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Abstract: Nowadays, many people around the world cannot walk perfectly because of their knee
problems. A knee-assistive device is one option to support walking for those with low or not
enough knee muscle forces. Many research studies have created knee devices with control systems
implementing different techniques and sensors. This study proposes an alternative version of the
knee device control system without using too many actuators and sensors. It applies the machine
learning and artificial stiffness control strategy (MLASCS) that uses one actuator combined with
an encoder for estimating the amount of assistive support in a walking gait from the recorded gait
data. The study recorded several gait data and analyzed knee moments, and then trained a k-nearest
neighbor model using the knee angle and the angular velocity to classify a state in a gait cycle. This
control strategy also implements instantaneous artificial stiffness (IAS), a control system that requires
only knee angle in each state to determine the amount of supporting moment. After validating the
model via simulation, the accuracy of the machine learning model is around 99.9% with the speed of
165 observers/s, and the walking effort is reduced by up to 60% in a single gait cycle.

Keywords: knee exoskeleton; knee reinforcement device; gait rehabilitation; machine learning;
artificial stiffness control strategy

1. Introduction

Too much walking, running, sitting, and standing can cause body pain, particularly
knee pain. It is quite common because the knees carry the whole upper body weight in
most human movements. If people have knee discomfort, it will significantly impact their
daily lives, such as trouble walking/running/sitting, etc., or a lack of confidence in doing
basic chores [1]. Furthermore, several people have knee impairments, such as muscle
weakness, pain, and paralysis resulting from a spinal cord injury, severe injury, or other
syndromes [2,3].

To handle knee problems, many knee devices have been built. Knee reinforcement
devices are usually mechanical or electromechanical in general. Importantly, the goal of
the knee reinforcement device is to increase the user’s loading capacity or to decrease the
user’s metabolism during various mobility tasks [4]. When the user wears the device, it
should be comfortable and supportive [5].

According to former studies by Zhang et al. [6] on the attachment position of all
knee devices, approximately 38% of all devices is the lateral support layout (outside)
type [7–29]. The two-side support devices are used approximately 10% of all [3,30–34].
The improved-lateral support type is used by 40% [35–55], while the remaining devices
are anterior/posterior support type [6]. According to the movement of the knee, the most
significant factor that should be considered is how the device’s mechanism flexes and
extends the knee [6]. A research article proposes that the knee joint can be modeled as a
four-bar linkage mechanism with a maximum center of rotation error while walking is
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around 1.08 mm [56]. Moreover, in a normal gait cycle, the knee angle may not exceed
70 degrees [57], so the position of the center of rotation may not change substantially. Note
that the center of rotation is an instantaneous point where the upper leg and lower leg flex
or extend around.

Zhang et al. also suggested that many studies of knee assistive devices use different actu-
ation types [6]; around 73% of the research uses active actuation [3,7–23,30,35–39,41–48,58–67],
10% uses quasi-active actuation [24–26,49–52,55], and 17% uses passive actuation [27–29,31–
34,53,54,68,69]. A device that uses an electric or pneumatic actuator as a power source is
known as active actuation. A passive actuation device operates solely on the potential
energy of the device structure, whereas a device that uses a combined actuator and the
concept of the passive device is known as a quasi-active actuation. Moreover, in some
previous gait rehabilitation and human performance augmentation applications [70], they
generally used pneumatic artificial muscles (PAMs) [3,47,48,71], series elastic actuators
(SEAs) [40,55,58,72,73], motors [45,46,61,67], and regenerative magnetorheological actua-
tors (RMRAs) [74,75].

Control techniques are necessary during knee exoskeleton development in every
actuation type because of the physical connection between the wearer and the device.
The assistive moment can be generated corresponding to the wearer’s movements and
intention with the control strategy for ensuring the safety and comfort of the wearer.
Different control strategies for knee exoskeletons have been suggested, for example, the
position-based trajectory tracking control, the assist-as-need control, and the bioelectric
signals-based control [70]. The control techniques of the former studies used are (1) hybrid
position/force control by using a gauge pressure sensor [48] and applying the rotary and
linear encoder [47] to configure the support moment; (2) the force control [72,73], to apply
precise force or torque to the device; (3) bounded control [45,46] that increases safety and
prevents actuator saturation; (4) impedance control [40,58,61,67] which maps the desired
trajectory and the stiffness; (5) position control [55,74,75], tracking normal patterns of
walking and operating the device; (6) bioelectric signals-based control [3] that merges
the relation between muscle activity and human movement; (7) on–off control [71] that
generates and degenerates support in a specific condition.

