path p(s)
in the Cartesian domain, the latter provides a probabilistic map of it as described in (7), together with
transition probabilities ai,j among control points pi computed such that a left–right HMM is obtained,
thus ensuring always going from a start position to a goal one.

By computing the transition coefficient as a Sigmoid function φ based on the Maha-
lanobis distance DM(p̂obs; µi, Σi) between the obstacle position and the observation space
of the HMM, i.e.,

ai,i+1 = φ(DM) =
1

1 + e−(DM+γ)
(8)

its value changes according to the probability of colliding with the obstacle. Note that
the free parameter γ can be used to tune the sensitivity of the robot with respect to the
presence of an obstacle in the workspace. For example, using positive values of γ, the
Sigmoid function φ(DM) is shifted right; thus, by tuning this parameter, we can decide for
which values of DM the transition coefficient decays to zero. Finally, if the scaling factor α
is computed as

α = ai,i+1 (9)

the nominal velocity along the B-spline trajectory is modulated as required by the specifica-
tions reported above.

In this way, the coefficients ai,i+1 acquire a new meaning, which is the probability
of passing from control point pi to pi+1 without collision. The symbolic control can
therefore be explained as follows. The path is encoded as a B-spline, which means using
a superposition of basis functions weighted by the so-called control points. Every basis
function is responsible for a local encoding of the trajectory, together with the corresponding
control point; therefore, we set the control points themselves as the hidden state of the
HMM. The only way to access information regarding a hidden state is by the parameter B,
explained in Section 2.2 and initialized as a GMM in (7). In our case, B basically gives a
probability mapping that tells us, being the hand in a position p̂obs, which is the control
point pi responsible for the piece of trajectory closest to the hand. Once this is known, we
can use (8) to vary the transition probability between pi and pi+1, and thus modulate the
nominal velocity with α calculated in (9). It follows that when α→ 0, the robot stops, and
then when the obstacle moves again out of the robot task space α→ 1, the nominal velocity
is restored. Figure 6 reports an example of 2D encoding merging the two techniques
introduced in the previous paragraphs.
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Figure 6. Control at both trajectory and symbolical level using B-splines and HMM (ξ = 0.5). A planar
task, also used in the experiments, is considered for illustration purposes. It is encoded using a
B-spline exploiting 7 control points (with fixed height z = 0.3 m), and an HMM with observation
space described by a GMM with 7 components.

3.3. Switching between Trajectory and Symbolic Domains

The proposed motion planner combines two different control domains. However, there
could be situations where operating at the trajectory level is preferred over the symbolic
one, or vice versa. The algorithm is provided with a knob parameter, ξ ∈ [0, 1], so the user
can choose the influence of each controller. Specifically, we expect the following behaviors:

• ξ = 0.0 =⇒ only the time-scaling mechanism based on HMM is active;
• 0.0 < ξ < 1.0 =⇒ B-spline and HMM cooperate with different proportions;
• ξ = 1.0 =⇒ only the B-spline modification algorithm is applied.

To achieve this, the parameters (mi, bi, ki) in (4) for trajectory control, and α in (9) for
symbolic control, are modified according to the following laws:

(mi, bi, ki) =


(m̂i, b̂i, k̂i)

2ξ
if 0 ≤ ξ < 0.5

(m̂i, b̂i, k̂i) if 0.5 ≤ ξ ≤ 1
(10a)

α =

{
α̂ if 0 ≤ ξ ≤ 0.5

(2α̂− 1)(1− ξ) + ξ if 0.5 < ξ ≤ 1
(10b)

where (m̂i, b̂i, k̂i) are the default values assigned in (4), and α̂ is the result of (9). In this
way, as ξ approaches 0, the values of the parameters (mi, bi, ki) increase rapidly (in practical
experiments an upper bound on the three parameters is imposed), making the system
in (4) extremely rigid and thus insensitive to external (virtual) forces. As a consequence, no
spatial modifications of the trajectory are observed. On the other hand, as ξ approaches 1,
the spatial modification mechanism is restored, but in this case, α → 1 and therefore
no changes in the velocity profile occur. Finally, when ξ ≈ 0.5, both the trajectory and
symbolic level controllers work together, producing spatial and temporal modulation of
the trajectory.
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4. Experimental Validation

In this section, the experimental setup is described and the results of the proposed
framework are shown.

