
Citation: MacConville, D.; Farrell, M.;

Luckcuck, M.; Monahan, R.

CSP2Turtle: Verified Turtle Robot

Plans. Robotics 2023, 12, 62.

https://doi.org/10.3390/

robotics12020062

Academic Editor: Marco Ceccarelli

Received: 23 February 2023

Revised: 15 April 2023

Accepted: 17 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

CSP2Turtle: Verified Turtle Robot Plans †

Dara MacConville 1,* , Marie Farrell 2 , Matt Luckcuck 3 and Rosemary Monahan 1

1 Department of Computer Science/Hamilton Institute, Maynooth University, Maynooth, Co.,
W23 N7F6 Kildare, Ireland

2 Department of Computer Science, The University of Manchester, Manchester M13 9PL, UK
3 Department of Electronics, Computing and Mathematics, University of Derby, Derby DE22 1GB, UK
* Correspondence: dara.macconville.2018@mumail.ie
† This paper is an extended version of our paper published in AREA 2022.

Abstract: Software verification is an important approach to establishing the reliability of critical
systems. One important area of application is in the field of robotics, as robots take on more tasks in
both day-to-day areas and highly specialised domains. Our particular interest is in checking the plans
that robots are expected to follow to detect errors that would lead to unreliable behaviour. Python is
a popular programming language in the robotics domain through the use of the Robot Operating
System (ROS) and various other libraries. Python’s Turtle package provides a mobile agent, which
we formally model here using Communicating Sequential Processes (CSP) . Our interactive toolchain
CSP2Turtle with CSP models and Python components enables plans for the turtle agent to be verified
using the FDR model-checker before being executed in Python. This means that certain classes of
errors can be avoided, providing a starting point for more detailed verification of Turtle programs
and more complex robotic systems. We illustrate our approach with examples of robot navigation
and obstacle avoidance in a 2D grid-world. We evaluate our approach and discuss future work,
including how our approach could be scaled to larger systems.

Keywords: software verification; robotics; Python; CSP

1. Introduction

Autonomous robotic systems are increasingly appearing in our daily lives. These
include domestic robots, such as those used in care settings [1], as well as industrial robots
used in, for example, the monitoring of assets in hazardous environments [2]. The benefits
of autonomous robots in these settings cannot be understated. In the domestic case,
they provide assistance to humans that may not have had help otherwise. In hazardous
environments, the use of such systems allows us to automate potentially dangerous tasks
that would have otherwise had to be carried out directly by humans. Even though the use of
robotics can be massively rewarding, humans are naturally and correctly cautious of the
decisions that these systems can make. Therefore to examine and strengthen our confidence
that these systems work correctly, robust verification methods are needed.

Robotics lies at the intersection of multi-component software systems and sophis-
ticated real-world machinery that is designed to carry out important tasks often with
minimal human supervision. These hybrid safety- and/or mission-critical systems require
a high level of confidence in their design and specifications, in some domains even needing
official certification such as in the nuclear sector [3]. To achieve a high level of confidence,
verification techniques beyond, and in combination with, standard software testing are
required [4]. This kind of robust verification often involves the use of formal methods
alongside testing and simulation.

Formal methods are mathematical techniques and software tools that are used to
ensure the correctness of programs and software systems. A wide range of formal veri-
fication methods are and have been used for autonomous robotic systems [4–6]. Robotic

Robotics 2023, 12, 62. https://doi.org/10.3390/robotics12020062 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12020062
https://doi.org/10.3390/robotics12020062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-2510-9446
https://orcid.org/0000-0001-7708-3877
https://orcid.org/0000-0002-6444-9312
https://orcid.org/0000-0003-3886-4675
https://doi.org/10.3390/robotics12020062
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12020062?type=check_update&version=2

Robotics 2023, 12, 62 2 of 22

systems are large but conveniently modular, making it possible to decompose the formal
verification task and focus on particularly critical components, including: autonomous
agents [5], planners [6], and our previous work on execution plans [7]—which we expand
upon in this paper.

Our work enables the formal verification of execution plans for mobile agents that use
Python’s turtle package through our toolchain: CSP2Turtle. This enables a user to describe
the agent’s environment and formally specify a plan for its behaviour, which CSP2Turtle
automatically verifies and then produces the Python code to execute the plan. This is one of
the formal verification recipes suggested in [8]. Our chosen formal verification approach is
model-checking, in which a model-checking tool exhaustively examines a model’s state space
to determine if a property holds. Our formalism-of-choice for this work, Communicating
Sequential Processes (CSP) [9], enables the specification of complex behaviour and is
supported by automatic model-checking tools. Various other formal approaches have been
used in the literature to specify and verify (often autonomous) robotic systems, including
static analysis, abstract interpretation, theorem proving, formal specification, and so on. For
a survey of the state-of-the-art in applying formal methods to autonomous robots, see [4].

We use the Python Turtle package as an abstraction of more complex mobile agents
so that we can explore the utility of CSP as a specification language for robotic execution
plans. A mobile robotic agent executing a plan is common to many applications ranging
from domestic assistants to space exploration. For example, an autonomous rover could
be tasked with monitoring infrastructure or taking measurements at specific locations in a
predefined operating area [5,6]. The rover must accurately and correctly execute a plan to
navigate from its current start position to its next goal position. If this execution plan asks
for something impossible because it does not align with the physical reality of the robot’s
environment, or if it asks for something logically contradictory, then the corresponding plan
is incorrect. Incorrect plans result in erroneous and even unpredictable robot behaviour.
Analysing the correctness of these execution plans can be difficult and time-consuming
using classical testing methods alone. In particular, running simulations can be protracted,
and physical tests may be risky and infeasible. Checking the execution plan against the
robot’s specifications and relevant properties of its environment during the design phase
would avoid producing incorrect plans and avoid overheads associated with a design loop
of producing a plan, running it on the robot, and seeing how the robot performs.

Our previous work provided an initial description of our CSP2Turtle tool chain [7],
which we illustrated via a case study verifying execution plans for turtle robots. In this way,
we verified the properties about execution plans, specified using the CSP process algebra
and the FDR model-checker. In this paper, we extend our prior work [7]. Specifically, we
have further developed our approach and case study in the following ways:

• The capabilities of the planning language have been increased by allowing execution
plans to make use of the CSP choice operator (Section 4.2).

• The starting location of the turtle is adjustable (see Section 5). In our previous paper [7],
this was a fixed location.

• The toolchain produces a valid plan via a search of the model (Section 4).
• An option has been introduced to read plan specifications from files, allowing for

more flexible use and testing (Section 4).
• The scalability of the toolchain over various parameters has been tested (Section 7).

Further, this paper provides more detailed usage examples, a more comprehensive
account of related work and a discussion section where we explore how our CSP2Turtle
toolchain can be used more broadly.

The remainder of this paper is structured as follows: in Section 2, we provide an
overview of Turtle and CSP, as well as related research. Note that we use Turtle to
indicate the package or software and “turtle” to indicate the agent. Next, Section 3 describes
our approach to modelling Turtle in CSP. In Section 4, we further describe the toolchain
that was leveraged for verification and code synthesis. We illustrate our approach and
usability via examples in Section 5. We evaluate CSP2Turtle in terms of the choice of

Robotics 2023, 12, 62 3 of 22

verification tools and usability in Section 7. In Section 8, we discuss the broader context of
the toolchain, with references to other uses, including formal methods of education. Finally,
Section 9 concludes the paper and identifies future research directions.

2. Background and Related Work

This section provides the reader with prerequisite information about Python’s Turtle
package (Section 2.1) and the CSP process algebra (Section 2.2). As previously mentioned,
CSP enables the specification of complex system behaviour, which ranges from simple
sequences of behaviour to more intricate interleavings of actions. Our work uses CSP to
model the core behaviour of the Turtle package and to enable a user of our CSP2Turtle
toolchain to specify an execution plan for the turtle agent. Finally, we provide an overview
of related work (Section 2.3), where we distinguish our work from research in this area.

2.1. The Turtle Package

Turtle is a graphics package in the standard Python distribution (https://docs.python.
org/3/library/turtle.html, accessed on 19 January 2023). This package allows a user to
control an agent (the “turtle”) on a 2D plane (the “canvas”). The user controls the turtle
either by writing a script or interactively from the command prompt. The user moves
the turtle around and controls a “pen” that draws a line when the pen is “down” (i.e., in
contact with the canvas). A certain amount of the canvas is visible to the user on the screen,
but the turtle can move and draw outside this too. This allows for immediate visual feedback
that shows the live progress of the turtle. It is based on the Logo programming language,
which has been used to program physical turtle robots (https://web.archive.org/web/2015
0131192445/https://el.media.mit.edu/logo-foundation/logo/turtle.html, accessed on 19
January 2023) and provides a Logo-like set of commands via Python methods. The turtle
only operates in a 2D world and cannot be used to create 3D dimensional objects.

Running a Turtle program produces a visual display of the turtle following the plan
of these commands, tracing a line behind it when the pen is down. Figure 1 shows a typical
simple Turtle program, which illustrates all the basic functionality we explore in this paper.
The turtle traced its path on the canvas as it moved around and produced the graphical
output shown in the process. The turtle starts at (0, 0), facing to the right (east), with the
pen down. The location of the turtle is indicated by the arrowhead, and the direction it is
facing is indicated by the point of the arrow. After executing all the commands, the turtle
in Figure 1 is now facing up (north). On lines 5 and 6, it is told to move size units forward
twice. As it starts with the pen down, this results in the horizontal line at the bottom of the
figure. Then, on lines 8 and 9, it rotates 90 degrees to the left and lifts the pen up. When it
then moves forward in the upward direction, it does not draw, explaining the gap in the
line. Finally, on line 13, it puts the pen down again before moving forward a final time on
line 14.

