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Abstract: Prototyping and validating hardware–software components, sub-systems and systems
within the intelligent transportation system-of-systems framework requires a modular yet flexible and
open-access ecosystem. This work presents our attempt to develop such a comprehensive research
and education ecosystem, called AutoDRIVE, for synergistically prototyping, simulating and deploy-
ing cyber-physical solutions pertaining to autonomous driving as well as smart city management.
AutoDRIVE features both software as well as hardware-in-the-loop testing interfaces with openly
accessible scaled vehicle and infrastructure components. The ecosystem is compatible with a variety
of development frameworks, and supports both single- and multi-agent paradigms through local as
well as distributed computing. Most critically, AutoDRIVE is intended to be modularly expandable
to explore emergent technologies, and this work highlights various complementary features and
capabilities of the proposed ecosystem by demonstrating four such deployment use-cases: (i) au-
tonomous parking using probabilistic robotics approach for mapping, localization, path-planning and
control; (ii) behavioral cloning using computer vision and deep imitation learning; (iii) intersection
traversal using vehicle-to-vehicle communication and deep reinforcement learning; and (iv) smart
city management using vehicle-to-infrastructure communication and internet-of-things.

Keywords: education robotics; connected autonomous vehicles; intelligent transportation systems;
mobile robotics; digital twins; simulation; virtual prototyping; testbed; verification and validation

1. Introduction

Advancing the field of connected autonomous vehicles (CAVs) [1] requires scientific
and technological research in conjunction with comprehensive education of methods and
tools to overcome existing challenges and prepare the next generation of practitioners.

Inasmuch as meaningful verification and validation (V&V) efforts demand end-to-
end stress testing across scales at component/sub-system/system levels, there is a great
incentive for exploring the creation and exploitation of varying grades of virtual (simulation-
based) and physical (hardware-in-the-loop) testing platforms to alleviate the monetary,
spatial, temporal and safety constraints associated with rapid-prototyping of CAV solutions.
In a research setting, such platforms can accelerate the process of designing experiments,
recording datasets as well as re-iteratively prototyping and validating autonomy solutions.
In an educational setting, such platforms can aid in designing interactive demonstrations,
hands-on assignments, projects, and competitions.

However, existing platforms for this purpose are observed to limit the throughput of
developing and validating connected autonomy solutions. Firstly, most of these platforms
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lack the integrity required to promote hardware-software co-development; some only offer
software simulation tools (e.g., [2–4]), while others only provide scaled physical vehicles
(e.g., [5–8]) to test autonomy algorithms. Such isolated platforms not only decelerate the
prototyping phase due to compatibility issues, but also adversely affect the validation
phase involving simulation to real-world (sim2real) deployments. Secondly, most of these
platforms focus specifically on vehicles rather than a holistic intelligent transportation
ecosystem involving infrastructure, traffic elements and peer agents, which limits their
applications. Thirdly, some of these platforms (e.g., [9,10]) are domain-specific with limited
sensing modalities, stringent design requirements and/or fixed development frameworks;
some (e.g., [11]) even lack a high-level computation unit and are merely teleoperated from
a remote server to execute the intended mission.

This work does not propose “yet another” research and education platform targeting
selective aspects of autonomous driving technology. AutoDRIVE (refer Figure 1) aims to
provide a cyber-physical ecosystem that is:

Figure 1. High -level overview of the AutoDRIVE Ecosystem, depicting the key modules and their
interactions within the three platforms of the ecosystem, viz. AutoDRIVE Testbed, AutoDRIVE
Simulator and AutoDRIVE Devkit.

• Comprehensive: The ecosystem offers a scaled car-like vehicle with abundant sensors,
which supports single- as well as multi-agent algorithms with or without vehicle-to-
vehicle (V2V) communication. It also provides a modular infrastructure development
kit comprising various environment modules, traffic elements and surveillance el-
ements, which supports internet-of-things (IoT) and vehicle-to-infrastructure (V2I)
communication. On the software front, the ecosystem hosts a high-fidelity simulator
and supports the development of autonomous driving as well as smart city solutions.

• Flexible: The ecosystem offers modular hardware components, a convenient high-
fidelity simulator, and an extensive software development support, which enables the
end-users to flexibly prototype and validate their autonomy solutions right out of the
box. Additionally, the completely open-hardware, open-software architecture of the
ecosystem allows users to adapt any of the existing hardware (including the design of the
vehicle as well as the infrastructure modules) and/or software (including the codebase
of the development framework as well as the simulator) to better fit their use-cases.
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• Integrated: The ecosystem hosts a tightly coupled trio, comprising AutoDRIVE De-
vkit (to flexibly develop connected autonomy solutions), AutoDRIVE Simulator (to
virtually prototype and test them under a variety of conditions and edge-cases),
and AutoDRIVE Testbed (to deploy and validate them in controlled real-world set-
tings). The harmony among these three platforms not only enhances the hardware–
software co-development of autonomy solutions, but also helps to seamlessly bridge
the gap between software simulation and hardware deployment for the verification
and validation of these safety-critical systems.