4.1. Experimental Setup and Methodology

For the experimental tests, we used a Franka Emika Panda collaborative robot con-
trolled through a Cartesian pose controller developed in C++. The controller ran on a
standard PC equipped with an Intel i7 8-core CPU and 8 GB RAM. The trajectory/symbolic
motion control was implemented in Matlab/Simulink on the same PC. The C++ controller
updated the robot states at a frequency of 1 kHz. To handle sharp trajectory deviations and
potential discontinuities during inverse kinematics computation [37], we used a second-
order filter to calculate the acceleration profile. The filtered acceleration profile was then
double-integrated to update the end effector (EE) position. For the target object, a human’s
hand represented the moving obstacle, sharing the same workspace with the robot. The
hand’s Cartesian position was continuously tracked by a fixed camera, specifically an Intel
RealSense D435. The camera’s output was processed on a second PC with similar charac-
teristics to the first one. All software components were connected using ROS to facilitate
communication among them [38]. In particular, to simplify the computation of the hand’s
pose from the camera data, we used an ArUco marker directly placed on the operator’s
hand [39]. The position coordinates derived from the camera images were sent through
a multistep Kalman filter to predict the future positions of the hand [35,40]. This step
proved valuable when the camera’s view of the scene was obstructed. The Kalman filter
output, denoted as x̂, was associated with a uniformly distributed random variable [41],
i.e., x̂ ∼ N (µx, Σx), which justified the use of the Mahalanobis distance in modifying the
task (as shown in (6)) [6].

As we focused on collaborative tasks where the manipulator’s speed is limited by law,
the encoded trajectory was based on positions and velocities, not explicitly on manipulator
dynamics. Motor torques/acceleration were not used in the proposed planning/control
approach. However, parameters such as spline control point dynamics and the GMM
covariance matrix were chosen to make collision avoidance feasible by considering the
typical motion velocity of a human being [4,6,27]. For the tests, a cubic B-spline with N = 7
control points in the xyz plane was used at the trajectory level. We selected (mi, bi, ki)
in (4) to ensure high stiffness at the first and last control points to maintain their positions
constantly. Specifically, we empirically chose the parameters (mi, bi, ki) to be

• mi =20 [kg], bi =310
[
N s
m

]
, ki =1200

[
N
m
]

for i ∈ {1; N} ;

• mi =5 [kg], bi =60
[
N s
m

]
, ki =180

[
N
m
]

for i ∈ 2, 3, . . ., N − 1 ;

At the symbolic level, the task was encoded into a Gaussian Mixture Model (GMM)
with 7 components (i.e., M = N) in 3D space. These components served as observation
likelihood parameters in (2) to construct a left–right hidden Markov model (HMM). We
adjusted (8) with γ = 10 to increase the sensitivity of the symbolic controller even for
higher Mahalanobis distance values computed in (5).

During the experiments, the robot followed a desired trajectory while an operator
moved his hand close to it to simulate collisions. We varied the parameter ξ in (10) to
individually analyze the B-spline control, the HMM, and the combination of both controllers.
This allowed us to demonstrate the improvements achieved through the integration of the
two techniques and validate our novel planning methodology for obstacle avoidance. We
evaluated the performance using four parameters:

1. The average computation time for a single iteration Tcomp.
2. The normalized average path deviation ∆L, calculated as the mean deviation of the

traveled distance normalized over the nominal path.
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3. The average stop time, Tstop, calculated as the average time taken for parameter α
in (9) to reach zero (i.e., stop the robot) once the hand collision was perceived.