From human gait cycles, the knee angle, an angle between the thigh leg and shin leg
where it is 0 when two sections are parallel, is between 0 and around 70 degrees [57], so the
range of motion of the device should smoothly operate between these degrees. The knee
joint acts as a pivot joint between the thigh leg and shin leg, while the quadriceps muscles
operate across it [76]. Dynamic and static stability of the knee joint can be controlled by
muscles, tendons, and ligaments [77]. In addition, the joint can be assumed as a four-bar
linkage [1,56,78] with a moving center of rotation point. The joint is stable because the
muscles and ligaments [2,3] act as a dampener. There are two basic phases in a normal
human gait cycle: stance phase and swing phase, with the stance phase being further
divided into the weight acceptance phase and terminal stance phase [70], as shown in
Figure 1 (modified from [70]). The weight acceptance phase occurs when a foot begins
to lie on the ground and sends body weight to the ground for balance. This phase ends
when the foot fully presses the ground. The terminal stance phase starts when the foot
begins to kick the ground to continue walking. The swing phase occurs after the foot has
been propelled off the ground. It is the phase in which a foot does not touch the ground
and swings for preparing the next weight acceptance phase. Figure 2 shows the plots of
human knee joint angle and moment per body mass during a gait cycle from modified raw
data [57]. The maximum knee moment per body mass is around 0.67 Nm/kg. Note that
the flexion moment is negative.
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Figure 2. Human knee joint angle (a) and moment per body mass (b) in a gait cycle. 
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additional rule sets. The relative velocity between a thigh and shin leg was also suggested 
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by the collision reactions of the knee’s cartilage and bone. The results can suggest a design 
concept for a knee device. 

The machine learning technique has been used for improving a knee device. Mokri et 
al. [82] can estimate a muscle force from the prediction of several machine learning methods, 
while the input is data from surface electromyography (sEMG) signals. This method can 
improve the performance of therapy and increase the sensitivity between the muscle model 
and the tendon stiffness. Machine learning was also applied for helping people with missing 
legs [83]. The study showed that the data from a series of foot pressure sensors can be used 
to predict the walking phase through the k−nearest neighbor (kNN) algorithm. Not only 
can healthy gait be detected by a machine learning model, but an abnormal gait can also be 
predicted. Chen et al. presented that their algorithm can predict the probability of elderly 
flat ground, which is helpful for the rehabilitation monitoring [84]. 

The control techniques usually require many sensors to control knee devices because 
of the complexity of movement, as the knee flexes and extends both when the foot touches 
and do not touch the ground. Nowadays, actuators combined with an encoder can give 
feedback on the motor’s current angle and the angular velocity of the joint. For reducing 
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A possibility of whether the stance and swing phase can be predicted by the angular
velocity of the lower leg was presented by Grimmer et al. [80]. Attaching five inertial
measurement units (IMUs) makes it possible to detect the stance phase while applying
additional rule sets. The relative velocity between a thigh and shin leg was also suggested
by Javanfar et al. [81]. The relative motion between the femur and tibia can be analyzed by
the collision reactions of the knee’s cartilage and bone. The results can suggest a design
concept for a knee device.

The machine learning technique has been used for improving a knee device. Mokri
et al. [82] can estimate a muscle force from the prediction of several machine learning
methods, while the input is data from surface electromyography (sEMG) signals. This
method can improve the performance of therapy and increase the sensitivity between the
muscle model and the tendon stiffness. Machine learning was also applied for helping
people with missing legs [83]. The study showed that the data from a series of foot pressure
sensors can be used to predict the walking phase through the k−nearest neighbor (kNN)
algorithm. Not only can healthy gait be detected by a machine learning model, but an
abnormal gait can also be predicted. Chen et al. presented that their algorithm can predict
the probability of elderly flat ground, which is helpful for the rehabilitation monitoring [84].