1 import turtle
2

3 size = 20
4

5 turtle.fd(size) # forward
6 turtle.fd(size)
7

8 turtle.lt(90) # left
9 turtle.pu() # penup

10

11 turtle.fd(size)
12

13 turtle.pd() # pendown
14 turtle.fd(size)

Figure 1. Turtle (I) output on the left after following the sequence of instructions on the right.

https://docs.python.org/3/library/turtle.html
https://docs.python.org/3/library/turtle.html
https://web.archive.org/web/20150131192445/https://el.media.mit.edu/logo-foundation/logo/turtle.html
https://web.archive.org/web/20150131192445/https://el.media.mit.edu/logo-foundation/logo/turtle.html

Robotics 2023, 12, 62 4 of 22

Figure 2 shows the output (left) of a more complicated Turtle program (right), which
draws the Hilbert Curve and is available in CPython’s Turtle demo files (https://github.
com/python/cpython/blob/4b8d2a1b40b88e4c658b3f5f450c146c78f2e6bd/Lib/turtledemo/
fractalcurves.py, accessed on 19 January 2023). It recursively calls itself, changing the direc-
tion it faces based on an alternating parity.

1 def hilbert(turtle, size, level, parity):
2 if level == 0:
3 return
4

5 turtle.left(parity * 90)
6 hilbert(turtle, size, level - 1, -parity)
7

8 turtle.forward(size)
9 turtle.right(parity * 90)

10 hilbert(turtle, size, level - 1, parity)
11

12 turtle.forward(size)
13 hilbert(turtle, size, level - 1, parity)
14

15 turtle.right(parity * 90)
16 turtle.forward(size)
17 hilbert(turtle, size, level - 1, -parity)
18

19 turtle.left(parity * 90)

Figure 2. Turtle (I) after drawing a Hilbert curve using code from CPython’s Turtle demo files.
This curve is the result of the call hilbert(turtle, 8, 3, 1).

The turtle has navigation commands for movement (forward(), backward()) and
changing its direction (left(), right()); arguments passed to these functions indicate
the distance it should move and the angle it should turn, respectively. The turtle also has
commands to control the pen to toggle whether or not the turtle draws as it moves along
the canvas (penup(), pendown()). These six commands are the focus of our modelling
approach, as described in Section 3.

The Turtle package has numerous other features that are not the focus of our model.
Some of these are cosmetic options, such as pen colour, pen width, turtle shape, etc. There
are also additional commands, including leaving a stamp at the turtle’s current location,
and the ability to start “recording” the turtle’s movements and draw a polygon along its
path when it is finished moving. Our model focuses on what we consider to be the core
features of the Turtle package, the basic movements and drawing capabilities, allowing us
to explore the utility of enabling users to use CSP to write an execution plan for the turtle
to follow.

2.2. Communicating Sequential Processes (CSP)

The CSP process algebra is a formal language that allows the specification and analysis
of concurrent systems [9] and is supported by automatic verification tools. It is based
on the idea of describing the behaviour of systems in terms of the interactions between
processes. CSP, like other process algebras, provides a set of rules for combining processes,
which allows complex systems to be built up from simpler ones. It also provides rules
for reasoning about the behaviour of systems, which allows properties such as safety
and liveness to be verified. Process algebras are used in many areas of computer science,
including concurrency theory, distributed systems, and software engineering.

The two fundamental units in CSP are processes and events. A specification’s be-
haviour is defined by processes, which themselves are sequences of events. Events are
used to model particular system behaviours that we are interested in verifying, they can
be thought of as a synchronisation between processes or between one process and its
environment. Each event is a communication on a channel, which specifies the channel

https://github.com/python/cpython/blob/4b8d2a1b40b88e4c658b3f5f450c146c78f2e6bd/Lib/turtledemo/fractalcurves.py
https://github.com/python/cpython/blob/4b8d2a1b40b88e4c658b3f5f450c146c78f2e6bd/Lib/turtledemo/fractalcurves.py
https://github.com/python/cpython/blob/4b8d2a1b40b88e4c658b3f5f450c146c78f2e6bd/Lib/turtledemo/fractalcurves.py

Robotics 2023, 12, 62 5 of 22

name and any parameters its events have (which are optional). For example, we can define
two channels:

channel a
channel b : BOOL

Channel a takes no parameters, and its events represent a simple synchronisation or a
behaviour occurring. Channel b takes a boolean parameter, and its events must be either
b.True or b.False. Events on parametrised channels such as b are often used to pass data
between CSP processes. In our model, the events are designed to be in close correspondence
with the functions that would be called by the Turtle program in Python, to allow a direct
and readable mapping between the specification and the program. Our model of the
Turtle package (see Section 3) uses simple channels without parameters, but parameterised
channels are used in our case study (Section 6).

Table 1 summarises the CSP operators and the two in-built processes (Stop and Skip)
that we use in constructing the model in Section 3. Stop is the process that does nothing
and can never perform any events. The Skip process immediately terminates, it produces a
special event X (pronounced ‘tick’) that signals that the process has terminated correctly.

Table 1. Summary of the CSP operators that are used in this paper.

Operator Syntax Description

Skip Skip The process that immediately terminates

Stop Stop The process that accepts no events and thus deadlocks

Simple Prefix a→ P Communicate event a, then act like process P

Sequential Composition P ; Q Execute processes P then Q in sequence

External Choice P 2 Q Offer a choice between two processes P and Q

Interleaving P ||| Q Processes P and Q run in parallel with no synchronisation

Hide P \ A The process P runs normally, but if any event from set A is
performed, it is hidden from the trace

The prefix operator (→, pronounced ‘then’) links an event to a process. For example,
a→ P specifies the process that performs event a and then behaves as process P. A series of
events may be linked using prefixes, e.g., a→ a→ a→ Skip; and a prefix can also be used
for tail recursion, e.g., P = a → P. Sequential composition (;) is a similar operator, but
it links two processes. The process P ; Q performs process P until it has terminated and
then performs process Q. The interleaving operator (|||) specifies two processes running in
parallel that do not synchronise on their events. Finally, the external choice operator (2)
offers the environment of the process the choice of two behaviours, only one of which can
be picked.

As an example of how CSP works, we can imagine some small processes that describe
an execution plan for a mobile agent that is similar to the turtle (Section 3) but can only
move forward or turn left. First, we define two channels forward and left, which instruct the
agent to move in the corresponding direction. Then we can define the plan:

P0 = forward→ left→ forward→ left→ STOP

This simple plan instructs the agent to move forward then left, twice, and then stop.
The semantics of CSP specifications are considered in terms of traces. A trace is a

sequence of events that a process has visibly performed. The traces of a process are a set
of all the (finite) traces that the process could perform. For example, the traces of process
P0 are:

{〈〉, 〈forward〉, 〈forward, left〉, 〈forward, left, forward〉, 〈forward, left, forward, left〉}

Robotics 2023, 12, 62 6 of 22

Since the traces of a process are all of its possible traces, the first trace is the empty
sequence, as in the beginning, the process has performed no events. Each event that the
process performs is added to the trace, generating an overall set of its traces. In CSP, we
can hide events from the trace using the hiding operator. For example, (P \ A) hides all
of the events in set A as the process P runs. This is useful when comparing two processes,
where we want to focus on only the events that the processes have in common. Returning
to our example process, P0, if we hide the forward events from the trace (P0 \ {forward})
then the traces will be similar to those shown above, but without the forward events.

Properties of a CSP specification can be automatically checked by a model-checker. In
our work, we use the command line tools from the Failures-Divergences Refinement checker
(FDR) [10]. FDR supports machine-readable CSP (CSPM), which allows parametrised
processes to be defined in a functional, Haskell-like way. In FDR, properties can be asserted
about a process and then checked automatically. These assertions commonly take the form
of a trace refinement, where we can assert that P vT Q (in CSPM, the vT symbol is rendered
as [T=) (the process P is trace refined by the process Q), which is true if every (finite) trace
of Q is also a trace of P. For example, suppose we have another process that is similar to P0:

P1 = forward→ left→ forward→ left→ P1

As P1 is recursive (it ends with a call to itself), it can perform the trace:

〈forward, left, forward, left, forward〉

which P0 cannot (note the extra forward at the end of this trace). Hence, P1 is refined by P0
(P1 vT P0) but not the other way around.

2.3. Related Work

There have been several other applications of CSP to robotic systems, but to our
knowledge, none have tackled execution plans for robotic systems. Work by Cardoso et al.
used CSP to model the communication protocol between Robot Operating System (ROS)
nodes in a simulation of the Mars Curiosity rover [5]. Their work used several other formal
verification tools in concert to verify different aspects of the Rover, whereas our work
focuses on execution plans and only uses CSP.

