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Abstract: Accurate interaction force estimation can play an important role in optimizing human–robot
interaction in an exoskeleton. In this work, we propose a novel approach for the system identi-
fication of exoskeleton dynamics in the presence of interaction forces as a whole multibody sys-
tem without imposing any constraints on the exoskeleton dynamics. We hung the exoskeleton
through a linear spring and excited the exoskeleton joints with chirp commands while measuring
the exoskeleton–environment interaction force. Several structures of neural networks were trained
to model the exoskeleton passive dynamics and estimate the interaction force. Our testing results
indicated that a deep neural network with 250 neurons and 10 time–delays could obtain a sufficiently
accurate estimation of the interaction force, resulting in an RMSE of 1.23 on Z–normalized applied
torques and an adjusted R2 of 0.89.

Keywords: lower-limb exoskeleton; dynamic identification; interaction force estimation

1. Introduction

Lower–limb exoskeletons have demonstrated promising results in improving mobility
and rehabilitation outcomes for individuals with lower–limb motor impairments [1]. These
exoskeletons have contributed to the accessibility of early therapeutic intervention for
people suffering from spinal cord injuries or stroke, boosting their recovery speed [2,3].

The efficacy of these robotic systems depends on their control strategy, particularly
for partially impaired users, as the exoskeleton has to encourage the exploitation of the
user’s residual motor capacity while providing the minimum assistance required for
locomotion [4–6]. This requires the exoskeleton to softly switch between the follower
and leader roles depending on the user’s performance [7,8]. Otherwise, considerable
physical disagreement emerges in the human–exoskeleton interaction causing the user to
yield motion to the exoskeleton to maintain comfort at the cost of hindering their motor
recovery [5]. Therefore, developing an efficient exoskeleton controller is not a trivial task.
A critical aspect of this endeavor is to optimize the interaction force, which is the force
that is exchanged between the user and the exoskeleton during locomotion. Optimizing
the interaction force is essential for improving the comfort, stability, and efficiency of the
exoskeleton [9].

The human–exoskeleton interaction force is the key information that can reveal human
intentions [10]. This makes exoskeleton controllers capable of adjusting their behavior to
match each individual’s specific needs during therapy or everyday life. Accurate mea-
surement of the interaction force is a challenging problem due to the complex nature of
the exoskeleton–user interface as the exoskeleton interacts with the user through multiple
contact points, including the feet, shanks, thighs, and the torso, which makes it difficult to
isolate and measure the forces that are transmitted between human and robot [11].
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The human–exoskeleton interaction can be modeled in a single–degree–of–freedom
(DOF) exoskeleton using a spring–damper system allowing one to obtain a single dy-
namical equation that describes both human and exoskeleton behavior. As an example,
human–exoskeleton dynamics were identified in [12] for a one–DOF back–support ex-
oskeleton. A Kalman observer was then employed to estimate the interaction torque as
a function of system states. Obtaining the human–exoskeleton dynamics together is not,
however, straightforward in exoskeletons with higher DOFs. Moreover, the dynamic iden-
tification has to be repeated for each user. Therefore, the exoskeleton passive dynamics
need to be identified independently. Hence, the interaction torque is required to be com-
puted by the subtraction of the exoskeleton passive dynamics from the actuation torques
(see [1,13]). Alternatively, disturbance observers could provide a more robust estimation
of interaction torques with the assumption that the human contribution to the gait is an
external disturbance ([14–16]).

Many of the previous works on the system identification of lower limb exoskeletons
have primarily focused on identifying dynamics during the swing phase of walking [17–19].
These studies have often assumed a simplistic two– or three–link inverted pendulum model
for each leg while ignoring the coupling between the hip joints. These simplifications fre-
quently lead to inaccurate interaction torque estimations, particularly during the stance
phase of walking. As a result, to achieve a precise interaction torque estimation through-
out the entire gait cycle, it is crucial to identify the exoskeleton dynamics as a whole
multibody system.