The control techniques usually require many sensors to control knee devices because
of the complexity of movement, as the knee flexes and extends both when the foot touches
and do not touch the ground. Nowadays, actuators combined with an encoder can give
feedback on the motor’s current angle and the angular velocity of the joint. For reducing the
number of sensors in the device, this research proposes the machine learning and artificial
stiffness control strategy (MLASCS) by using the knee angle and the knee angular velocity
with machine learning and an artificial stiffness techniques for controlling the amount
of supporting moment of the knee assistive device in a gait cycle. The machine learning
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model is introduced to classify the state of a gait cycle for mapping the amount of stiffness
to support the required knee moment. This study explains how to create the MLASCS
and validates the efficiency of this strategy by simulating the effort used when walking
with and without MLASCS. The results of this study can indicate if machine learning can
be applied for finding a state of gait, the amount of supporting knee moment, and if the
MLASCS can be used for knee devices, knee robotic systems, and humanoid robots.

The paper is organized as follows. Section 2 describes how to collect and prepare
data for calculations. Section 3 gives details on the creation of the MLASCS composed of
machine learning and artificial stiffness control techniques. In Section 4, the simulation and
validation of the MLASCS are shown. The results and discussion are displayed in Section 5.
Finally, Section 6 concludes all the details of the study and discusses future work.

2. Knee Joint Data Collection of Walking Gait Cycle

Even though there is a lot of recorded knee joint data on a normal human gait cycle,
there still might not be much knee data measured on Asian people which differs from
data on Western people. Therefore, the data in walking gaits are measured in our research
laboratory to make sure that the number of data points is large enough for creating a
machine learning model.

2.1. Data Collection

The information on knee angle and moment are necessary to analyze and understand
a human gait cycle for creating assistive knee motion devices. The knee moment can be
determined by a ground reaction force (GRF) using inverse kinematics calculations. One
effective way to determine knee movement and ground reaction force is from a motion
capture sensor and force plate sensors. In the motion capture device, markers should be
placed at the proper positions during measurement. According to the recommendations by
Robertson et al. [85], there should be at least two positions in each segment, for example, in
the lower leg the markers should be near the knee and the ankle so that the angular velocity
can be determined. Therefore, the CG, the hip, the knee, the ankle, and the finger markers
were attached at the positions shown in Figure 3. In addition, the average walking speed of
all participants was approximately 1.5 m/s.
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Figure 3. Positions of markers for collecting data from the Qualisys motion capture system.

The CG marker is attached at around 0.412 of sample height (proximal) following
the recommendation by Robertson et al. [85] to estimate the precise walking speed of the
sample. The hip, the knee, the ankle, and the finger markers were attached to measure
each 3D position, following the Qualisys Software Manual, for calculating knee and ankle
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angles. In this experiment, three participants were measured for nine trials in total. The
participants are Thai adults whose average age is 23, whose height is 171–172 cm, and
whose weight is 51.9–61.8 kg. The measurements also included two force plate sensors
on the ground to measure the GRF. The experiment room has 16 marker detectors, 2 force
plates, and 1 camera. The experiment room with markers attached to the participant is
shown in Figure 4.
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2.2. Data Analyzing

The sampling frequency of the motion capture is around 240 Hz. MATLAB was used
to resample the recorded data to have the same data points. The noise is also eliminated
by MATLAB.

2.2.1. Kinematics of Knee

The raw data of the CG, the hip, the knee, the ankle, and the finger markers are
represented in 3D positions in which the knee angles and ankle angles are determined.
The slight variation in the y-axis data is negligible and, thus, only data in the X–Z plane
is analyzed. Because all of the collected data are positions and angles, it is necessary to
calculate velocity and acceleration for further calculations. The centered finite difference
(CFD) method with an accuracy of order four was used to calculate velocity and acceleration.
The regular CFD equation is as follows [86]:

f′(x) =
[f(x + h) − f(x − h)]

2h
(1)

It can be calculated for more accurate prediction in the first derivatives for velocity, as
follows [87]:

f′(x) =
[ − f(x + 2h)+8f(x + h) − 8f(x − h)+f(x − 2h)]