This work also describes sample use-cases of four emergent applications in the field
of CAVs, with each exploiting, and thus exhibiting, distinct features and capabilities
of the AutoDRIVE Ecosystem. These include state-of-the-art implementations such as
autonomous parking, behavioral cloning and intersection traversal, along with a novel
implementation of smart city management.

2. State of the Art

The deployment of full-scale CAV solutions generally requires extensive verification
and validation, which poses several challenges, especially in university settings. The time,
expense, resources and knowledge of full-scale testing present an interplay with the infras-
tructural requirements as well as the safety of the personnel and property involved, often
hindering research and education progress. Consequently, the past decade has witnessed
many university-based deployments exploring the development of scaled autonomous
vehicles. As described in Table 1, such vehicles include the MIT Racecar [5], AutoRally [6],
F1TENTH [7], Multi-agent System for non-Holonomic Racing (MuSHR) [8], Optimal RC
Racing (ORCA) Project [11], Delft Scaled Vehicle (DSV) [12], and Berkeley Autonomous
Race Car (BARC) [13], to name a few. Some of the other community-driven platforms
for autonomous driving include HyphaROS RaceCar [9] and Donkey Car [10], both of
which are application specific—the former to map-based navigation, and the later to vision-
aided imitation learning. Apart from these, commercial products such as QCar [14] by
Quanser and DeepRacer [15] by Amazon Web Services (AWS) are now surfacing the market.
However, the fact that most of these products are expensive and employ some form of
proprietary hardware and/or software components restricts their openness and flexibil-
ity to the community, and there are potential issues such as warranty-voids and vendor
lock-ins. Some of the other scaled platforms for autonomy research and education include
Duckietown [16], TurtleBot3 [17] and Pheeno [18]. However, the differentially driven robots
proposed by these platforms/ecosystems fail to fully satisfy the community requirements
for a kinodynamically constrained car-like vehicle.

Table 1. Comparative analysis of scaled platforms/ecosystems for autonomy research and education.

Platform/Ecosystem Cost ∗ Sensing Modalities Computational Resources Actuation
Mechanism
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AutoDRIVE 1:14 3 3 $450 3 3 3 3 3 3 3 Jetson Nano Arduino Nano 3 H 3 3 3 3 3 3 3 H 3
MIT Racecar 1:10 H 3 $2600 7 7 7 7 3 3 3 Jetson TX2 VESC 3 7 Gazebo H H 7 7 7 3 7 7
AutoRally 1:5 H 3 $23,300 7 7 3 3 3 3 3 Custom Teensy LC/Arduino Micro 3 7 Gazebo H H 7 7 7 3 7 7
F1TENTH 1:10 H 3 $3260 7 7 7 7 7 3 7 Jetson TX2 VESC 6MkV 3 7 RViz/Gazebo 3 3 7 7 7 3 7 7
DSV 1:10 H 3 $1000 7 7 3 7 3 3 3 ODROID-XU4 Arduino (Mega + Uno) 3 7 7 7 7 7 7 7 3 7 7
MuSHR 1:10 H 3 $930 7 7 7 7 7 7 3 Jetson Nano Turnigy SK8-ESC 3 7 RViz 3 3 7 7 7 3 7 7
HyphaROS RaceCar 1:10 H 3 $600 7 7 7 7 3 3 7 ODROID-XU4 RC ESC TBLE-02S 3 7 7 7 7 7 7 7 3 7 7
Donkey Car 1:16 H 3 $370 7 7 7 7 7 7 3 Raspberry Pi ESC 3 7 Gym 7 7 7 7 3 7 7 7
BARC 1:10 H 3 $1030 7 7 3 7 3 7 3 ODROID-XU4 Arduino Nano 3 7 7 7 7 7 7 7 3 7 7
OCRA 1:43 H 3 $960 7 7 7 7 3 7 7 None ARM Cortex M4 µC 3 7 7 3 7 7 3 7 7 3 7
QCar 1:10 7 7 $20,000 7 7 3 7 3 3 3 Jetson TX2 Proprietary 3 7 Simulink 3 3 7 H H H 3 7
AWS DeepRacer 1:18 7 7 $400 7 7 7 7 3 H 3 Proprietary Proprietary 3 7 Gym 7 7 7 7 7 7 7 3
Duckietown N/A 3 3 $450 7 7 H 7 H 7 3 Raspberry Pi/Jetson Nano None 7 3 Gym 3 7 H 7 7 3 7 7
TurtleBot3 N/A 3 3 $590 7 7 3 7 3 3 H Raspberry Pi OpenCR 7 3 Gazebo H H 7 7 7 3 7 7
Pheeno N/A 3 3 $350 7 7 3 7 3 7 3 Raspberry Pi Arduino Pro Mini 7 3 7 3 3 7 7 3 H 7 7

3 indicates complete fulfillment; H indicates conditional, unsupported or partial fulfillment; and 7 indicates
non-fulfillment. ∗ All cost values are ceiled to the nearest $10.
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In terms of comprehensiveness, some of these platforms lack diverse sensing modali-
ties, some lack adequate computational power, some lack an Ackermann steering mech-
anism, and most lack active or passive infrastructural elements. Only a few satisfy the
prominent community requirements, but they can prove to be prohibitively expensive for
university programs.