In contrast to previous work, a comprehensive multibody model considers the complex
interactions between the exoskeleton and the user’s body segments, such as the torso.
By incorporating these interactions, the model can provide more accurate estimates of
the interaction forces and torques that are exchanged between the exoskeleton and the
user throughout the entire gait cycle. In this regard, some recent studies have identified
exoskeleton dynamics as a whole multibody system through a data–driven model that
involves exciting the exoskeleton joints with rich torque commands while the exoskeleton is
fixed to a rigid supporting platform [20]. However, while this approach is an improvement
over the previous methods, it fails to capture the exoskeleton–environment interaction,
which is the supporting force that fixes the exoskeleton to the platform. As a result,
important information about the exoskeleton–environment interaction was ignored, which
can limit the applicability of these methods for certain types of exoskeletons. For example,
gait training systems such as Locomat (Hocoma, Switzerland), where the hip torque is
applied between the femur and a fixed support [21], are better suited for this method than
exoskeletons with trunk segments such as Indego (Ekso Bionics, Cleveland, OH, USA),
where the hip torque is applied between the femur and trunk, and the interaction occurs
primarily between the user’s core and the exoskeleton trunk segment [22]. Therefore, to
accurately identify the exoskeleton dynamics and interaction torques, it is necessary to
include the exoskeleton–environment interaction in the system identification process.

In order to address the aforementioned issue, an approach for identifying exoskeleton
dynamics was proposed in [23]. This method involves learning the joint torques of the ex-
oskeleton using a nonlinear autoregressive network with exogenous inputs (NARX), based
on data collected while the user wears the exoskeleton and applies minimum joint torques.
It is important to note that this method assumes that the user is able to completely disable
their contribution to the motion, which is not feasible in the case of legged locomotion
where maintaining stability is crucial. Moreover, the identified dynamics are a combination
of the exoskeleton dynamics and the passive dynamics of the user. Consequently, the
identification process must be repeated for each new user.

We propose a method for the identification of the exoskeleton’s passive dynamics
that measures the exoskeleton interaction with the environment and includes it in the
dynamic identification of the exoskeleton. To make this idea feasible, we limited the
exoskeleton–environment interaction through an accurate linear spring allowing us to
measure the external forces being applied to the exoskeleton from the spring length while
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exoskeleton joints were being extensively excited. Using the accurate estimation of the
interaction forces, we then identified the dynamics of the exoskeleton with an artificial
neural network (ANN).

2. Materials and Methods
2.1. Interaction Torque Modeling

Figure 1A illustrates the Indego exoskeleton and its coordination systems in the
sagittal plane. This lower limb exoskeleton has seven DOFs including one rotational and
two translational DOFs of the trunk (three DOFs in total) with respect to the global frame
and only four active DOFs of the exoskeleton knee and hip joints of the right and left
legs. The exoskeleton also has two carbon–fiber ankle foot orthoses, which were removed
from the exoskeleton due to their negligible mass. Given that the Indego exoskeleton
does not have joints with off–sagittal–plane degrees of freedom (such as hip abduction
and adduction DOFs) the off-sagittal dynamics of the exoskeleton during straight walking
were negligible compared to its dynamics in the sagittal plane. The Indego lower–limb
exoskeleton’s dynamics, with actuated hips and knees, in the presence of interaction forces
and torques in the sagittal plane were considered as

Γ(θ, θ̇, θ̈, p̈1, q, q̇, q̈) = uact + uint (1)

where p1 = (p1,x; p1,y) ∈ R2 and θ ∈ R are the exoskeleton’s trunk segment position
and orientation, respectively, described in the fixed global frame in the sagittal plane and
(q = [qh,r; qk,r; qh,l ; qh,l ] ∈ R4) consists of the exoskeleton right hip and knee joint angles
followed by the left hip and knee joint angles. uact = [03×1; τact] is the applied motor
torques at the hip and knee joints of both legs (τact ∈ R4). uint = [ fint; mint; τint] includes
the interaction force ( fint ∈ R2) and moment (mint ∈ R) applied to the exoskeleton trunk
as well as the interaction torques applied to the exoskeleton joints (τint ∈ R4). Finally,
Γ(.) represents the exoskeleton passive dynamics containing the inertial forces, centrifugal
and Coriolis forces, and the forces due to gravity [24]. We note that p1 and ṗ1 do not
appear in Γ as there are no forces being applied to the trunk due to the trunk linear
position (p1) and velocity(ṗ1). Figure 1A provides a visual representation of the Indego
lower-limb exoskeleton.