4. The success rate, ρ, defined as the percentage of cases where the distance did not go
below a given safety threshold (equal to 10 cm in our experiments) compared to the
total number of situations where an incipient collision was detected.

Figure 7 displays snapshots of the real experiments conducted on the robot to test the
B-spline–HMM-based controller.

Figure 7. Snapshots from experiments conducted on the B-spline–HMM-based controller. The
control points corresponding to the nominal path are displayed in magenta. In sequence (A), the
hand holding the marker moves slightly above the end effector, inducing the robot to slow down
and modify its path to pass under the hand. In sequence (B), the hand suddenly moves in front
of the end effector, giving the robot no time to modify its path. Therefore, the robot controller
decides to stop and wait until the hand changes position. Here is a link to the related video:
https://www.youtube.com/watch?v=z6HBSz7o4qo (accessed on 15 March 2023).

4.2. Results

In Figure 8 and Table 1, we report the results of the experiments that are discussed
further in the following paragraphs, while in Figure 9, we present a comparison of the
trajectory of the hand recorded and virtually reproduced in three different tests using
B-spline, HMM, and B-spline–HMM-based controllers. The XY projections on the right
show path modifications, while temporal modulation along the time axis is observed. To
assess the performance of the controllers under different scenarios, several experiments
were conducted where the robot executed the same task repeatedly. These experiments
involved varying parameters such as ξ (balance between trajectory and symbolic control),
task execution speed, and acceleration.

(a) (b) (c)

Figure 8. Box plots of the values reported in Table 1; in plots (a–c) the values of Tcomp, ∆L, and Tstop

are displayed, respectively.

https://www.youtube.com/watch?v=z6HBSz7o4qo
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(a)

(b)

(c)

Figure 9. Three experiments were conducted using the same obstacle trajectory (represented by the
black dashed line). Each experiment virtually reproduced the trajectory, with the nominal path shown
in blue and the modified path in red. The XY coordinates of the end effector were observed over
time with respect to the obstacle position. The overall trajectory was projected onto the XY plane on
the right-hand side for better visualization of geometric path modifications. In experiment (a), only
B-spline control was used (ξ = 1.0), resulting in path modifications but no change in task duration.
The nominal and modified trajectories were aligned in time. In experiment (b), only HMM control
was used (ξ = 0.0). The end effector trajectory slowed down when close to the obstacle, but no path
modification was observed as the XY projections of the nominal and modified trajectories perfectly
overlapped. In experiment (c), control was implemented at both the trajectory and symbolic levels
using B-splines and HMM (ξ = 0.5). When the obstacle approached the robot, both spatial and
temporal evolution were modified.
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Table 1. Validation tests results in terms of average computation time for single iteration Tcomp,
normalized average path deviation ∆L, average stop time Tstop, and success rate ρ.

Tcomp (ms) ∆L Tstop (s) ρ

B-spline 3.515 ± 1.53 0.590 ± 0.08 / 77.97%
HMM 1.480 ± 2.70 0.000 ± 0.00 0.431 ± 0.01 89.66%

B-spline+HMM 4.649 ± 0.55 0.304 ± 0.07 0.514 ± 0.01 94.41%

4.2.1. Controller at Trajectory Level Only (ξ = 1.0)

In this test, the controller operated solely at the trajectory level, with ξ = 1.0. The
average computation time for a single iteration was Tcomp = 3.515 ms. Across six different
experiments, the robot encountered a total of 59 possible collision situations. The success
rate (ρ) achieved was 77.97%, and the normalized average path deviation (∆L) was 0.590.
Since the controller only focused on spatial control without temporal modulation, no value
of Tstop was reported as the robot never stops.