In terms of flexibility, most of these platforms, if not all, use commercial-off-the-shelf
(COTS) radio-controlled (RC) cars as their base-chassis, which: (a) are quite expensive;
(b) may not be available all around the world; (c) limit research on the “mechatronics
engineering” front, which is equally important for cyber-physical systems such as CAVs.
Additionally, most of these platforms only support a specific software framework, such
as a Robot Operating System (ROS) [19], which inherently creates a skillset-dependency
for the end-users. Furthermore, providing assets and plugins for pre-packaged simulators
such as Gazebo [20] or OpenAI Gym [21] environments offers only so much flexibility to
the users in terms of designing and running the simulated scenarios.

In terms of integrity, some of these platforms do not support simulation in any form,
some ROS-based ones support kinematic/dynamic simulation using RViz [22] and/or
Gazebo, while others offer task-specific Gym environments for imitation/reinforcement
learning, none of which is ideal.

3. AutoDRIVE Testbed

AutoDRIVE Testbed is a hardware platform featuring a native scaled vehicle along
with a modular and reconfigurable infrastructure development kit for deploying and
validating autonomy algorithms in controlled real-world settings. It adopts a completely
open-hardware and open-software architecture to push the “systems engineering and
integration” front with regard to CAVs.

3.1. Vehicle

AutoDRIVE’s native vehicle, named Nigel (refer Figure 2A,B), offers realistic driving
and steering actuation, comprehensive sensor suite, high-performance computational
resources, and a standard vehicular lighting system.

Figure 2. Native vehicle (Nigel) of the AutoDRIVE Ecosystem: (A) high-level vehicle architecture;
(B) various components and sub-systems of the vehicle; (C) open-source chassis of the vehicle
adopting rear-wheel drive, Ackermann steered actuation mechanism.

3.1.1. Chassis

Nigel is a 1:14 scale model vehicle comprising four modular platforms, each housing
distinct components of the vehicle. It adopts rear-wheel drive, the Ackermann steered
mechanism (refer Figure 2C), and therefore resembles an actual car in terms of kinody-
namic constraints.
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3.1.2. Power Electronics

Nigel is powered using an 11.1 V 5200 mAh lithium-polymer (LiPo) battery, whose
health is monitored by a voltage checker. A 10 A rated buck converter steps down the
voltage to 5 V, which is then routed, via a 3 A rated master switch, to all the electrical
sub-systems including a 20 A rated motor driver module.

3.1.3. Sensor Suite

Nigel hosts a comprehensive sensor suite comprising throttle and steering sensors
(actuator feedbacks), 1920 CPR incremental encoders (wheel rotation/velocity), a three-axis
indoor-positioning system (IPS) using fiducial markers (mm/cm-level accurate small-scale
positioning analogous to m-level accurate full-scale GNSS), 9-axis IMU (raw inertial data
and calibrated AHRS data using Madgwick/Mahony filter), two 62.2◦ FOV cameras with
3.04 mm focal length (front and/or rear RGB frames) and a 7–10 Hz, 360◦ FOV LIDAR with
12 m range and 1◦ resolution (2D laser scan).

3.1.4. Computation, Communication and Software

Nigel adopts Jetson Nano Developer Kit - B01 for most of its high-level computation
(autonomy algorithms), communication (V2V and V2I) and software installation (JetPack
SDK, ROS Melodic and AutoDRIVE Devkit). Additionally, it also hosts Arduino Nano
(running the vehicle firmware) for acquiring and filtering raw sensor data and controlling
actuators/lights.

3.1.5. Actuators

Nigel is provided with two 6 V 160 RPM rated 120:1 DC geared motors to drive its
rear wheels, and a 9.4 kgf.cm servo motor to steer its front wheels; the steering actuator
is saturated at ±30◦ w.r.t. zero-steer value. All the actuators are operated at 5 V, which
translates to a maximum speed of ∼130 RPM for driving (∼0.267 m/s @ vehicle) and
∼0.19 s/60◦ for steering (∼0.805 rad/s @ vehicle).

3.1.6. Lights and Indicators

Nigel’s lighting system comprises dual-mode headlights, automated taillights, triple-
mode turning indicators and automated reverse indicators.

3.2. Infrastructure

AutoDRIVE offers a modular and reconfigurable infrastructure development kit (refer
Figure 3) for rapidly designing and prototyping custom driving scenarios. This kit includes
a range of environment modules, traffic elements and surveillance elements, along with
several preconfigured maps.

3.2.1. Environment Modules

Environment modules include static layouts and objects meant for rapidly designing
custom scenarios. Apart from these, experts may also choose to design scaled real-world or
imaginary scenarios using third-party tools, and import them into the AutoDRIVE Ecosystem.

• Terrain Modules: These define off-road segments of the environment. AutoDRIVE
currently supports five terrains with tunable physical properties (refer Figure 3A).

• Road Kits: These enable the reconfigurable construction of drivable segments of the
environment. AutoDRIVE currently supports 1, 2, 4 and 6 lane road kits, each having
8 different modules (refer Figure 3B).