RoboChart is a Domain Specific Language (DSL) designed to aid in modelling and
verifying robotic systems [11]. It is based on a restricted subset of the Unified Modelling Lan-
guage (UML). RoboChart’s semantics are formalised in CSP and tock-CSP, the discrete-time
variant of CSP, which allows for RoboChart models to be verified by the FDR model-checker.
Although, the use of CSP in Robochart is a front-end to predicative relational semantics
using Unifying Theories of Programming (UTP) [11]. RoboChart is also supported by a
mutation-testing approach [12], in which a RoboChart model is mutated and compared to
the original model. The comparison is made on the CSP generated from both the original
and mutant RoboChart models, using trace refinement in FDR.

Both RoboChart and CSP2Turtle were motivated to use CSP due to the capabilities of
FDR, a model-checker that can be used to automatically verify the correctness of CSP models
(see Section 2.2). The formalisation of RoboChart’s semantics in tock-CSP enables the CSP
version of RoboChart models to be translated into Timed Automata (TA) for verification
in UPPAAL, using the approach described by Abba et al. [13]. Their approach facilitates
the easier verification of, for example, the liveness properties that UPPAAL provides. The
Turtle package does not include any commands or features that use time, nor were we
modelling complex system architecture, so RoboChart provides more features than we
needed for this work. However, we discuss the possible use of tock-CSP in our future work
in Section 9.

In our approach, a user will manually write an execution plan using our subset of CSP
(see Section 4.2). Another strand of work in the literature provides languages to describe a
problem for planning software to solve (by finding a suitable plan). One commonly used

Robotics 2023, 12, 62 7 of 22

language is the Planning Domain Definition Language (PDDL) [14]. The plans we consider
in our work are more akin to a series of instructions or tasks to be carried out, whereas in
PDDL, they are concerned with the field of AI planning, which uses AI techniques to solve
planning problems. Fox and Long [15] extend PDDL to include the concept of processes
and events, similarly to how CSP models systems as communicating processes. Li et al.
provide a translation from PDDL another machine-readable version of CSP, CSP# [16].
The Process Analysis Toolkit (PAT) [17] can verify temporal logic properties over models
written in CSP#. However, CSP# is not compatible with FDR (the model checker used in
our work) and, to the best of our knowledge, PAT does not provide an API, which is a key
part of FDR’s usage in our toolchain.

Work by Bourbouh et al. [6] formally verifies the properties of an autonomous rover
whose mission is to traverse a grid to visit points of interest whilst avoiding obstacles. The
execution plan for this rover is calculated by a dedicated planning component. Although
the authors verify the correctness of plans generated by the planner, they do not focus on
checking the correctness of plans given to the system from an external source. Their system
is modelled using Simulink, and the correctness of the planner’s algorithm is verified
using Event-B.

PGCD is a programming model for robotic systems, which is based on message-
passing concurrent processes with motion primitives [18]. The concurrent processes are
similar to CSP’s processes, which can also behave concurrently with, and pass messages to,
other processes. The motion primitives capture the robotic system’s capabilities, such as
‘move’ or ‘grasp’. Their approach includes a verification algorithm that is based on model
checking and SMT solving; but, in contrast to our work, PGCD is focused on sensing and
operating within physical space.

Webster et al. [1] present a case study of writing and verifying a high-level model
and planner for the mobile robotic agent, the Care-O-Bot. This work uses the agent
modelling language and simulation environment Brahms and translates the model and
planner into PROMELA to enable model-checking with the SPIN model-checker (https:
//spinroot.com/spin/whatispin.html, accessed on 19 January 2023). There are some
interesting parallels in that their robot operates within a geography that is known and
modelled (the Robot House), and much like the turtle in our work, it has knowledge about
its world. However, in these models, nondeterminism is introduced through the actions of
a person in the robot’s environment. Currently, there is no such nondeterminism in our
environment models.

Meywerk et al. [19] take a similar approach to our work, joining an agent’s execution
plans and environment into a single model and checking plan correctness with respect to
this environment model. They accomplish this by compiling plans into the Intermediate
Plan Verification Language (IPVL). They also discretise their “Wumpus World” into the
positive integer cartesian grid, like we do with the turtle’s environment, as described
in Section 3. However, unlike Meywerk et al., we do not implement an intermediate
language, instead translating directly between CSPM and the Python code that controls the
Turtle robot.

3. Modelling Approach

This section describes how we modelled the Turtle package, including some abstrac-
tions that simplify the model. This simplified model still captures the package’s core ideas
and functionality, as discussed below.

The turtle is modelled as a CSP process, and the commands as CSP events. The events
in our model and their corresponding turtle commands are detailed in Table 2. The ex-
ecution plans that we use in this work comprise these events. The first six events are
abbreviated names of the forward, backward, penup, pendown, left, right commands,
which were chosen both for brevity and as they are aliases for those methods in Turtle.
The actual declaration is made with the channel keyword, as seen in Listing 1. A direction
datatype is also declared, which is used by the navigation processes to indicate the direc-

https://spinroot.com/spin/whatispin.html
https://spinroot.com/spin/whatispin.html

Robotics 2023, 12, 62 8 of 22

tion the turtle is facing. We use an additional event goal to mark the location the user has
specified in their plan as being the turtle’s destination.

Listing 1. Event and datatype declaration in CSP.

1 channel fd, bk, pu, pd, lt, rt, goal
2 datatype Dir = N | E | S | W

Table 2. The CSP events that we use in our model and their corresponding Turtle commands.

CSP Event fd bk lt rt pu pd

Turtle command forward() backward() left() right() penup() pendown()

The key simplifications that were made in the model restrict the possible directions of
the turtle to just the four cardinal directions and limit movement to just one unit at a time.
This means that the turtle inhabits a grid-world, where its location will always be described
by integer co-ordinates. The co-ordinate system could also be extended to describe a 3D
world. The decision was also made to bound the size of the world that the turtle inhabits
inside of CSP to a size specified by the user (see Section 4.1) and not have it reside in an
unbounded world. This can be thought of as representing the size of the screen the turtle is
displayed on.

To verify the properties of a process, FDR has to examine all of its states. This obviously
makes infinite-state processes impossible to check, which necessitated the bounding of
the turtle’s grid-world size. Restrictions on movement and turning were made because
CSP does not natively allow for handling floats, so it would be difficult to place it in a
location that was not an integer grid. The approach taken in this model was to handle
different directional cases separately. In our future work, we may consider enabling the
turtle to move a variable number of steps forward and turn to a wider variety of angles.
Despite the simplifications, CSP functions as a valuable tool for modelling and examining
the properties of the turtle agent because it allows the core concepts of movement and pen
actions to be formalised.

CSP supports specifying complex systems as an interleaving of smaller processes,
each specifying one function. In this way, processes can be composed together to form
larger systems, and the behaviour of the composed system can be analyzed using the FDR
model-checker. We used this feature in the architecture of our model, as shown in Figure 3.
The architecture in this figure consists of four named CSP processes, and we discuss each
of them in the following subsections.

3.1. Main Process

At the top of Figure 3, Turtle_main represents the turtle, which is the high-level
process that we can make assertions about to check the properties of our system as a whole.
The Turtle_main process is composed of the Turtle_nav and Turtle_draw_pd processes
running interleaved, and it passes the model’s initial parameters to these more specialised
processes. This modular design strategy of composing it out of smaller specialised pro-
cesses makes it more easily extensible. The navigation and drawing functionalities can be
easily separated in this case as they run independently of each other and do not need to
synchronise on any events. This independence of processes is why the interleave command
can be used. If synchronisation were needed, CSP has a parallel operator that takes two
processes and a set of events that they must synchronise on (meaning they would perform
those events in unison).

This structure can be seen reflected in the code in Listing 2. The locations (x, y)
and direction (d) parameters are taken from the main process to be used by the naviga-
tion processes. The separate brackets are to allow the process to be partially applied to
its arguments.

Robotics 2023, 12, 62 9 of 22

Turtle_main

Turtle_nav(x,y)(d)
pd

Turtle_draw_pd
pu

Turtle_draw_pu
interleaves

navigation
 events

Figure 3. Architecture of the CSP model. Each box represents a named process. The solid line
represents Turtle main starting the other processes, which are interleaved (|||). The dashed arrows
(99K) indicate events. Turtle nav responds to the navigation events with a process for each direction,
which is omitted for brevity. These processes then return to Turtle nav, hence the self loop shown.
pu and pd are the events corresponding to the penup() and pendown() commands.

Listing 2. The main turtle process.

Turtle_main(x, y)(d) = Turtle_nav(x, y)(d) ||| Turtle_draw_pd

3.2. Navigation Process

Turtle nav reacts to the movement and rotation events (fd, bk, lt, and rt) and updates
the turtle’s location (x, y) and the direction (d) that it is currently facing. To handle these
different cases, Turtle nav uses a different specialised process for each direction. Lines 4
and below, in Listing 3, show a snippet of how the movement forward and backward is
broken up into these different directional cases. When the direction of the turtle is North
(N), the Turtle_nav_North process handles movement, using its knowledge of the world
dimensions to avoid moving beyond the boundaries. Special instances of Turtle nav are
synthesised by the toolchain to avoid obstacles. This internalising of the world knowledge
means assertions about the turtle process amount to assertions about the system as a whole.
However, separating the world state from the turtle could be useful to allow for different
assertions to be checked against the world versus against the turtle process. Lines 2 and 3
in Listing 3 show how the Turtle nav handles the turning events with an auxiliary helper
function change_direction.

Listing 3. A subset of the navigation processes.