2.2. System Identification

To estimate the interaction forces and torques (uint), we first identified the exoskeleton
passive dynamics (Γ) without imposing any constraints on the system dynamics such
as fixing the trunk segment. This was accomplished by hanging the exoskeleton from
the ceiling by a spring with K = 1926.4 N/m, with reflective markers attached to both
ends (Figure 1B). This way, we could measure the spring deflection and consequently
compute the applied interaction force ( fint) accurately using Hooke’s law and a motion
capture system consisting of eight Vero Cameras (Vicon, UK). Note that the absence of
a human participant wearing the exoskeleton during the experiment did not hinder the
identification of the exoskeleton passive dynamics as the measurements of the spring
force and exoskeleton joint torques were sufficient for this purpose, without imposing any
constraints on the system states. The identified exoskeleton passive dynamics could then
be used to estimate the human–exoskeleton interaction.
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Figure 1. (A) The exoskeleton coordinates and joint angles. The global, trunk, and thigh frames
are denoted by 0, 1, and 2 indices, respectively. The trunk and thigh angles with respect to the
gravity vector are denoted by θ and γ, respectively. qh and qk represent the hip and knee joint
angles, respectively. p1 and p2 show the position of the trunk and thigh coordinated in the global
frame ((x0, y0)). In blue, the acceleration vector (a) measured by the accelerometer embedded in the
exoskeleton’s thigh is plotted against the thigh frame. In red, we plotted the interaction force vector
( fint) calculated from the linear spring’s deflection measured by motion capture. The distance from
the trunk frame origin to the hip joint rotation axis and from there to the accelerometer location on
the exoskeleton’s thigh is indicated by l1 and l2, and the gravity axis is illustrated by dashed lines.
(B) The exoskeleton in hung position during data collection for dynamics identification. Joints are
excited during the experiment while the exoskeleton interaction with the environment is limited to
the force applied through a linear spring with reflective markers on both ends enabling us to measure
the spring deflection using a motion capture system and, consequently, the applied force.

The exoskeleton joints were excited in three different scenarios each for 500 s by applying
chirp command trajectories controlled by joint–level PD controllers with kp = 1.5 N.m/deg
and kd = 0.1 N.m.s/deg for the hip and kp = 0.2 N.m/deg and kd = 0.03 N.m.s/deg for
the knee joint. Controller gains were obtained by trial and error to achieve a maximum
tracking error of less than 10 degrees for the hip and 5 degrees for the knee joint during
the experiment. The chirp commands had unique initial and final frequencies to prevent
phase lock between joints (see Figure 2). The chirp signals were designed to cover at least
80% of each joint range of motion with frequencies between 0.2 to 0.9 Hz covering the
speed ranges below 1.4 m/s for healthy individuals [25]. The spring force measurement,
as well as the exoskeleton data consisted of its joint angles (q), angular velocity (q̇), the
angle of each thigh with respect to the gravity vector (γ ∈ R), the linear acceleration of
each thigh (a = [ax; ay] ∈ R2), and the applied joint torques (τact) were acquired at 200 Hz.
By choosing different upchirp and downchirp rates for the command trajectories to each
joint, we applied three different patterns for the interaction forces to the exoskeleton trunk.
During the first scenario (training dataset), the right hip and left knee frequencies upchirped
from 0.2 Hz to 0.9 Hz, while the left hip and right knee frequencies downchirped from
0.9 Hz to 0.2 Hz. All joints in the second scenario (validation) upchirped from 0.2 Hz to
0.9 Hz. Finally, in the last scenario (test), the joints on the right leg upchirped from 0.2
to 0.9 Hz while those on the left leg downchirped from 0.9 to 0.2 Hz. In all these cases,
the frequency sweep rate for the upchirping or downchirping joints were selected slightly
different to prevent phase locking between joints (Figure 2).
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Figure 2. The hip and knee excitation torques applied to the left and right exoskeleton legs, as well as
the interaction force on the y axis. During the generation of each of the training, validation, and test
datasets, exoskeleton joints were activated with unique and different chirp commands resulting in
different exoskeleton–environment interaction profiles.