• Obstruction Modules: These 3D objects define static obstacles within the scene.
AutoDRIVE currently supports two such modules (refer Figure 3C).
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Figure 3. Modular and reconfigurable infrastructure development kit of the AutoDRIVE Ecosystem:
(A) terrain modules—(i) asphalt, (ii) dirt, (iii) lawn, (iv) snow, (v) water; (B) road kit—(i) road patch,
(ii) straight road, (iii) dead-end, (iv) curved road, (v) 3-way intersection, (vi) 4-way intersection,
(vii) parking lot, (viii) roadside parking; (C) obstruction modules—(i) construction box, (ii) traffic
cone; (D) traffic elements—(i) traffic light, (ii) stop sign, (iii) give way sign, (iv) regulatory sign,
(v) cautionary sign, (vi) informatory sign; (E) surveillance elements—vehicle localization using the
AutoDRIVE Eye; (F) preconfigured maps—(i) Parking School, (ii) Driving School, (iii) Intersection
School, (iv) Tiny Town.

3.2.2. Traffic Elements

Traffic elements (refer Figure 3D) define traffic laws within a particular driving sce-
nario, thereby governing the traffic flow. AutoDRIVE currently supports modular traffic
signs and lights. These modules support IoT and V2I communication technologies, and can
be therefore integrated with AutoDRIVE Smart City Manager (SCM).

3.2.3. Surveillance Elements

AutoDRIVE features a surveillance element called AutoDRIVE Eye to view the entire
scene from a bird’s-eye view. The said element is also integrated with AutoDRIVE SCM,
and, upon calibration of its intrinsic parameters, is capable of estimating vehicle’s 2D pose
within the map by detecting and tracking the AprilTag markers attached to each of them;
this functionality is illustrated in Figure 3E (notice the roof-mounted camera).

3.2.4. Preconfigured Maps

AutoDRIVE currently offers four preconfigured maps (refer Figure 3F). Parking School
is designed specifically for autonomous parking applications, wherein construction boxes
define static obstacles and all the available free-space is drivable. The Driving School covers
driving over straight roads, driving over curved roads and crossing an intersection. An
Intersection School is designed specifically for intersection traversal applications, wherein
lane bounds play an important role. Finally, Tiny Town is meant to be a comprehensive
driving scenario, which covers each and every infrastructure element currently available
in AutoDRIVE.

4. AutoDRIVE Simulator

AutoDRIVE Simulator [23,24] acts as the digital twin of the AutoDRIVE Testbed. It
is primarily targeted towards the virtual prototyping of autonomy solutions, either for
variability testing or as a part of a recursive simulation-deployment workflow, but can also
be used for synthetic data generation.
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4.1. Vehicle Dynmaics Simulation

The vehicle is jointly modelled (refer Figure 4A) as a rigid body and as a collection of
sprung masses i M, such that the total mass of the rigid body is M = ∑ i M. The rigid body

center of mass XCOM = ∑ i M∗iX
∑ i M is what links the said representations, where iX are the

sprung mass coordinates.
The suspension force acting on each of the sprung masses is i M ∗ iZ̈ + iB ∗ (iŻ− i ż) +

iK ∗ (iZ − iz); where, iZ and iz are the displacements of sprung and unsprung masses,
and iB and iK are the damping and spring coefficients of i-th suspension, respectively.

The wheels of the vehicle are also modelled as rigid bodies of mass m that are acted
upon by gravitational and suspension forces: im ∗ i z̈ + iB ∗ (i ż− iŻ) + iK ∗ (iz− iZ).

The tire forces are computed based on the friction curve for each tire:
{iFtx = F(iSx)

iFty = F(iSy)
;

where, iSx and iSy are the longitudinal and lateral slips of i-th tire, respectively. Here,

the friction curve is approximated by a two-piece cubic spline F(S) =
{

f0(S); S0 ≤ S < Se
f1(S); Se ≤ S < Sa

;

where, fk(S) = ak ∗ S3 + bk ∗ S2 + ck ∗ S + dk is a cubic polynomial function. The first
segment of the said spline starts at zero (S0, F0) and reaches the extremum point (Se, Fe),
while the other segment starts at the extremum point (Se, Fe) and saturates at the asymptote
point (Sa, Fa), as shown in the inset of Figure 4A.

The tire slip is itself affected by various factors including tire stiffness iCα, steering
angle δ, wheel speeds iω, suspension forces iFs, and rigid-body momentum iP, all of
which affect the longitudinal/lateral/both components of the linear velocity of the vehicle.
Longitudinal slip iSx of i-th tire is computed by comparing the longitudinal components
of surface velocity of i-th wheel (i.e., longitudinal linear velocity of vehicle) vx with the
angular velocity iω of i-th wheel: iSx =

ir∗iω−vx
vx

. Lateral slip iSy of i-th tire is dependent on
the direction in which the tire is pointing and the direction in which it is moving, commonly
called the slip angle α. It is computed by comparing the longitudinal vx (a.k.a. forward
velocity) and lateral vy (a.k.a. side-slip velocity) components of the vehicle’s linear velocity:
iSy = tan(α) = vy

|vx | .