12h
(2)

and second derivatives for acceleration [87], as follows:

f′′(x) =
[ − f(x + 2h)+8f(x + h) − 8f(x − h)+f(x − 2h)]

12h2 (3)

where x is the time values, f(x) is the function, f′(x) is the first derivative function, f′′(x) is
the second derivative function, and h represents the small step time.
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It was found that the collected data on knee angle has some noise; therefore, all knee
angle data required post-process signal processing before determining the knee angular
velocity (knee omega). The average of the processed knee angles and knee omegas with
the boundaries of all nine trial data are shown in Figure 5, whereas the starting position is
when the heel touches the force plate.
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2.2.2. Kinetics of Knee

The following is the process for calculating knee moment (Mknee) from the GRF. All
equations are modified from Newton’s 3rd Law (Equations (4) and (5)) for planar motion
where the free body diagrams of the lower leg and the foot are shown in Figure 6. There
are two steps in this calculation. The first step is the calculation of both the x and z
directions of the ankle reaction force (Fx, ankle and Fz, ankle) and the ankle moment (Mankle)
from the x and the z directions of the GRF (GRFx and GRFz) shown in Equations (6)–(8).
Equations (4) and (5) are as follows:

∑ F = ma (4)

∑ MG= Iα (5)

where ∑ F represents the summation of all the forces that act on the body, m is the mass of
the body, and a is the acceleration of the body. ∑ M is the summation of all action moments
exerted on the body around a specific point (G), the I is the moment of inertia of the body
around the point, and the α is the angular acceleration of the body around the point. From
the free body diagram of the lower leg and foot shown in Figure 6, the forces on the ankles
can be calculated by the following equations:

Fx,ankle= GRFx −mfootax,foot (6)

Fz,ankle= GRFz −Wfoot −mfootaz,foot (7)

The moment around the ankle is as follows:

Mankle= GRFz(Rx,GRF)+GRFx(Rz,GRF) −Wfoot(Rcm,ankle)+Iankleαankle, (8)

where GRFx and GRFz are the ground reaction force in the x and z directions, respectively.
The Rx, GRF and Rz, GRF are the lever arm distance between the instantaneous center of
rotation of the ankle (ICRankle) and GRFx and GRFz, respectively. Note that, the position
data of the ankle marker, placed at the apex of the lateral malleolus, was used as the
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position of the ICRankle in this calculation. The mass mfoot is the estimated mass of the foot,
which is approximately 0.0145 of body mass (mbody) [85]. Here, ax, foot and az, foot are the
accelerations at the foot’s center of mass in the x and z-directions, Wfoot is the weight of
the foot, Rcm, ankle is the lever arm distance between the ICRankle and Wfoot, Iankle is the
moment of inertia around ICRankle of which the radius of gyration is approximately 0.690
of the foot length [85], and αankle is the angular acceleration of the ankle. All positions of
the variables are shown in Figure 6, where Fx, knee and Fz, knee are the knee reaction forces in
the x and z direction, respectively. Hence, the moment of the knee Mknee can be calculated
from the Fx, ankle, Fz, ankle and Mankle via the following equation:

Mknee= Wleg(Rcm,knee) −Mankle − Fz, ankle

(
Rx, leg

)
− Fx, ankle

(
Rz, leg

)
+Ikneeαknee, (9)

where Wleg is the weight of the lower leg, which is approximately 0.0465 of body mass [85],
Rcm, knee is the level arm distance between the instantaneous center of rotation of the knee
ICRknee and Wleg, Rx, leg and Rz, leg are the lever arm distances between ICRknee and Fx, ankle
and Fz, ankle, respectively, Iknee is the moment of inertia around ICRknee of which the radius
of gyration is approximately 0.528 of the lower leg length [85], and αknee is the angular
acceleration of the knee.
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The knee moment per body mass (MPBknee) during a gait cycle of all trials can be
determined from the knee moment (Mknee) and the body mass (mbody), as follows:

MPBknee =
Mknee
mbody

. (10)