4.2.2. Controller at Symbolic Level Only (ξ = 0.0)

In the second test, the controller operated exclusively at the symbolic level, with ξ = 0.0.
It employed an HMM with an observation space described by a GMM with seven components.
The average computation time for a single iteration was Tcomp = 1.480 ms. Across five
different experiments, the robot faced 58 possible collision situations. The success rate (ρ)
achieved was 89.66%, with an average stop time (Tstop) of 0.431 s and ∆L = 0.0 since no
spatial controller was implemented.

4.2.3. Controller at Both Trajectory and Symbolic Levels (ξ = 0.5)

In the final validation test, the task was encoded using a control at both the trajectory
and symbolic levels, with ξ = 0.5. Similar configuration parameters as the previous tests
were maintained. The average computation time for a single iteration was Tcomp = 4.649 ms,
which was slightly higher than the previous cases but still met real-time requirements
within 16 ms [3,4]. Across 10 different experiments, the robot encountered 143 possible
collision situations. The success rate (ρ) achieved was 94.41%, with a normalized average
path deviation (∆L) of 0.304 m and an average stop time (Tstop) of 0.514 s.

4.2.4. Performance Analysis

In the first scenario with only B-spline modification as the control (ξ = 1.0), the perfor-
mance was relatively poor (ρ = 77.97%). The controller lacked velocity control, leading to
difficulties in rapidly modifying the robot’s path to avoid collisions. Additionally, tuning
(mi, bi, ki) parameters could tighten or relax ∆L, but the controller’s overall performance
was unsatisfactory due to the absence of temporal modulation. Similarly, in the controller
employing only HMM control (ξ = 0.0), performance was improved compared to B-spline
control (ρ = 89.66%). However, this controller’s behavior was inadequate when the oper-
ator’s hand moved towards the robot. By integrating the B-spline and HMM controllers,
the combined B-spline–HMM controller achieved a higher success rate (ρ = 94.41%). Al-
though the average stop time (Tstop) was higher than the HMM controller alone, real-time
requirements were still satisfied [3,4] and the B-spline–HMM controller consistently slowed
down and modified the robot’s path until the safety distance was maintained before stop-
ping completely. The normalized average path deviation (∆L) was lower compared to the
trajectory level only controller, as the robot now reduced its velocity towards the hand
and stopped before any collisions. This feature was critical in avoiding potential singular
configurations that could occur with the B-spline controller alone.

5. Conclusions and Future Work

In this paper, a novel framework for obstacle avoidance applications is introduced.
After several real-world experiments, we believe that our methodology is suitable for
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human–robot shared environments, meeting real-time requirements for safe cooperation.
The proposed work introduces a motion planning algorithm that can be adapted to dif-
ferent scenarios with moving and static obstacles, achieving a success rate of 94.41%. By
combining the trajectory and symbolic domains, our framework can smoothly adapt the
Cartesian path and slow down the execution of the task in the proximity of a human
operator. Moreover, by associating a dynamical system with each control point, the con-
troller autonomously resets to its original task, and while using the HMM, the robot never
stops after overtaking the operator’s hand, ensuring correct and complete task execution.
Clarifications should be made w.r.t. to all the situations where a collision occurs. The
B-spline–HMM architectures ensures safety as long as the position of the obstacle is known.
A positive feature of our controller is that the robot is halted every time the obstacle is too
close, strongly reducing the impact in case of a collision.

Future work might involve the use of multiple cameras to span over a wider workspace
and improve the detection of obstacles, no longer limited to the operator’s hand. Triangu-
lation techniques could be, in this case, a solution to enhance the marker measurement’s
precision, as during experiments, we registered an accuracy sometimes lower than 4 cm.
Moreover, it could be desirable to improve the algorithm that predicts the motion of moving
obstacles and operators to obtain a larger time horizon, more consistent with a smooth
obstacle avoidance application. While the algorithm was validated on one task, additional
experiments and validations involving various test scenarios are needed. Preferably, these
tests should apply the algorithm to the joint space, including new techniques for obstacle–
robot distance measurements, that might be extended to the whole body of the manipulator
rather than just the end effector.
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