Figure 4. Native simulation platform of the AutoDRIVE Ecosystem: (A) simulation of vehicle dy-
namics, sensors and actuators; (B) simulation of infrastructure dynamics and interaction physics;
(C) graphical user interface of the simulator; (D) simulator features—(i) Driver’s Eye camera,
(ii) Bird’s Eye camera, (iii) God’s Eye camera, (iv) scene light enabled, (v) scene light disabled,
(vi) low-quality graphics, (vii) high-quality graphics, (viii) ultra-quality graphics.

4.2. Sensor Simulation

The simulated vehicle is provided with the same sensing modalities as its real-world
counterpart. The throttle (τ) and steering (δ) sensors are simulated through a simple
feedback loop.
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The incremental encoders are simulated by measuring the rotation of rear wheels (i.e.,
output shaft of driving actuators): i Nticks = iPPR ∗ iGR ∗ i Nrev; where, i Nticks represents
ticks measured by the i-th encoder, iPPR is the base resolution (pulses per revolution)
of i-th encoder, iGR is the gear-ratio of i-th motor, and i Nrev represents the number of
revolutions of the output shaft of i-th motor.

The IPS and IMU are simulated based on temporally coherent rigid-body transform

updates of the vehicle {v} w.r.t. the world {w}: wTv =

[
R3×3 t3×1
01×3 1

]
∈ SE(3). The IPS

provides 3-DOF positional coordinates {x, y, z} of the vehicle, whereas the IMU provides
linear accelerations {ax, ay, az}, angular velocities {ωx, ωy, ωz} and a 3-DOF orientation of
the vehicle as Euler angles {φx, θy, ψz} or quaternion {q0, q1, q2, q3}.

The LIDAR is simulated using iterative ray-casting raycast{wTl , ~R, rmax} ∀ θ ∈
[θmin : θres : θmax] at∼7 Hz update rate, where, wTl =

wTv ∗ vTl ∈ SE(3) is the relative trans-
form of LIDAR {l} w.r.t. vehicle {v} w.r.t. world {w}, ~R = [rmax ∗ sin(θ) rmin ∗ cos(θ) 0]T

is the direction vector of each ray-cast R, rmin = 0.15 m and rmax = 12 m are, respec-
tively, the minimum and maximum linear ranges of LIDAR, θmin = 0◦ and θmax = 360◦

are, respectively, the minimum and maximum angular ranges of LIDAR, and θres = 1◦

is the angular resolution of LIDAR. The laser scan ranges are recorded by checking
the ray-cast hits and thresholding the minimum linear range of LIDAR: ranges[i]={
hit.dist if ray[i].hit and hit.dist ≥ rmin

∞ otherwise
, where ray.hit is a Boolean flag that

checks if a ray-cast hits any colliders in the scene and hit.dist is the Euclidean distance
from source of the ray-cast {xray, yray, zray} to the hit-point {xhit, yhit, zhit}:√
(xhit − xray)2 + (yhit − yray)2 + (zhit − zray)2.

The simulated physical cameras are parameterized by their focal length ( f = 3.04 mm),
sensor size ({sx, sy} = {3.68, 2.76} mm), target resolution (default = 720p) and distance from
near and far clipping planes (N = 0.01 m and F = 1000 m). The viewport-rendering pipeline
for simulated cameras works in three stages. First, the camera view matrix V ∈ SE(3) is
computed by taking the relative homogeneous transform of the camera {c} w.r.t. the world

{w}: V =


r00 r01 r02 t0
r10 r11 r12 t1
r20 r21 r22 t2
0 0 0 1

, where rij and ti denote rotational and translational compo-

nents, respectively. Next, the camera projection matrix P ∈ R4×4 is computed by projecting

the world coordinates to image space coordinates: P =


2∗N
R−L 0 R+L

R−L 0
0 2∗N

T−B
T+B
T−B 0

0 0 − F+N
F−N − 2∗F∗N

F−N
0 0 −1 0

,

where N and F denote distances to near and far clipping planes of the camera, respectively,
and L, R, T and B denote the left, right, top and bottom offsets of the sensor, respectively.
The camera parameters { f , sx, sy} are related to the projection matrix terms through the

following relations: f = 2∗N
R−L , a =

sy
sx

, f
a = 2∗N

T−B . The perspective projection from the simu-

lated camera’s viewport is given by C = P ∗V ∗W; where, C = [xc yc zc wc]
T represents

the image space coordinates and W = [xw yw zw ww]
T represents the world coordinates.

Finally, this camera projection is converted into normalized device coordinates (NDC) by
performing a perspective divide (i.e., dividing throughout by wc), obtaining a viewport
projection by scaling and shifting the result, and then using the rasterization process of
the graphics API (e.g., DirectX for Windows, Metal for macOS and Vulkan for Linux).
Additionally, a post-processing step simulates the lens and film effects of the camera, such
as lens distortion, depth of field, exposure, ambient occlusion, contact shadows, bloom,
motion blur, film grain, and chromatic aberration.
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4.3. Actuator Simulation

The vehicle is actuated using two driving actuators and a steering actuator, the re-
sponse delays and saturation limits of which are matched with their real-world counterparts
by tuning their torque profiles and actuation limits, respectively.