The average and the boundaries of the calculated knee moment per body mass are
shown in Figure 7, whereas the knee extension moment is positive, and the knee flexion
moment is negative. Even though the results are slightly different from the previous study
by Winter [57], the trends of all knee moments are quite similar. The difference in the results
might be from differences in step lengths, foot shapes, stride shapes, etc. Even the same
person can have different knee moment paths in each step, so it may be normal if different
people have different knee moments.
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3. Machine Learning and Artificial Stiffness Control Strategy (MLASCS)

The machine learning and artificial stiffness control strategy (MLASCS) is proposed as
an alternative strategy to control a knee assistive device in a gait cycle. The advantage of
this strategy is that only the knee angle and the knee angular velocity (knee omega) are
required to determine the state of a gait cycle and the amount of support moment provided
by the device. In order to make sure that the device does not cause any unwanted injury to
the wearer, the MLASCS control system should be combined with a possibility checking
function for increasing the accuracy of the state predicted, and various stiffness functions
for increasing the suitability of the supporting moment. Furthermore, the artificial stiffness
with a goal position can generate a moment of direct command. Artificial stiffness is a
function that can predict the amount of stiffness required for supporting gait by the knee
angle and the state of gait.

3.1. Classification and Training for Machine Learning Model

In a gait cycle, there are two main phases, which are the stance phase and the swing
phase, and one knee angle can be in both the swing and stance phases. Therefore, it is
necessary to create a machine learning model to classify the walking stage for predicting the
walking phase to determine proper knee moment support at any position of a gait cycle.

3.1.1. Classification

As stated above, the position of a gait cycle and a state of walking cannot be determined
from just a knee angle, and the second variable that can be used to classify the state is
knee omega. As shown in Figure 8, all nine trial data were calculated by Equation (2),
post-processed, and plotted to see the relationship between knee angle and knee omega.
The inner loop and outer loop cannot be mapped to the swing and stance phases. Therefore,
a new set of states in a gait cycle should be invented for further control in this system.

As observed from a gait cycle, the plot could be separated into four states by the local
minimum and maximum points in a knee angle for easy classification in a training process.
These are initial place, final place, initial lift, and final lift states, where each state position is
also shown in Figure 8 and can be mapped to a gait cycle as shown in Figure 9. The initial
place starts when the knee is fully extended before the heel touches the ground (omega is
more than zero within the inner loop). Then, the final place begins after the knee extends
from flexing because of the body weight while being placed on the ground (omega is less
than zero within the inner loop). After the foot kicks the ground and starts flexing within
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the stance phase, the initial lift starts (omega is more than zero). Finally, the final lift is the
state when the knee extends for a heel strike in the next gait cycle (omega is less than zero).
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In the initial and final place states, the knee angle does not exceed 25 degrees by
observation from the gait cycle. The knee omega in the initial place state should be positive
and negative for the final place state. The knee omegas of the initial and final lift states
have the same characteristics in the initial and final place, but the knee angle can be up to
70 degrees following the recorded data.

3.1.2. Training

After defining the state of all training data, the classification learner of the MATLAB
program was used to create a machine learning model. The benefit of a machine learning
technique is that the model can classify precisely when there are a lot of training data. In that
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case, if the model can predict the state correctly with a difference in gait speed, the model is
truly helpful. However, the model should predict correctly at least in a specific gait speed
before testing with different gait speed training data. This paper focus on data with a gait
speed of around 1.5 m/s. The training data was trained with many types of classifiers such
as decision trees (accuracy: 80.0–92.5%), discriminant analysis (accuracy: 76.6–77.1%), naïve
Bayes classifiers (accuracy: 77.6–81.5%), support vector machines (accuracy: 84.8%–93.7%),
and nearest neighbor classifiers (accuracy: 78.8–95.0%). The best accuracy model type of
mentioned classifier is the k-nearest neighbor (KNN) with the setting for training shown in
Table 1, of which the accuracy is around 95.0%.

Table 1. The settings for training the KNN machine learning model.