According to Equation (1), we then computed the trunk orientation (θ) and its deriva-
tive in addition to its linear acceleration (p̈1) to train a data–driven model for the estimation
of exoskeleton passive dynamics (Γ). Even though this information was not directly in-
cluded in the exoskeleton measurements, they were obtained using either of the thigh’s
linear accelerometer measurements (a) or through obtaining its angle (γ) with respect to
the gravity vector (g). The trunk orientation was then computed using the angle (γ) and
the corresponding hip joint angle (the angle between the thigh and the upper segment)
measured using the motor encoders. Therefore, we drop the leg index hereafter. According
to Figure 1A, we could simply obtain the trunk orientation as

θ = qh − γ. (2)

To obtain p̈1, we first mapped the thigh acceleration (a) from the thigh coordinate to
the global coordinate frame. As the thigh coordinate frame ((x2, y2)) rotated clockwise by
π − γ rad compared to the global frame ((x0, y0)), the linear acceleration measured in the
thigh frame (a) could be mapped to the global frame as

p̈2 = R0
2(γ)a =

[
cos (π − γ) − sin (π − γ)
sin (π − γ) cos (π − γ)

]
a =

[
− cos (γ) − sin (γ)

sin (γ) − cos (γ)

]
a. (3)

Moreover, the following equation holds between the origin of the trunk frame and the
accelerometer position with respect to the global frame (p2 = (P2,x; p2,y))

p1 =

(
p2,x + l2 sin(γ)− l1 sin(θ)
p2,y + l2 cos(γ) + l1 cos(θ)

)
. (4)

Taking the second derivative from the above equation and substituting Equation (3), we obtain

p̈1 =

(
l2 sγ γ̇2 + l1 sθ θ̇2 − cγ ax − sγ ay + γ̈ cγ l2 − cθ l1 θ̈
−cγ l2 γ̇2 − cθ l1 θ̇2 − cγ ax − sγ ay − γ̈ l2 sγ − l1 sθ θ̈

)
, (5)

where cx and sx are shorthanded versions of sin(x) and cos(x), respectively. According
to Equations (2) and (5), both θ and its derivatives, as well as p̈1, could be obtained as a
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function of the exoskeleton joint angles (q), thigh accelerations (a), thigh orientation with
respect to gravity (γ), and their derivatives. In other words, we have

[θ; θ̇; θ̈; p̈1] = h(γ, γ̇, γ̈, q, q̇, q̈, a). (6)

Henceforth, without loss of generality, we can consider Γ as only a function of the exoskele-
ton measurements and rewrite Equation (1) as

Γ(γ, γ̇, γ̈, q, q̇, q̈, a) = uact + uint. (7)

Therefore, we can use the thigh angle with respect to the gravity vector and its linear accel-
eration instead of the position and orientation of trunk segment to identify Equation (1).
Moreover, we defined the origin of the exoskeleton’s trunk frame exactly at the point where
the spring force was applied (Figure 1). This allowed us to consider mint = 0. Equation (1)
can thus be further simplified as

Γ(x) = y, (8)

where x = [γ; γ̇; γ̈; q; q̇; q̈; a] ∈ R17 and y = [ fint; 0; τact] ∈ R7.
Various time–delay ANNs [26] with a tanh activation function (Figure 3B) were trained

on the training dataset to learn the exoskeleton’s passive dynamics (Γ̂(x) = ŷ) by minimiz-
ing the root mean squared error (RMSE) between the Z–score normalized measured (y)
and estimated (ŷ) forces and torques (Figure 3A) using the scaled conjugate gradient back-
propagation algorithm [27]. The training was stopped when 10 consecutive iterations did
not improve the performance of the ANN on the validation dataset. Different combinations
of network structure (ranging from a single hidden layer with 10 neurons to three hidden
layers with 250 neurons in total), number of input delays (ranging from 0 to 50 samples),
and L2 weight regularization factors (ranging from 0 to 0.5) were evaluated according to
(Figure 4A), by training each network five times and computing their mean performance
on the validation dataset to compare networks and to obtain the best architecture.