The driving actuators drive the rear wheels by applying a torque: iτdrive =
i Iw ∗ iω̇w,

where i Iw = 1
2 ∗ imw ∗ irw

2 is the moment of inertia, iω̇w is the angular acceleration, imw is
the mass and irw is the radius of i-th wheel. Additionally, the holding torque of the driving
actuators is simulated by applying an idle motor torque equivalent to the braking torque:
iτidle =

iτbrake.
The front wheels are steered using a steering actuator, which produces a torque

proportional to the required angular acceleration: τsteer = Isteer ∗ ω̇steer. The individual
turning angles, δl and δr, for left and right wheels, respectively, are calculated based on
the commanded steering angle δ, using the Ackermann steering geometry defined by

wheelbase l and track width w, as follows:

δl = tan−1
(

2∗l∗tan(δ)
2∗l+w∗tan(δ)

)
δr = tan−1

(
2∗l∗tan(δ)

2∗l−w∗tan(δ)

) .

4.4. Infrastructure Simulation

Simulated environments can be set up in one of the following ways:

• AutoDRIVE IDK: The modular and reconfigurable infrastructure development kit
(IDK) can be used to create custom scenarios and maps by setting up the terrain
modules, road networks, obstruction modules and traffic elements. These assets
are present within the simulator source files. Particularly, the preconfigured maps
depicted in Figure 3F(i,iii,iv) were constructed using the AutoDRIVE IDK.

• Plug-In Scenarios: AutoDRIVE Simulator supports third-party tools (e.g., RoadRun-
ner [25]) and modular open-source architecture (MOSA) standards (e.g., OpenSCE-
NARIO [26], OpenDRIVE [27], etc.) that enable extensibility. Additionally, users can
import a wide array of plugins, packages and assets in a variety of industry-standard
formats (FBX, OBJ, SKP, 3DS, USD, etc.) for developing or customizing driving sce-
narios. Furthermore, the graphics textures designed for AutoDRIVE Testbed can first
be imported into the simulator before large-scale printing and real-world setup. The
preconfigured map depicted in Figure 3F(ii) was designed using a third-party graphics’
editing software, imported in AutoDRIVE Simulator, and finally printed and set up
using AutoDRIVE Testbed.

• Unity Terrain: Being built atop the Unity game engine, AutoDRIVE Simulator na-
tively supports scenario design and development using Unity Terrain [28]. Users can
define the terrain mesh, texture, heightmap, vegetation, skybox, wind, etc., to design
on-road/off-road scenarios and perform variability testing.

At every time step, the simulator performs mesh–mesh interference detection and
computes the contact forces, frictional forces and momentum transfer, along with the linear
and angular drag acting on the rigid-bodies (refer Figure 4B).

4.5. Simulator Features

AutoDRIVE Simulator is developed atop the Unity [29] game engine, which employs
PhysX [30] to simulate the multi-threaded framerate-independent kinematics and dynamics
of all the physical entities and exploits the High-Definition Render Pipeline (HDRP) [31]
along with the Post-Processing Stack [32] to render photorealistic graphics.

The simulator features an interactive graphical user interface (GUI) consisting of the
Menu Panel on the left-hand side and Heads-Up Display (HUD) on the right-hand side.
Figure 4C depicts the simulator’s GUI with both the panels enabled. The Menu Panel
hosts input fields and buttons to configure and control various features of the simulator
(refer Figure 4D). This includes controls for the communication bridge, along with a series
of buttons for (a) toggling between manual and autonomous driving modes for the ego
vehicle; (b) switching between the available scene cameras, with each providing a distinct
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view; (c) altering the graphics quality to match the quality–performance trade-off; (d)
toggling the scene light to simulate day and night driving conditions; (e) resetting the scene
to initial conditions; and (f) quitting the simulator application. The HUD Panel, on the other
hand, displays prominent simulation parameters along with vehicle status and sensory
data in real-time. It also hosts a time-synchronized data-recording functionality, which can
be used to export vehicle as well as infrastructure data for a specific run, thereby fostering
data-driven approaches aimed at autonomous driving and smart city management.

The simulator natively supports C# scripting, which can be leveraged to customize
existing and/or introduce new features, functionalities, modules, behaviors, physics, graph-
ics, communication bridges, and APIs, and even set up co-simulation frameworks with
other simulation tools.

Finally, it is worth mentioning that the simulator, in its source form, was integrated
with various plugins and packages, such as the Unity ML Agents Toolkit [33], a machine
learning framework for developing and deploying deep imitation/reinforcement learning-
based applications directly from within the simulator.

5. AutoDRIVE Devkit

AutoDRIVE Devkit is a collection of software packages, application programming
interfaces (APIs) and tools, which enables the flexible development of autonomous driving,
as well as smart city management algorithms targeting the testbed and/or simulator. It
supports both local as well as distributed computing, thereby allowing for the development
of both centralized and decentralized autonomy algorithms.

5.1. Autonomous Driving Software Stack

The autonomous driving software stack (ADSS) aids in the development of autonomy
algorithms specifically targeting the vehicle. It can be used to develop single as well as
multi-agent autonomous driving algorithms.

5.1.1. ROS Package

AutoDRIVE ROS package supports the flexible development of modular auton-
omy algorithms. It can be installed on an ROS-compatible workstation for interfac-
ing with the simulator (locally/remotely), or directly on Nigel’s on-board computer for
hardware deployment.