1 Turtle_nav(x, y)(d) =
2 lt -> Turtle_nav(x, y) (change_direction(lt)(d))
3 [] rt -> Turtle_nav(x, y) (change_direction(rt)(d))
4 [] (d == N)& Turtle_nav_North(x, y)
5

6 Turtle_nav_North(x, y) =
7 (y<V-1)& fd -> Turtle_nav(x, y+1) (N)
8 [] (y>0)& bk -> Turtle_nav(x, y-1) (N)

3.3. Pen Processes

The Turtle_draw_pd process only interacts with the pu event, before transitioning
to being the opposite process (called Turtle_draw_pu) that only waits for a pd event. We
assume that the pen always starts down, and thus, we begin with the Turtle draw pd
process, as this is the default behaviour in Turtle. Note that the Turtle package does
allow the pendown() method to be called while the pen is already down, but as this has no
effect, it would always be redundant to include in an execution plan. This setup ensures
that redundant calls of this form to penup() or pendown() do not occur. Listing 4 shows
the simplicity of implementing this in CSP.

Robotics 2023, 12, 62 10 of 22

Listing 4. The two processes handling the pen state

Turtle_draw_pd = pu -> Turtle_draw_pu
Turtle_draw_pu = pd -> Turtle_draw_pd

Thus, we have outlined our modelling approach. Next, we explore our CSP2Turtle
toolchain.

4. CSP2Turtle: Our Python Toolchain

This section describes the main contribution of this paper: CSP2Turtle (code and
Turtle package model: https://doi.org/10.5281/zenodo.7831832, accessed on 19 January
2023), a prototype toolchain that verifies a CSP plan for a turtle within a user-defined
environment and (if the execution plan passes the checks) synthesises Python Turtle code
that corresponds to the plan. CSP2Turtle uses the CSP model of the Turtle package that
we describe in Section 3.

Figure 4 illustrates the workflow for the CSP2Turtle toolchain. CSP2Turtle can accept
the environment description and a CSP plan specification in one of two modes: File Mode,
where the information is read from an input text file; and Interactive Mode, where the user
inputs the information at the command line (see Section 5 usage examples). These two
modes only alter how the information is fed to CSP2Turtle, and whichever mode is chosen,
the other steps in the workflow remain the same.

1. submits
plan and

environment
description

User

5. runs (if produced)

CSP2Turtle

3. checks validity

4. is used to produceTurtle CSP
 Model

CSP
Model Checker

Turtle Code
2. inserts details into

Figure 4. All the stages and components of our toolchain, showing the flow and order of operations
and how the user interacts with it. The arrows indicate how components act on or produce others.

The plan and environment information are combined with our CSP model of the
Turtle package (Section 3), which produces a turtle model that can only navigate within
the confines of the world specified by the user. Issuing commands that, for instance, ask
the turtle to move beyond the edge of the environment or enter an area specifically marked
as impassable, are invalid. Removing these options from the model makes it possible to
check that the CSP plan obeys the restrictions of the environment. The toolchain then
executes FDR’s command line program refines. This program automatically verifies the
model against the environmental restrictions and goal location. If a valid plan that uses
at most one choice operator has been provided, then CSP2Turtle can generate and run a
corresponding Turtle Python program, giving the user a graphical output of the CSP plan
that shows how it executes.

Below we discuss the core components of the toolchain: the environment specification,
which is for specifying the world state (Section 4.1); the planning language (Section 4.2),
which outlines the actions the turtle should attempt to undertake; and a description of the
verification process performed by the model-checker to ensure correctness (Section 4.3).

4.1. Specifying the Environment

The turtle’s plan is checked with respect to its environment, so properly specifying the
environment is a key part of using CSP2Turtle.

The environment specification consists of five components: the world’s dimensions, a
location in the world to be marked as a goal, obstacle locations, waypoint locations, and
the turtle’s starting location. The obstacle and waypoint locations are optional and can be
left blank. Marking a location in the world as an obstacle means the generated model will
consider it impassable. The waypoints are locations on the map that must be traversed

https://doi.org/10.5281/zenodo.7831832

Robotics 2023, 12, 62 11 of 22

but are not the ultimate goal. Further examples of waypoints’ usage are given in Section 6.
Given that the world is a 2D integer grid, all these details can be specified simply. The
world’s dimensions are a pair of positive integers describing the height and width of the
grid; the turtle’s starting location, the goal location, and locations of obstacles, are all given
as pairs of positive integer co-ordinates. Note the turtle always starts facing east by default.

In File Mode, the user writes a simple input file where each of the five components is
given on a separate line that begins with the component’s name. For example:

start_coords: 0, 0
dimensions: 4, 4
goal_coords: 2, 2
obstacles: (1, 1), (3, 3)
waypoints: (0, 1), (2, 3)

To correctly parse the input file, CSP2Turtle requires that the values are separated by
commas and spaces, as shown above; removing this restriction is part of our future work
to improve usability. In Interactive Mode, CSP2Turtle’s Command Line Interface (CLI)
prompts the user for each component of the environment description.

4.2. Planning Language

CSP2Turtle uses a subset of CSPM (FDR’s functional language that contains an imple-
mentation of CSP) to enable the user to specify the turtle’s plan. As previously mentioned,
we provide CSP events that correspond to the turtle’s navigation and drawing commands
(see Table 2). A plan specification uses these events and three CSP operators: Simple Prefix,
Sequential Composition, and External Choice (described in Table 1). A plan specification
is a CSP process; when combined with the declarations of the events that correspond to
methods in Turtle, it can be analysed using FDR. These three operators have clear uses in a
plan specification: the Simple Prefix and Sequential Composition operators link instructions
(events) together, and External Choice enables the user to describe multiple options. Our
future work involves exploring the utility of other CSP operators for specifying plans.

Using the building blocks of the navigation and drawing commands, the user can
construct a specification of the turtle’s required behaviour. The behaviour of the operators
mirrors their usual CSP semantics. The Simple Prefix infix operator (written ->) links
an event to a process, and we use it to denote performing one Turtle method and then
(potentially) another. For example, if part of a plan specification reads fd -> lt, this states
that the turtle should “move forward, then turn left”. The External Choice infix operator
(written []) provides a choice between following the actions on its left or its right and
should be bracketed to clearly show its scope. For example, if part of the plan specification
reads (lt -> fd [] rt -> fd) this states that the turtle should “either turn left and move
forward or turn right and move forward”, indicating that either is possible.

The Sequential Composition operator (written ;) is similar to Prefix, but it links one
process to another. For example, A ; B performs process A and, once it has terminated,
performs process B. Some specifications in CSP are interpreted as a process on their own and
thus need a Sequential Composition to continue adding to the specification. For example,
if our plan reads:

(fd -> lt -> SKIP [] lt -> fd -> SKIP) ; pu -> fd

then this is intended to state that the turtle should “either move forward and then left, or move
left and then forward; whichever choice is taken, then set the pen to be up and move forward”. The
Sequential Composition operator is needed to link the final two events pu -> fd to the
External Choice. The SKIP process immediately terminates; however, it is necessary for the
CSPM typechecker.

Robotics 2023, 12, 62 12 of 22

4.3. Plan and Environment Verification

CSP2Turtle checks for three properties: that the goal location is reachable, that the
plan does not go outside the environment or collide with an obstacle, and that the plan
reaches the goal.

Checking if the plan is valid means checking if the turtle navigates within the con-
straints of the environment while also reaching the goal along all possible paths (if several
routes are included using External Choice). This is achieved by verifying that the plan
corresponds to a possible trace of the robot’s environment using the following assertion:

assert Turtle [T= plan.

This is a trace-refines assertion, meaning that FDR will check that the process defined
by the given plan implements the specification in the Turtle process. The Turtle process
here encapsulates the whole model, meaning that this is the process we want to make
assertions about. This is really two checks in one, as it asserts that the goal location is
reachable, and that the plan given does actually reach it.

If this first assertion statement fails, it may be the case that the goal is reachable but
the plan given does not conform to the world or does not actually reach the goal. To allow
for this possibility, another check is performed, which makes FDR explore the state space
to check for reachability.

assert Turtle_nav(start_coords)(E) :[deadlock-free]

Unlike the earlier example, this assertion is made directly on the navigation process
because we are only concerned with the navigation events, not the pen-related events.
Note that this is our modified version of the navigation process, which adheres to the
environment description. As such, it cannot move outside of the environment or through
any obstacles. This assertion works by forcing FDR to check if there are deadlocks, and
due to the model design, these can only occur if the turtle reaches the goal. If a deadlock is
found, then the goal is reachable; FDR provides an example trace to this state, which in
this case is a valid path to the goal. This is a check on the environmental situation rather
than the turtle, as it is only concerned with the location of the goal and potential obstacles
between that and the turtle’s starting position. The results of these checks, pass or fail, are
displayed to the user.

If the plan given is a valid trace of the system, a corresponding Turtle program will
be produced, saved, and ran, with the graphical output being visible to the user. If the trace
is invalid, then no program is produced. The next section illustrates our approach via an
example, including code snippets and screenshots from our toolchain.

5. CSP2Turtle: In Action

In this section, we show examples of how CSP2Turtle works in practice, in both File
Mode and Interactive Mode. We provide examples of CSP2Turtle at runtime with sample
maps illustrating the turtles’ worlds.