Exoskeleton Dynamics

Environment

𝑥 = Γ−1(𝜏𝑎𝑐𝑡, 𝑓𝑖𝑛𝑡)
𝑥

𝜏𝑎𝑐𝑡

𝑓𝑖𝑛𝑡

መ𝑓𝑖𝑛𝑡
Ƹ𝜏𝑎𝑐𝑡

ANN

Performance 
Evaluation

𝒚𝑡 ∈ ℝ7

𝑛𝑖 = 187

. . . . .

...

. . . . .

. . . . .

𝑛𝑜 = 7

A B

PD 
controller

Figure 3. (A) Block diagram of the exoskeleton dynamic identification experiment. The interaction
force ( fint) is applied to the exoskeleton through a linear spring through which the exoskeleton is
hung. Exoskeleton joints are controlled by chirp position commands using PD controllers applying
the excitation torques (τact) to the exoskeleton. Measurements of the exoskeleton (x), containing joint
angles and their derivatives as well as the thigh angle with respect to the gravity vector and its linear
acceleration, are fed to a neural network for the estimation of the interaction force ( f̂int) and motor
torques (τ̂act), which are then compared to their actual values. The estimation error is then used to
update the neural network weights to improve its estimation accuracy. (B) Structure of a time–delay
neural network with 10 input delays and 3 hidden layers with 50, 50, and 20 neurons, respectively,
with a tanh activation function.

2.3. Experimental Estimation of Human–Exoskeleton Interaction Torque

We estimated the human–exoskeleton interaction torques by conducting experiments
on three able–bodied participants. Interaction torques were estimated in real time using
the exoskeleton measurements fed to the N9 network implemented on a real–time kernel
using MATLAB Simulink Desktop Real–time toolbox running at 200 Hz. The participants
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included two 22–year–old males with heights of 180 cm and 182 cm, and body masses
of 82 kg and 90 kg, respectively, and a 24–year–old female with a height of 174 cm and
body mass of 68 kg. They walked on a treadmill at slow (0.4 m/s), medium (0.6 m/s), and
fast (0.8 m/s) speeds while wearing a passive exoskeleton. All participants had no known
musculoskeletal impairments and provided informed consent prior to the experiment.
The study protocol and procedures were approved by the University of Waterloo Clinical
Research Ethics Committee (ORE#41794) and conformed to the Declaration of Helsinki.

A B C
N9

N3

Figure 4. (A) Validation performance of ANNs with 10 different structures in terms of RMSE and
adjusted R2 computed on the Z–normalized data. The training procedure was repeated 5 times for
each structure to study the sensitivity of the training procedure to the network’s initial weight for each
structure. Each validation performance is denoted by a black dot while the average performance is
denoted by bars. The training was conducted with 5 input delays and no regularization. N3 (denoted
by red) and N9 (denoted by blue) demonstrated a better performance compared to the other networks.
N9, however, exhibited more variability across training repetitions. Those networks were selected
for further analysis to investigate the effect of regularization factor and the number of input delays.
(B) Comparison of N3 and N9 performance across different selections of regularization factors. The
variation of the N9 performance across training repetitions is unaffected by regularization. (C) Effect
of the number of input delays on the N3 and N9 networks’ performance. N3 has the best performance
with 5 input delays while N9 reaches the best performance at 10 input delays.

Knowing the exoskeleton passive dynamics, we could estimate the human–exoskeleton
interaction forces and torques using Equation (1) as

uint = Γ̂(x)− uact = ŷ− uact. (9)

In this case, since the exoskeleton motors applied no torques (uact = 0), the estimated
interaction torques were obtained as uint = Γ̂.