5.1.2. Scripting APIs

AutoDRIVE Devkit currently offers scripting APIs for Python and C++, which can be
exploited to develop high-performance autonomy algorithms, without ROS as an interme-
diary. Such source codes can be interfaced with the simulator (locally/remotely), or directly
deployed on Nigel’s on-board computer for hardware validation.

5.2. Smart City Software Stack

The smart city software stack (SCSS) aids in the development of autonomy algorithms
specifically targeting the infrastructure. It can work in tandem with ADSS to develop smart
city applications pertaining to traffic management.

5.2.1. SCM Server

AutoDRIVE Devkit offers a centralized Smart City Manager (SCM) server to monitor
and control various “smart” elements. The server hosts a database to keep track of all the
vehicles along with the active and passive traffic elements within a particular scene.

5.2.2. SCM Webapp

AutoDRIVE SCM hosts an interactive webapp, which allows for the users to connect
with the database for monitoring and controlling the traffic flow in real-time.
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6. Demonstration Case-Studies

This work showcases key features and capabilities of the AutoDRIVE Ecosystem
through four carefully shortlisted case-studies (refer Table 2). Although this paper cannot
provide exhaustive details pertaining to any particular demonstration, we recommend that
interested readers peruse this technical report [34].

It is to be noted that the presented demonstrations are by no means exhaustive and that
AutoDRIVE Ecosystem can be employed to develop, simulate and deploy a much wider
array of applications including (but not limited to) synthetic/real/hybrid data collection
and labeling; traditional (deterministic/probabilistic, classical/optimal, etc.) as well as
modern (deep imitation/reinforcement/hybrid learning, etc.) algorithms for perception,
state estimation, path/motion-planning and motion control; modular as well as end-to-end
autonomy stacks; benchmarking existing solutions (i.e., education) or innovating novel
scientific and technological approaches for autonomy (i.e., research), etc.

Table 2. Decision matrix for choosing the demonstration case-studies.

Autonomy Algorithm Platform Exploited Development Framework Autonomy Stack Science and Technology Demonstrated Agents Involved Sensors Employed Actuators Controlled

Autonomous Parking AutoDRIVE Testbed AutoDRIVE ROS Package
(Python, C++)

Modular (Perception,
Planning and Control)

Teleoperation, SLAM, Probabilistic
Map-Based Localization, Global Planning,
Local Planning, Motion Control,
Static/Dynamic Collision Avoidance

Single-Agent System LIDAR Driving Actuators,
Steering Actuator

Behavioral Cloning AutoDRIVE Simulator,
AutoDRIVE Testbed

AutoDRIVE Python API
(Python)

End-to-End (Sensorimotor
Policy)

Computer Vision, Deep Imitation Learning,
Lane Keeping, Sim2Real Transition Single-Agent System Front Camera Driving Actuators,

Steering Actuator

Intersection Traversal AutoDRIVE Simulator Unity ML-Agents (C#) End-to-End (Sensorimotor
Policy)

V2V Communication, Deep Reinforcement
Learning, Dynamic Collision Avoidance,
Multi-Agent Cooperation and Coordination

Multi-Agent System
Incremental
Encoders,
IPS, IMU

Steering Actuator
(Constant Throttle)

Smart City Management AutoDRIVE Simulator AutoDRIVE Webapp API
(Python)

Modular (Surveillance,
Planning and Control)

V2I Communication, IoT, Centralized Control
and Coordination Single-Agent System None Driving Actuators,

Steering Actuator

6.1. Autonomous Parking

This demonstration leveraged AutoDRIVE’s ROS-enabled capabilities to demonstrate
autonomous parking (refer Figure 5A). First, the vehicle mapped its surroundings using the
Hector SLAM algorithm [35] (refer Figure 5B). It could then localize itself against this known
static map using range-flow-based odometry [36] (refer Figure 5C) and an adaptive particle
filter algorithm [37] (refer Figure 5D). For autonomous navigation, the vehicle planned
a feasible global path from its current pose to parking pose using the A* algorithm [38],
while also re-planning its local trajectory for dynamic collision avoidance using the timed-
elastic-band approach [39]. A proportional controller generated driving (throttle/brake)
and steering commands for the vehicle to track the local trajectory (refer Figure 5E).

Figure 5. Autonomous parking: (A) high-level architecture of the autonomy algorithm;
(B–E) respectively depict temporal analysis of simultaneous localization and mapping, odometry,
localization, and navigation modules—(i) physical vehicle driving in real-world settings, (ii) visual-
ization of software algorithm; note the additional boxes acting as unmapped obstacles in (E). Video:
https://youtu.be/oBqIZZA0wkc (accessed on 9 May 2021).