In our maps, filled-in squares represent obstacles or impassable terrain; a triangle
represents the turtle; solid lines represent the possible drawings that the turtle makes as it
moves; and arrows show the direction of movement. The bottom left square of our map
has co-ordinates (0, 0).

Figures 5 and 6 show the usage of Interactive Mode, which is started in one of the two
following ways:

./csp2turtle -i

./csp2turtle --interactive

Robotics 2023, 12, 62 13 of 22

Goal 1 Interactive Mode
2 Enter starting position as x, y: 0, 0
3 Enter H, V (Horizontal, Vertical): 3, 3
4 Enter plan: (fd -> fd -> lt -> SKIP
5 [] lt -> fd -> fd -> rt -> SKIP) ; fd -> fd
6 Enter goal location as x, y: 2, 2
7 Enter obstacles as (x1, y1), (x2, y2), etc: (1, 1)
8 Assertion succeeded: Plan reaches goal X
9 One path to goal is: fd -> fd -> rt -> bk -> bk

Figure 5. A usage example of CSP2Turtle’s Interactive Mode, where all possible paths lead to the
goal and CSP2Turtle accepts the plan.

Goal 1 Interactive Mode
2 Enter starting position as x, y: 0, 0
3 Enter H, V (Horizontal, Vertical): 3, 3
4 Enter plan: (fd -> fd -> lt -> SKIP [] lt -> fd -> lt -> SKIP) ; fd -> fd
5 Enter goal location as x, y: 2, 2
6 Enter obstacles as (x1, y1), (x2, y2), etc: (1, 1)
7 Assertion failed: Plan is impossible or doesn't reach goal ×
8 One path to goal is: fd -> fd -> rt -> bk -> bk

Figure 6. A usage example of CSP2Turtle’s Interactive Mode, where it is possible that paths lead the
turtle outside of the map. The dashed line represents this path. Hence, CSP2Turtle rejects the plan.

Figure 5 shows an example where all possible paths, defined in the plan, lead to the
goal. CSP2Turtle, therefore, accepts this plan, informing the user that the assertions have
succeeded. Note that the use of the choice operator is indicated here with a black line for
one path and a red line for the other. This is how it would appear when run in CSP2Turtle,
the map and obstacles would not be indicated, but the lines drawn by the turtle would
be the same. There is an obstacle at co-ordinate (1,1) and CSP2Turtle produces another
possible trace leading to the goal that navigates around this.

Figure 6 shows the case where the CSP2Turtle’s assertions fail. This example is similar
to that in Figure 5 but differs in the plan input in the right-hand side option of the choice
operator. This new plan, followed by fd -> fd would lead the turtle outside the map.
For this reason, CSP2Turtle’s assertions fail, as it requires all paths to succeed for a task
to be deemed successful. We see again that CSP2Turtle informs the user and CSP2Turtle
produces a working example that would reach the goal.

Figures 7 and 8 depict File Mode, started by the csp2turtle command and followed
by the name of the input file.

Goal
1 ./csp2turtle input.txt
2 Assertion failed: Plan is impossible or does not reach goal ×
3 One path to goal is: fd -> fd -> rt -> bk

1 start_coords: 0, 1
2 dimensions: 3, 3
3 plan: fd -> pu -> fd
4 goal_coords: 2, 2
5 obstacles: (1, 0), (1, 2)

Figure 7. An example of CSP2Turtle being used in file input mode with file input.txt, whose
contents are also listed here. CSP2Turtle reports that the assertion fails and provides a possible
successful path to the goal.

Figure 7 illustrates when the file input.txt is passed as an argument at the command
line. Even though the turtle would not exit the world boundaries, it fails to reach the goal.
Therefore, CSP2Turtle reports that the assertion fails and it produces a path that would
successfully lead the turtle to the goal. We have also listed the contents of the input.txt
file here. Note that the turtle’s starting location is at co-ordinate (0,1), where the default
state of the turtle is with the pen down. The turtle follows the plan, moving forward. The

Robotics 2023, 12, 62 14 of 22

pu event causes the absence of a line from co-ordinate (1,1) as the turtle moves forward
once again.

Figure 8 illustrates where the execution plan provided in the file input.txt does not
lead the turtle to the goal. In addition, no other path that would bring the turtle to the goal
was identified by FDR. The path the turtle attempts is blocked by an obstacle at co-ordinate
(2,1). Similarly, all other routes are blocked off.

Goal
1 ./csp2turtle input.txt
2 Assertion failed: Plan is impossible or doesn't reach goal ×
3 Goal unreachable

1 start_coords: 0, 0
2 dimensions: 3, 3
3 plan: fd -> fd -> lt -> fd -> fd
4 goal_coords: 2, 2
5 obstacles: (1, 1), (1, 2), (2, 1)

Figure 8. The turtle cannot reach the goal via the given path, and FDR reports that there is no possible
path that would work.

6. Validation with Case Study

To demonstrate how our tool could be used, we examine the Inspection Rover case
study in [20]. They lay out a wide range of system requirements drawn from NASA safety
and formal verification guidelines [21], ensuring a broad and robust set of safety properties
for us to examine. Here we demonstrate how CSP2Turtle can express and verify a selection
of the requirements laid out in [20].

The authors lay out the three main system requirements necessary to ensure that the
rover works safely and accurately:

• R1: The rover shall not run out of battery.
• R2: The rover shall not collide with an obstacle.
• R3: The rover shall visit all reachable heatpoints.

These main requirements are themselves divided into multiple sub-requirements.
The authors employ three NASA Ames tools FRET, COCOSIM, and AdvoCATE, as well
as Event-B, to verify these sub-requirements, while others cannot be verified without
field testing. This indicates the scope and challenges faced and allows us to consider the
properties we can reason about in our toolchain versus several other toolsets. Table 3
lists the full selection of requirements that we investigate in this paper. Many of the
requirements that are not mentioned involve sensory inputs such as a vision system
or speed measurement and hence are outside the scope of our abstracted model in its
current state.

The design of CSP2Turtle means that the requirements under R2 are mostly true by
construction. When checking the validity of the user-supplied plan, FDR starts from the
given initial location, similar to any possible plans it generates, which is what is needed
for sub-requirement R2.3. For the two sub-requirements in R2.4, the toolchain will return
negative results or produce an error if an obstacle is in the initial rover position or an
obstacle coincides with a waypoint, respectively. The CSP model explicitly does not allow
paths to move through locations marked as containing obstacles, covering R2.5 as FDR
calculates its path based on the model and environment.

To model heatpoints (R3), we introduce some other elements that are not from Turtle
into our CSP model and toolchain. A new channel of events is added in the synthesised
CSP model to represent arriving at one of these waypoints. We denote them “waypoints”
not “heatpoints”, as we abstract away the temperature measurement for use in our model.
This channel is parametrised by an integer, which is bounded by the number of waypoints.
This means there is a distinct event for the first waypoint, the second waypoint, and so on.
These events can be inserted into the plan at the desired points, and FDR will check if they
correctly match with the specified locations.

Robotics 2023, 12, 62 15 of 22

Table 3. Selection of system requirements in the Inspection Rover case study.

ID Description

R2 The rover shall not collide with an obstacle

R2.3 The path to the next destination shall be calculated from the current rover position

R2.4.1 An obstacle shall not be in the location of the initial rover position

R2.4.3 An obstacle shall not be in the same location as a heatpoint

R2.5 The calculated path to the destination shall not include a location with an obstacle

R3 The rover shall visit all reachable heatpoints

R3.1.1 A valid heatpoint position shall not be the same as the initial rover position

R3.1.3 A valid heatpoint shall not be on the same location as a valid obstacle

R3.2 Visited heatpoint shall be removed from the list of destinations to visit

Listing 5. Successful plan with waypoints indicated.

1 plan: lt -> fd -> fd -> wp.1 -> rt -> fd -> wp.2 -> fd
2 waypoints: (0, 2), (1, 2)

Additionally, the positions of the waypoints given are checked against the turtle’s
starting location, satisfying the sub-requirements R3.1.1 and R3.1.3. Sub-requirement
R3.2 is not directly checked by the system but would instead be expressed in the plan or
plans provided by the user. The responsibility then lies with the user, or with any plan-
generating software they use. However, the use of parametrised channels for waypoint
events makes it easy to avoid using the same waypoint more than once, as they are each
distinctly numbered.

For the work presented in this paper, we focused on two core requirements R2 and R3
of the Inspection Rover Case study. We did not study R1, which manages battery power
usage, as that would involve making changes to the turtle agent, which is outside the scope
of the current model. The current model and toolchain make it very easy to add additional
elements to the world as the turtle’s environment is a featureless blank slate. This means
that there is not much complexity in adding obstacles or waypoints, but elements such
as the battery that modify the agent are different. However, this could be included as we
increase the complexity of our model in future work. The authors of [20] take a similar
approach starting with an abstract model, which is then refined. A future step in this work
will be to use more detailed and realistic assumptions, modifying the environment with
the relevant parameters.

7. Evaluation

CSP lends itself well to modelling the core components of the Turtle package. The
concepts of processes and events were broad enough to not constrain the design approach
and naturally mapped onto the turtle and its methods. This made the initial modelling
decisions easy and provided a good foothold to explore different possibilities for the model.
This meant they were quick to prototype and test in FDR.