3. Results and Discussion
3.1. Tuning the Network Structure and Hyperparameters

To tune the network structure and complexity, we trained ten networks with complex-
ities ranging from a single hidden layer with 10 neurons up to a network with three hidden
layers with 250 neurons in total. Figure 4A shows the average RMSE and the coefficient
of determination (R2) computed using each of the trained networks on the validation
datasets. The training procedure was repeated five times for each network to account
for the randomness of the training process without a regularization coefficient and with
input delays equal to five. Our results indicated that the average test performance dropped
as the network complexity increased. This was indicated by the increase in the average
RMSE and the decrease in the average adjusted R2 after N3 (the third network denoted
by red in Figure 4A), which resulted in one of the best performance results consistently
in all five training trials (RMSE = 1.03 R2 = 0.92). On the other hand, the RMSE and
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R2 variations on the validation dataset also increased with the network complexity. This
can be explained by the association between the networks’ expressiveness and overfitting.
N9 (the ninth network denoted by blue in the same graph), for example, obtained one of the
best validation performance results among all networks three out of five times. To further
improve the results, the training procedure was repeated for N3 and N9 with regularization
coefficients ranging from 0 to 0.5 and with different numbers of input delays ranging from
0 to 50 samples equal to 0–250 ms.

Figure 4B investigates the effect of the regularization coefficient on N3 and N9’s
performance results, indicating that increasing the regularization coefficient improved
neither the network performance in the case of N3 nor the consistency of the validation
results in case of N9. The number of input delays, on the contrary, showed to be effective
in enhancing both networks’ performance. According to Equation (8), providing ANNs
with histories of x would not be effective as Γ is solely a function of x. However, the best
performance for N3 was obtained with 5 input delays (RMSE = 0.99 and R2 = 0.92), while
N9’s best performance was obtained with 10 input delays (RMSE = 0.82 and R2 = 0.93).
The underlying reason was that by adding input delays, the ANNs could learn to smooth
the input data and therefore become less sensitive to the input noise. The more flexible
structure of N9 enabled it to benefit from the additional information embedded in the
input history, while N3’s capacity became saturated with more than five input delays, and
therefore, N9 was able to reach a less biased performance. Hence, we chose N9 consisting
of three hidden layers each with 50, 50, and 20 neurons, respectively, with 10 input delays,
for the estimation of the exoskeleton dynamics.

3.2. N9 Performance on Test Dataset

The overall RMSE of N9 on the test dataset was 1.23 and R2 = 0.89. Figure 5 shows
the test performance of N9 for each output channel. The relative error was computed by
normalizing the estimation error over the maximum range of each output channel. For
example, according to Figure 2, the range of fint,y was about 200 N. In that case, 1% of
relative error means 2 N of force estimation error. The trained network exhibited an accurate
estimation of the applied exoskeleton joint torques with a coefficient of determination
greater than 0.9. The knee torque estimation was slightly more biased compared to the hip
due to the more pronounced static friction at the knee. Particularly, at lower speeds, the
larger mass (4.7 kg) of the thigh segment dominated the static friction of the motor gears
at the hip joint, resulting in a more predictable dynamical behavior. The light weight of
the shank segments, in contrast, was negligible (0.6 kg) compared to the static friction and
motor backlash, causing a greater estimation bias at the knee. This was evident from the
dead zone–like behavior emerging in the y–ŷ graphs for the knees. At the higher speeds
when static friction was dominated by inertial and damping torques, the knee torque
estimations were more accurate than the hip joint due to its smaller moment of inertia
leading to a higher coefficient of determination at the knee joint. The RMSE value for the
interaction forces was higher than the joint torques. Simplifying the exoskeleton dynamics
into the sagittal plane was the main reason behind this, as our model could not represent
the applied interaction force to the exoskeleton trunk in the z direction. The external forces
were also estimated with an RMSE smaller than 1.6 with a negligible bias (ME < 0.2%).
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Figure 5. The Test performance of N9 for each output channel. In the top row, the distribution of
the estimation error of external force or joint applied torques relative to their peak–to–peak range is
depicted. Interaction forces in the y and x direction exhibit a higher estimation error compared to
those of the exoskeleton active joints. Applied torques to the hip joints, in particular, are estimated
with a higher accuracy and smaller standard deviation. Even though knee joint applied torques are
estimated with similarly small errors (small bias), they show a higher standard deviation associated
to the more prominent role of static friction. The bottom row shows the correlation between the
measured data and the N9 estimation for each output channel. The estimated outputs have a relatively
lower coefficient of determination in case of interaction forces, while they show R2 > 0.9 for the active
joints of the exoskeleton.