Future work in this direction can include the benchmarking of various SOTA and/or
novel algorithms for mapping, localization, path-planning and motion control.

https://youtu.be/oBqIZZA0wkc
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6.2. Behavioral Cloning

This demonstration was based on [40], wherein the objective was to employ a convolu-
tional neural network (CNN) [41] for cloning the end-to-end driving behavior of a human.
As such, AutoDRIVE Simulator was exploited to record five laps’ worth of temporally
coherent labeled manual driving data, which were balanced, augmented and pre-processed
using standard computer vision techniques, to train a six-layer-deep CNN (refer Figure 6A).
Post training for four epochs, with a learning rate of 1e-3 using the Adam optimizer [42],
the training and validation losses converged stably without over/under-fitting. The trained
model was then deployed back into the virtual world to validate its performance through
activation and prediction analyses (refer Figure 6B).

Figure 6. Behavioral cloning: (A) high-level architecture of the training and deployment pipelines;
(B,C) depict behavioral analysis of the autonomous vehicle in virtual and real-world settings,
respectively—(i) trajectory tracked by the vehicle, (ii) a sample pre-processed camera frame fed as in-
put to the neural network, (iii), (iv) and (v) depict activation maps of the first, second and third convo-
lutional layers of the neural network, respectively, (vi) salient activations from all the activation maps,
(vii) neural network prediction analysis for one complete lap. Video: https://youtu.be/rejpoogaXOE
(accessed on 11 May 2021).

Further, the same model was transferred to AutoDRIVE Testbed to validate the
sim2real capability of the ecosystem through activation and prediction analyses (refer
Figure 6C). To obtain a zero-shot sim2real transition: (i) the physical and visual aspects of
virtual world were set up to be as close to the real world as possible, and (ii) the exhaustive
data augmentation pipeline implicitly performed domain randomization. However, further
investigation is required to comment on and improve the robustness of sim2real transfer
considering sensor simulation, vehicle modeling and scenario representation. Finally, al-
though this work adopted a coupled-control law for vehicle motion smoothing, a potential
improvement could be to investigate independent actuation smoothing techniques such as
low-pass filters or proximal bounds.

6.3. Intersection Traversal

Inspired by [43], this work demonstrates single and multi-agent (refer Figure 7A)
intersection traversal using deep reinforcement learning (refer Figure 7B). Each agent
collected a vectorized observation oi

t =
[
gi, p̃i, ψ̃i, ṽi]

t, including its relative goal loca-
tion gi

t, along with relative location p̃i
t, relative yaw ψ̃i

t and velocity ṽi
t of its peers ob-

tained through V2V communication. The action space of each agent, ai
t, included dis-

cretized steering δi
t ∈ {−1, 0, 1} and constant throttle (τi

t = 80%). An extrinsic reward

function ri
t =

{
rgoal = +1
rcollision = −0.425 ∗

∥∥gi
t
∥∥

2

kept agents in check while training a three-

layer, fully connected neural-network-based policy, πθ(at|ot) using a PPO algorithm [44]

https://youtu.be/rejpoogaXOE
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(refer Figure 7C). This ultimately resulted in all agents being able to safely traverse the
intersection (refer Figure 7D). Although we could not implement this application in the
real world owing to monetary constraints, investigating the sim2real transition of this
application would be a natural progression of this work. Additionally, the application of
actuation smoothing techniques could be a potential improvement.

Figure 7. Intersection traversal: (A) learning scenario descriptions; (B) deep reinforcement learning
architecture; (C,D), respectively, depict training and deployment results—(i) single-agent learning
scenario, (ii) multi-agent learning scenario. Video: https://youtu.be/AEFJbDzOpcM (accessed on
8 April 2021).

6.4. Smart City Management

This novel use-case of smart city traffic management was possible due to AutoDRIVE’s
V2I and IoT abilities. As depicted in Figure 8A), the SCM server hosted a database to keep
track of all the traffic elements, and acted as a high-level behavior planner for the ego vehicle.
It switched the vehicle behavior upon detecting respective traffic signs and lights by setting
the appropriate throttle and steering trims, which were then passed on to a proximally optimal
predictive (POP) controller coupled with adaptive longitudinal controller (ALC) [45]. Finally,
the SCM server teleoperated the vehicle to achieve the mission objective (refer Figure 8B).

Figure 8. Smart city management: (A) high-level architecture of the autonomy algorithm; (B) snapshot
instances from simulation—(i) vehicle observing left-curve sign, (ii) vehicle observing right-curve
sign, (iii) vehicle crossing the intersection, (iv) vehicle stopping at red light, (v) vehicle stopping
at yellow light, (vi) vehicle resuming on green light; the traffic lights are toggled manually. Video:
https://youtu.be/fnxOpV1gFXo (accessed on 5 May 2021).

https://youtu.be/AEFJbDzOpcM
https://youtu.be/fnxOpV1gFXo
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A natural progression of this work would be to implement a multi-agent scenario,
preferably within a mixed-reality digital-twin setting, to investigate different strategies for
efficient smart city traffic management.

7. Summary

AutoDRIVE was developed with the aim of tightly integrating real and virtual worlds
into a common toolchain, without compromising the comprehensiveness, flexibility and
accessibility required for prototyping and validating autonomy solutions. It has numerous
applications, which are bound to increase as the ecosystem is upgraded. Potential im-
provements include supporting heterogeneous vehicles and robotic pedestrians, full-scale
vehicles and environments, expanding API support and adding extended reality capabili-
ties, to name a few. We hope that the community benefits from adopting this ecosystem for
education, research or anything inbetween.
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