The documentation and tooling surrounding CSP were also mature and well-resourced
enough to make learning straightforward for a beginner. Detailed textbooks, such as [22],
provided a good theoretical and practical introduction while also having more background
detail when necessary. The CSPM implementation and model-checker, FDR, were essential
in the development process. Having a quick idea-prototype model-test cycle allowed for
lots of exploration, especially at the early learning stages. FDR enables a user to probe a
process and step through its events, and this probing feature was very useful for exploring
edge cases in the model and finding bugs.

Robotics 2023, 12, 62 16 of 22

Adding a Python layer introduced another layer of the system that is not verified,
which weakens the overall robustness of the system. This could be improved by finding
ways to better integrate the Python layer into the verified CSP system. In Section 9, we
discuss using software verification tools to ensure the Python components work as intended.
This added layer of complexity enabled tasks that would not be possible in pure CSP but
made it harder to discern if errors were in the Python program or the CSP model. Both
Python and FDR are implemented on Linux, Mac, and Windows, meaning the toolchain is
reusable across the major platforms, with only minor adjustments.

Other aspects of CSP also influenced design decisions. We were restricted to move-
ment on the integer grid due to the types available. The Turtle package has a method
begin poly that marks its current location as being the start of a polygon. If the correspond-
ing end poly method is called upon, it will return to the location marked as the beginning,
completing a drawn polygon. Due to CSP’s process-based semantics, implementing a
method that uses this long-term memory requires the introduction of other processes or
parameters to store this information. This is more complicated compared to languages that
use conventional variables for storing information. In addition, implementing the plan
descriptions as a sub-language of CSP was a very natural choice and came with a lot of ease
of implementation benefits. It makes the semantics of the planning language much more
obvious and well-defined, removes the need for translation to the language of some other
model-checker, allows us to utilise FDR for parsing, and means the user does not have to
learn another separate language to understand the whole system. This was a large boost to
prototyping ideas and simplifying some of the design choices that come with making any
sort of language.

Using CSP as the planning language did, however, come with some drawbacks. It is
possible that there are some constructs that would be useful for expressing plans that are
not base CSP operators. Despite these, it was still a positive design choice for this project.

The CSP model underlying CSP2Turtle was rewritten several times throughout the
course of the development. This was prompted by design choices that had limited usability
or extensibility. As a result of these changes, the current state of the model is highly
improved over earlier iterations. However, further use has exposed points that could still
be improved, and any further work on this project may involve another restructure. This
would likely be necessary if major new features were to be added.

While the current usage of the tool is simple and effective for its stated goals, there are
several quality-of-life improvements that could be made. For instance, the ability to run
it over multiple files or the option to save paths that FDR outputs. Interoperability with
other tools could also be encouraged by changing the input and output formats to a more
standardised format such as json where appropriate.

A preliminary investigation was made into the scalability of the tool, the results of
which are shown in Table 4. All of these measurements were taken on an M1 Macbook Air,
using the Unix time -p command, and rounded to the nearest second. The turtle always
started at (0, 0), the goal in the top right (grid size—1), with no obstacles, and a dummy
plan of pd was given for each. This means it was timing the ability of FDR to search an
increasing state space for a valid plan. We see that even when there are many more states
to search, it still performs in a reasonable time, especially taking into account that these are
intended as offline checks. While the scalability of the tool was investigated, there may be
further improvements that could be made to ensure the system remains performant even
as the state space grows larger. This could be particularly important if major new features
are added to the system in the future, such as a further range of motion for the turtle.

Robotics 2023, 12, 62 17 of 22

Table 4. Speed test results for increasing grid sizes without obstacles and starting from (0,0).

Grid Size (nxn) Runtime (s)

100 8

200 41

300 132

400 331

8. Discussion

In this section, we discuss the Olympian view that we have taken with respect to the
environment of our turtle robots. We also discuss the possibility of using our toolchain for
educational purposes.

8.1. An Olympian View

Our overall approach takes an Olympian view of the turtle’s environment, meaning that
we have perfect knowledge of the grid-world, the locations of the obstacles, and the turtle’s
location. This paper is focused on exploring the utility of CSP operators for describing
plans for a mobile agent, so the assumption of perfect knowledge of the environment does
not detract from our aim and is an approach frequently taken in the literature [6,23–25].
However, these assumptions would need to be relaxed to adapt our approach to robotic
agents operating in the real world, or even a more realistic simulation of the real world.

When using formal methods, it is common to simplify and make abstractions of the
operating environment in order to ensure that the verification is tractable and focuses on
the critical elements. However, this does result in a reality gap, as mentioned in [4], where
the verified system and its assumptions may differ from the final system as deployed
in its operating environment. In complex systems, such as robotics, it is therefore also
necessary to use the verification conditions to inspire test cases as well as monitors in more
detailed simulation environments and the final deployed system. This helps to ensure
that formal verification results are preserved at runtime in the associated deployment
environment [5,26].

If we relax our assumptions of perfect knowledge so that the turtle is operating with a
map that was either uncertain or unknown before deployment, we would need to adapt
our approach to cater to this more realistic environment. We discuss two routes for this
extension, which could be applied together.

The first route is to provide a richer model of the environment. In CSP, this would
involve extending CSP2Turtle to have a process to represent the user-defined environment
and then use the process to track the turtle’s progress through the environment. The addi-
tion of dynamic obstacles to the environment (for example, to represent people or a door
that might be open or closed) could be captured using nondeterminism in CSP, or by using
an extension to CSP. For example, if the obstacles vary according to some timing property,
then we could use tock-CSP [13]; or if they have continuous dynamics, then we could
use Hybrid Communicating Sequential Processes (HCSP) [27], which adds continuous
variables and differential equations to CSP. Another way to describe a richer model of
the environment would be to leverage the integration of CSP with B [28] or Event-B [29],
using these languages to describe the environment and retain our model of the Turtle
package in CSP . Both of these approaches are likely to increase the verification time as
the model/combinations of models become more complex and, in the case of HCSP or
the combinations of CSP with B/Event-B, would require the use of different verification
tools. Further, enriching the model of the environment, in any language, requires us to
learn about the environment and its possible behaviour (for example, when and where a
mobile obstacle might move), so it is still susceptible to the reality gap [4].

A second route to cater to a more realistic environment is to use Runtime Verification
(RV), where the behaviour of a running system is compared to a formal model of its

Robotics 2023, 12, 62 18 of 22

intended behaviour. CSP does not yet have an RV toolset, but the development of an RV
approach for CSP would enable the reuse of our existing models at runtime. This could be
used to compare the turtle’s behaviour to the user’s execution plan (which, we remind the
reader, is also a CSP process) to ensure the turtle is behaving according to the plan. If the
behaviour is different, then this indicates the possible violation of a design-time assumption
about the environment [30]. Without this kind of directly applicable RV approach, our
models (or the execution plan) would require translation to another formal language (such
as Temporal Logic) to enable RV in an existing framework. Alternatively, we could extend
the CSP2Turtle toolchain to include a (non-formal) monitoring module that compares the
turtle’s behaviour to the execution plan and the environment description and triggers
some remedial action if they do not match the user’s original input. For example, if the
execution plan’s next action is to move forward and the turtle cannot because of an obstacle,
then CSP2Turtle could update the environment description with this new information
and re-run the verification to see if the goal is still reachable. As mentioned in Section 5,
CSP2Turtle can show the user a plan that reaches the goal (if there is a possible plan); this
functionality could be used to enable CSP2Turtle to suggest a new route to the goal, if one is
available, in the event that a previously unknown obstacle makes the original plan invalid.
However, the Turtle package has no concept of obstacle or the grid-world assumed by our
models, so the architecture of how CSP2Turtle executes the Turtle code would also require
an extension to capture this information and provide the feedback that an RV approach
would need [8].

Clearly, a combination of a richer model of the turtle’s environment with a runtime
verification/monitoring approach would provide the most robust adaptation of our current
approach to suit a more realistic environment. The richer environment model would add
confidence that the design-time verification can capture the available information about
the real environment, helping to close the reality gap. Applying RV would add confidence
that the turtle’s runtime behaviour matched the models and that there is some remedial
action if it does not. However, this requires additions to our models and tools and to how
we execute the Turtle code. The starting point for this is to build a richer model of the
environment using CSP to determine what information is needed about the environment
and investigate the limitations of the approach. This expansion of our approach is left as
future work.

8.2. Teaching Formal Methods

In addition to the main motivation for this work, another potential application area
is in teaching formal methods. Our toolchain provides a route to help students of CSP
to visualise what a process does. By writing a CSP process as a plan, using our planning
sub-language of CSPM, a student can receive quick feedback—either from FDR’s counter
examples or from the turtle running on-screen—about what the process does.

We envisage a generalised version of the CSP2Turtle tool chain that allows both the
current functionality—checking if the plan reaches the goal and is feasible within the given
environment—and a simpler mode, without a goal location or environment bounds. The
simpler mode could be used to introduce the student to CSP operators by letting them
explore how the turtle reacted to commands. For example, they would be able to write
a CSP plan: fd → fd and then run the plan and see the turtle move forward twice. This
visualisation provides the intuition (or visual confirmation) of how the prefix operator (→)
works and could be repeated for the other operators and combinations of operators.