3.3. Human–Exoskeleton Interaction Torque Estimation

The estimated interaction torques at the hip and knee joints of the right leg are pre-
sented for three participants walking on a treadmill at slow, medium, and fast speeds in
Figure 6. The estimated torques are plotted against the estimated gait phase [28], i.e., a
gait–cycle–based monotonic measure often defined based on gait events such as heel strike
and used to elucidate the evolution of the gait cycle [29]. The results showed a similar
behavior in the estimated interaction torques at both joints regardless of the participant
and walking speed. As expected, the magnitude of the interaction torques at both joints
increased as the walking speed increased. At the knee joint (Figure 6B), a large peak during
the late swing and early stance phase (about 10% of the gait cycle) indicated that the inter-
action torque was in favor of a knee flexion for damping the knee ballistic swing before the
heel strike and stabilizing the knee after the heel strike. In the late stance and early swing
phases (approximately 60% of the gait cycle), a negative interaction torque peak was in the
direction of a knee extension, which was required to throw the exoskeleton shank segment
forward during the swing phase.
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A

B

Slow (0.4 m/s) Medium (0.6 m/s) Fast (0.8 m/s)

Figure 6. The estimated interaction torques at (A) the hip and (B) the knee joints of the right leg
for three participants walking at different speeds (ranging from 0.4 m/s to 0.8 m/s) are shown.
The values represent the average across different steps. The solid lines represent the median of the
estimated interaction torque, while the shaded area represents the torques that fall within the 5th to
95th percentile. Positive torque values are in favor of joint flexion while negative values are in favor
of joint extension.

At the hip joint (Figure 6A), a relatively large peak occurred during the late stance
phase, indicating that the user torque tended to flex the exoskeleton hip joint. Similarly,
a less pronounced and unexpected peak was also exhibited in the early stance phase.
This was surprising since the hip joint typically extends during this phase, leading to
an anticipated negative interaction torque. To better understand this observation, it was
necessary to consider the left hip gait phase and its interaction torque. During the early
stance phase of the right leg, the left leg was in its early swing phase, applying a large
positive interaction torque to the left joints of the exoskeleton. Since the trunk segment
of the exoskeleton was shared between the right and left thigh segments, the isolation of
those two interaction torques was not fully possible, leading to a leakage of interaction
torques between the left and right hip joints of the exoskeleton. Consequently, the large
positive flexion torque of the left hip manifested itself in the estimated interaction torque at
the right hip, and vice versa when the left leg was in the early stance phase.

4. Conclusions

The dynamics of a lower–body exoskeleton were identified and used for the estimation
of the human–exoskeleton interaction torques. An exoskeleton was hung using a linear
spring allowing us to measure the exoskeleton–environment interaction forces by motion
capture. Meanwhile, exoskeleton joints were excited with different chirp commands
designed to cover the range of motion of all joints in three scenarios, each used either for the
training, validation, or test of data–driven models. Various time–delay ANNs were trained
and validated on the collected datasets and the network structure, the number of input
delays, and regularization factors were tuned according to their validation performance.
Testing results indicated an accurate performance of the exoskeleton joint torque estimation
(RMSE < 0.85, ME < 0.6%, and R2 > 0.9) as well as an acceptable performance of the
interaction force estimation (RMSE < 1.6, R2 > 0.84). One of the challenges of the presented
method was the redundancy between the estimated interaction torques at the left and right
hips due to sharing the trunk segment. Modeling the exoskeleton motion in the sagittal
plane is another limitation of this work. Even though a high accuracy in the joint torque
estimation was obtained, with more accurate modeling of the exoskeleton in 3D space, we
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could model the interaction forces applied to the exoskeleton better. Developing a driftless
trunk orientation estimation method is another challenge in this regard, which is required
for monitoring the orientation of the exoskeleton trunk in 3D space continuously. Despite
these challenges, this direction will have implications for building a data–driven ground
reaction force estimator in our future work or using force–plate–free predictions of joint net
torques [30]. Our next step, however, is to integrate the identified exoskeleton dynamics
in our adaptive trajectory and feed–forward controllers [31,32], which were only tested in
simulation due to the lack of ability to estimate the human–exoskeleton interaction torques.
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