To implement the simpler mode for CSP2Turtle, we could modify the toolchain’s main
Python program so that it can accept input without a goal location. It would be important
that the normal mode of operation still checked that a goal had been given, so a flag could
be added to indicate to CSP2Turtle in which mode it should operate. In this simpler mode,
the toolchain would still verify that the plan keeps the turtle within the confines of its 2D
world, so the student would still receive feedback from the formal verification part of the
toolchain. Once verified, a plan would be translated into a Turtle program in the same

Robotics 2023, 12, 62 19 of 22

way as the toolchain does already. This simplification of the toolchain would support the
sort of exploration of CSP described previously.

When the student is familiar with the operators that form the building blocks of CSP
processes, the toolchain’s current functionality could be used to pose particular problem
maps for the student to solve. This would work as an educational game, with increasing
levels of difficulty and maps that require more operators to solve. Here, some of our
proposed extensions could be useful for providing extra challenges; things such as multiple
agents, different environment topologies, and dynamic environments.

For example, the three problem maps shown in Figure 9 illustrate increasing levels
of difficulty, which each need steadily more complicated plans with more operators. The
simple map in Figure 9a only requires the student to know how the prefix operator works;
it can be solved with the plan fd → fd. The map in Figure 9b introduces the student to
turning, so they could solve the map with the plan fd → lt → fd. Finally, for the map in
Figure 9c the student would be asked to provide a plan that gave both possible routes to
the goal. This would introduce them to the external choice operator (2), which is needed to
solve this map. The student would need to submit a plan such as: (fd→ fd→ lt→ fd→
fd→ SKIP) 2 (lt→ fd→ fd→ rt→ fd→ fd→ SKIP) to solve the map.

Goal

(a)

Goal

(b)

Goal

(c)
Figure 9. Three potential problem maps to support our educational approach. From left to right:
(a) A simple map that can be solved with the plan fd→ fd, (b) a map that can be solved with the plan
fd→ lt→ fd, and (c) a map that needs external choice for both routes.

Clearly, this educational approach would need careful planning, and course resources
would need to be developed. The current toolchain provides the foundation for the features
described here, enabling this direction of future work. The simpler version of the toolchain
is less complicated than the current work, so the majority of work for this direction would
be in carefully designing the maps and course resources. However, this approach could
be very helpful for engaging students who need to be able to visualise problems before
they are able to solve them. It also shares similar benefits to the sort of fast, visual feedback
provided by languages such as Scratch, which are often used in teaching programming to
younger learners. ((https://scratch.mit.edu/, accessed on 19 January 2023) is a block-based,
graphical programming language where “scripts” are attached to “sprites” on a “stage”.
When the program is run, the sprites can be seen reacting to their script. This means that
programming errors often produce odd, unexpected, or hilarious behaviour.)

9. Conclusions and Future Work

Robotic systems are often safety-critical systems, meaning that if they fail they could
cause harm to people or property, or systems that themselves operate in hazardous environ-
ments and must be fault tolerant. For example, robots used to inspect hazardous nuclear
storage facilities or on product assembly lines. These kinds of systems require careful
verification during their design and implementation to ensure that they behave correctly.
Correct behaviour for these systems depends highly on the context; it could range from
ensuring a robot does not enter dangerous terrain to guaranteeing no defective products in
automated assembly lines.

In this paper, we describe CSP2Turtle, a prototype toolchain that verifies a CSP plan
for a mobile agent (the turtle) within a user-defined environment and (if the execution plan

https://scratch.mit.edu/

Robotics 2023, 12, 62 20 of 22

passes the checks) synthesises Python Turtle code that corresponds to the plan. CSP2Turtle
enables quick checks on the validity or possibility of certain actions (performing a series
of steps, reaching a goal) of the robotic turtle agent given certain movement constraints
(obstacles, world size). In this paper, we extended our previous work to expand plans for
the turtle robot, make the tool more flexible, and produce more feedback for the user of the
toolchain. We also improved the usability and investigated its scalability and possible uses
of our CSP2Turtle toolchain.

Future work includes restructuring the design to capture Turtle’s begin_poly() and
end_poly() functions, which facilitate the creation of arbitrary polygons by recording
the turtle’s movements. This type of memory-storage driven action is less amenable to
implementation in CSP but is still possible. The scalability of these methods and the core
model to larger-scale systems could be tested.

Methods can be developed to alter the topology or geometry of the world. This could
involve changing the topology to objects such as loop or torus or the geometry to non-
rectangular shapes. This could allow it to handle non-rectangular world types, which
would open it up to a wider range of robotic systems, for instance, ones that might have
to explore unknown environments. An adaptation in a similar vein would be increasing
the turtle’s range of motion. Allowing diagonal movement and a variable move distance
would make the model less abstract by no longer confining it to rigid grid movement.
This would make it more applicable to reasoning about robots that have more freedom of
motion or have to navigate in circumstances that require more precision. This would make
it a more accurate model for both the turtle and other potential real-world robots. This may
require using parametrised channels or allowing for more options but from a fixed range
(30°, 45°, etc.). The plan processes could be designed to use more of the CSP operators, such
as interleave (|||), to enable describing a whole new range of behaviours, such as multiple
agents. This is an area where CSP has been successfully applied before [31].

The CSP variant tock-CSP could be used to introduce the notion of discrete time into
the model; while the Turtle package does not include time restrictions, they could be
included in the translation manually (by using the sleep() function, for example) and
would be a useful addition when adapting our approach to real-world robotic systems.
Another avenue of future work is verifying aspects of the Python components of the tool
chain. A way to achieve this could be to use Nagini [32], a library for verifying Python code
that is written as annotations inside of the Python program itself. Nagini could be used to
make and prove assertions about the correctness of CSP2Turtle, for instance, if it inserts the
plan into the model correctly, which would help avoid errors that can occur from adding
more programming complexity.

As we talk about in Section 8.2, we are also interested in examining the potential
of tools like this in promoting and furthering education in formal methods and robotics.
Turtle’s visual feedback from its drawings and different modes of interactivity through
script or command prompts could be used to introduce and motivate a technical subject
such as formal methods in a novel way. In line with this, the robustness of the input lan-
guage itself could be enhanced. We believe there is potential to further develop CSP2Turtle
in this area, following a review of existing formal method teaching approaches.

The long-term goal of this project is to extend and adapt the ideas and approaches
explored here to develop tools to perform practical robotic system verification in Python.
This may involve extensions, restructuring, or changing approaches, but it will be grounded
in the technology explored and lessons learned during this work.

Author Contributions: Conceptualisation, D.M. and M.L.; software, D.M.; writing—original draft
preparation, D.M., M.L., M.F. and R.M.; writing—review and editing, M.L., M.F. and R.M.; supervi-
sion, R.M.; project administration, R.M. All authors have read and agreed to the published version of
the manuscript.

Robotics 2023, 12, 62 21 of 22

Funding: This research was funded by Science Foundation Ireland (SFI) grant number SFI 18/CRT/6049.
For the purpose of Open Access, the author has applied a CC BY public copyright licence to any
Author Accepted Manuscript version arising from this submission.

Data Availability Statement: CSP2Turtle is available at https://doi.org/10.5281/zenodo.7831832
(accessed on 19 January 2023).

Acknowledgments: Much of Farrell and Luckcuck’s work on this project was undertaken while they
were employed by Maynooth University. Farrell’s work has subsequently been supported by a Royal
Academy of Engineering Research Fellowship.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Webster, M.; Dixon, C.; Fisher, M.; Salem, M.; Saunders, J.; Koay, K.L.; Dautenhahn, K.; Saez-Pons, J. Toward Reliable Autonomous

Robotic Assistants Through Formal Verification: A Case Study. IEEE Trans.-Hum.-Mach. Syst. 2016, 46, 186–196. [CrossRef]
2. Fisher, M.; Cardoso, R.C.; Collins, E.C.; Dadswell, C.; Dennis, L.A.; Dixon, C.; Farrell, M.; Ferrando, A.; Huang, X.; Jump, M.; et al.

An overview of verification and validation challenges for inspection robots. Robotics 2021, 10, 67. [CrossRef]
3. Luckcuck, M.; Fisher, M.; Dennis, L.; Frost, S.; White, A.; Styles, D. Principles for the Development and Assurance of Autonomous

Systems for Safe Use in Hazardous Environments; Technical Report; Robotics and AI in Nuclear (RAIN) Hub, 2021. Available online:
https://doi.org/10.5281/zenodo.5012322 (accessed on 19 January 2023).

4. Luckcuck, M.; Farrell, M.; Dennis, L.A.; Dixon, C.; Fisher, M. Formal specification and verification of autonomous robotic systems:
A survey. ACM Comput. Surv. (CSUR) 2019, 52, 1–41. [CrossRef]

5. Cardoso, R.C.; Farrell, M.; Luckcuck, M.; Ferrando, A.; Fisher, M. Heterogeneous Verification of an Autonomous Curiosity Rover.
In NASA Formal Methods: Proceedings of the 12th International Symposium, NFM 2020, Moffett Field, CA, USA, 11–15 May 2020;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 353–360. [CrossRef]

6. Bourbouh, H.; Farrell, M.; Mavridou, A.; Sljivo, I.; Brat, G.; Dennis, L.A.; Fisher, M. Integrating Formal Verification and Assurance:
An Inspection Rover Case Study. In NASA Formal Methods: Proceedings of the 13th International Symposium, NFM 2021, Virtual
Event, 24–28 May 2021; Springer: Cham, Switzerland, 2021; pp. 53–71. [CrossRef]

7. MacConville, D.; Farrell, M.; Luckcuck, M.; Monahan, R. Modelling the Turtle Python library in CSP. Electron. Proc. Theor. Comput.
Sci. 2022, 362, 15–22. [CrossRef]

8. Luckcuck, M. Using formal methods for autonomous systems: Five recipes for formal verification. Proc. Inst. Mech. Eng. Part O J.
Risk Reliab. 2021, 237, 278–292. [CrossRef]

9. Hoare, C.A.R. Communicating sequential processes. Commun. ACM 1978, 21, 666–677. [CrossRef]
10. Gibson-Robinson, T.; Armstrong, P.; Boulgakov, A.; Roscoe, A. FDR3—A Modern Model Checker for CSP. In Proceedings

of the Tools and Algorithms for the Construction and Analysis of Systems, Grenoble, France, 5–13 April 2014; Springer:
Berlin/Heidelberg, Germany, 2014; Volume 8413, pp. 187–201. [CrossRef]

11. Miyazawa, A.; Ribeiro, P.; Li, W.; Cavalcanti, A.; Timmis, J.; Woodcock, J. RoboChart: Modelling and verification of the functional
behaviour of robotic applications. Softw. Syst. Model. 2019, 18, 3097–3149. [CrossRef]

12. Cavalcanti, A.; Baxter, J.; Hierons, R.; Lefticaru, R. Testing Robots Using CSP. In Proceedings of the Tests and Proofs; Beyer, D.;
Keller, C., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; Volume 11823, pp. 21–38; Lecture Notes in
Computer Science. [CrossRef]

13. Abba, A.; Cavalcanti, A.; Jacob, J. Temporal Reasoning Through Automatic Translation of tock-CSP into Timed Automata. In
Proceedings of the SBMF 2021: Formal Methods: Foundations and Applications; Campos, S., Minea, M., Eds.; Springer International
Publishing: Berlin/Heidelberg, Germany, 2021; Volume 13130, pp. 70–86. Series Title: Lecture Notes in Computer Science.
[CrossRef]

14. Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.; Ram, A.; Veloso, M.; Weld, D.; Wilkins, D.; Barrett, A.; Christianson, D.; et al.
PDDL—The Planning Domain Definition Language; Technical Report; AIPS-98 Planning Competition Committee, 1998. Available
online: https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf (accessed on 19 January 2023).

15. Fox, M.; Long, D. Modelling Mixed Discrete-Continuous Domains for Planning. J. Artif. Intell. Res. 2006, 27, 235–297. [CrossRef]
16. Li, Y.; Sun, J.; Dong, J.S.; Liu, Y.; Sun, J. Translating PDDL into CSP#—The PAT Approach. In Proceedings of the 2012 IEEE 17th

International Conference on Engineering of Complex Computer Systems, Paris, France, 18–20 July 2012; pp. 240–249. [CrossRef]
17. Sun, J.; Liu, Y.; Dong, J.S.; Chen, C. Integrating Specification and Programs for System Modeling and Verification. In Proceedings

of the 2009 Third IEEE International Symposium on Theoretical Aspects of Software Engineering, Tianjin, China, 29–31 July 2009;
pp. 127–135. [CrossRef]

https://doi.org/10.5281/zenodo.7831832
http://doi.org/10.1109/THMS.2015.2425139
http://dx.doi.org/10.3390/robotics10020067
https://doi.org/10.5281/zenodo.5012322
http://dx.doi.org/10.1145/3342355
http://dx.doi.org/10.1007/978-3-030-55754-620
http://dx.doi.org/10.1007/978-3-030-76384-84
http://dx.doi.org/10.4204/EPTCS.362.4
http://dx.doi.org/10.1177/1748006X211034970
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/s10270-018-00710-z
http://dx.doi.org/10.1007/978-3-030-31157-52
http://dx.doi.org/10.1007/978-3-030-92137-85
https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
http://dx.doi.org/10.1613/jair.2044
http://dx.doi.org/10.1109/ICECCS20050.2012.6299219
http://dx.doi.org/10.1109/TASE.2009.32

Robotics 2023, 12, 62 22 of 22

18. Banusić, G.B.; Majumdar, R.; Pirron, M.; Schmuck, A.K.; Zufferey, D. PGCD: Robot Programming and Verification with Geometry,
Concurrency, and Dynamics. In Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS
’19), Montreal, QC, Canada, 16–18 April 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 57–66.
[CrossRef]

19. Meywerk, T.; Walter, M.; Herdt, V.; GroBe, D.; Drechsler, R. Towards Formal Verification of Plans for Cognition-Enabled
Autonomous Robotic Agents. In Proceedings of the 2019 22nd Euromicro Conference on Digital System Design (DSD), Kallithea,
Greece, 28–30 August 2019; pp. 129–136. [CrossRef]

20. Bourbouh, H.; Farrell, M.; Mavridou, A.; Sljivo, I. Integration and Evaluation of the AdvoCATE, FRET, CoCoSim, and Event-B Tools on
the Inspection Rover Case Study; Technical Report; NASA: Washington, DC, USA, 2020.

21. Dezfuli, H.; Benjamin, A.; Everett, C.; Feather, M.; Rutledge, P.; Sen, D.; Youngblood, R. System Safety Concepts, Guidelines, and
Implementation Examples. In NASA System Safety Handbook; NASA: Washington, DC, USA, 2011; Volume 2.

22. Roscoe, A. Understanding Concurrent Systems; Texts in Computer Science; Springer: London, UK, 2010. [CrossRef]
23. Kress-Gazit, H.; Fainekos, G.E.; Pappas, G.J. Where’s Waldo? Sensor-based Temporal Logic Motion Planning. In Proceedings of

the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 3116–3121. [CrossRef]
24. Mitsch, S.; Ghorbal, K.; Vogelbacher, D.; Platzer, A. Formal verification of obstacle avoidance and navigation of ground robots.

Int. J. Robot. Res. 2017, 36, 1312–1340. [CrossRef]
25. Fisher, M.; Dennis, L.; Webster, M. Verifying Autonomous Systems. Commun. ACM 2013, 56, 84–93. [CrossRef]
26. Farrell, M.; Mavrakis, N.; Ferrando, A.; Dixon, C.; Gao, Y. Formal Modelling and Runtime Verification of Autonomous Grasping

for Active Debris Removal. Front. Robot. AI 2021, 8, 425. [CrossRef]
27. Liu, J.; Lv, J.; Quan, Z.; Zhan, N.; Zhao, H.; Zhou, C.; Zou, L. A Calculus for Hybrid CSP. In Asian Symposium on Programming

Languages and Systems: APLAS 2010, Proceedings of the 8th Asian Symposium, APLAS 2010, Shanghai, China, 28 November–1 December
2010; Ueda, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–15.

28. Schneider, S.; Treharne, H. CSP theorems for communicating B machines. Form. Asp. Comput. 2005, 17, 390–422. [CrossRef]
29. Schneider, S.; Treharne, H.; Wehrheim, H. A CSP Approach to Control in Event-B. In Integrated Formal Methods, Proceedings of the

8th International Conference, IFM 2010, Nancy, France, 11–14 October 2010; Lecture Notes in Computer Science; Mery, D., Merz, S.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6396, pp. 260–274. [CrossRef]

30. Ferrando, A.; Dennis, L.A.; Ancona, D.; Fisher, M.; Mascardi, V. Recognising Assumption Violations in Autonomous Systems
Verification. In Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, Stockholm, Sweden,
10–15 July 2018; IFAAMAS/ACM: Stockholm, Sweden, 2018; pp. 1933–1935. [CrossRef]

31. Luckcuck, M.; Cardoso, R.C. Formal Verification of a Map Merging Protocol in the Multi-agent Programming Contest. In
International Workshop on Engineering Multi-Agent Systems, Proceedings of the 9th International Workshop, EMAS 2021, Virtual Event,
3–4 May 2021; Alechina, N., Baldoni, M., Logan, B., Eds.; Springer: Cham, Switzerland, 2022; pp. 198–217. [CrossRef]

32. Eilers, M.; Müller, P. Nagini: A Static Verifier for Python. In Computer Aided Verification; Chockler, H., Weissenbacher, G., Eds.;
Springer International Publishing: Cham, Switzerland, 2018; Volume 10981, pp. 596–603. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3302509.3311052
http://dx.doi.org/10.1109/DSD.2019.00029
http://dx.doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1109/ROBOT.2007.363946
http://dx.doi.org/10.1177/0278364917733549
http://dx.doi.org/10.1145/2494558
http://dx.doi.org/10.3389/frobt.2021.639282
http://dx.doi.org/10.1007/s00165-005-0076-7
http://dx.doi.org/10.1007/978-3-642-16265-719
http://dx.doi.org/10.5555/3237383.3238028
http://dx.doi.org/10.1007/978-3-030-97457-212
http://dx.doi.org/10.1007/978-3-319-96145-333

	Introduction
	Background and Related Work
	The Turtle Package
	Communicating Sequential Processes (CSP)
	Related Work

	Modelling Approach
	Main Process
	Navigation Process
	Pen Processes

	CSP2Turtle: Our Python Toolchain
	Specifying the Environment
	Planning Language
	Plan and Environment Verification

	CSP2Turtle: In Action
	Validation with Case Study
	Evaluation
	Discussion
	An Olympian View
	Teaching Formal Methods

	Conclusions and Future Work
	References