Setting Detail

Preset Fine KNN
Number of neighbors 3

Distance metric Chebyshev
Distance weight Equal
Standardize data True

3.1.3. Improving

After comparing the predicted state with the testing data, it is found that most of the
incorrect predictions are at the intersection point between the initial place and initial lift
(see Figure 8) where the exerted moments are much different, so it might be dangerous
operating the knee device with this model. Thus, the continuity of state checking (CoSC) is
presented to improve prediction accuracy. The CoSC requires the last and current predicted
state to confirm the correctness of the prediction. Because walking is a continuous loop
posture, all states go in the following order: the initial place, final place, initial lift, final lift,
and then it starts a new loop with the initial place state. In order to prevent misclassifying
between the initial place and the initial lift, the CoSC was applied to confirm that the initial
lift state always follows the initial lift or final place, and the initial place state chases the
initial place and final lift only. After predicting the sample data with the machine learning
model with the CoSC, the accuracy increased to 99.9%, as seen in the validation confusion
matrix of the machine learning model in Figure 10. However, the limitation of this machine
learning model is that the model was calculated from the gait data with a gait speed of
around 1.5 m/s. The accuracy may decrease if the model were to be used to predict data
from another gait speed. Nonetheless, the state of any gait cycle still circulates as the initial
place, final place, initial lift, and final lift. Therefore, the CoSC can lead the prediction state
result state to follow the loop of states in a gait cycle. Another limitation is the processing
time; the fastest prediction speed is around 168 observations per second. Note that the
prediction speed can be changed depending on the computer and its processor.

3.2. Artificial Stiffness Control

An artificial stiffness control is an alternative method to support knee moments during
a gait cycle. The idea comes from an observation of a torsion spring that can generate
a return moment if the spring moves from rest. Therefore, if a controllable actuator is
commanded with the desired position, the artificial rest position, and the proportional
gain, it can act like a torsion spring with the desired stiffness. Compared to a direct
torque-applied method, this method may be more friendly to the user because a supporting
moment acts like an elastic spring. If it approaches the desired position, the generated
moment should drop and eventually stop as it reaches the desired position.
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3.2.1. Instantaneous Artificial Stiffness (IAS)

An instantaneous artificial stiffness is estimated from a knee moment (Mknee) and an
angle deflection, a constant determinable number that deflects from the knee angle. If the
determined deflection angle is low, the IAS will be high, and vice versa, as seen in the
following equation of knee moment:

Mknee = IAS × (deflection angle), (11)

Thus, in this case, the deflection was set to 10 degrees because the instantaneous
artificial stiffness is not large, and there is enough deflection for commanding an actuator
to operate. In general, MPBknee was used instead of the Mknee to estimate an instantaneous
artificial stiffness per body mass (IASPB), as seen in the following Equation (12), where i
represents the knee angle:

IASPB(i) =
MPBknee(i)

10
(12)

3.2.2. Artificial Stiffness Control Equations

Because the gait cycles of different persons may not be the same, it is better to find the
equations to estimate the instantaneous artificial stiffness per body mass (IASPB) in a gait
cycle, so the equations can be used commonly. The average knee moment per body mass
(AMPBknee), calculated from the average of all MPBknee data, was used to obtain IASPB
equations in each state by the polyfit function in MATLAB, as shown in Equations (13)–(16).
The IASPBIP, IASPBFP, IASPBIL, and IASPBFL are the functions of IASPB in the initial place,
final place, initial lift, and final lift state, respectively, where a is the knee angle. Figure 11
shows plots of the IASPB path on knee angle in all trials and the estimated value from the
equations in each state, where the positive value means the extension direction and the
negative value is the flexion direction.

IASPBIP (a) = 0.0073a2 + 0.0391a + 0.0179 (13)

IASPBFP (a) = 0.0023a2 + 0.0237a + 0.0303 (14)

IASPBIL (a) = −0.002a5 + 0.0057a4 + 0.0067a3 − 0.026a2 + 0.0019a + 0.0279 (15)

IASPBFL (a) = − 0.0028a2 + 0.0111a − 0.003 (16)
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Figure 11. The instantaneous artificial stiffness per body mass (IASPB) path on the knee angle in
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The concept of artificial stiffness control combined with machine learning is shown
in Figure 12. The current knee angle (θ) and the current knee omega (ω) measured from
the encoder were used to predict the current state of a gait cycle by the machine learning
model. After that, the current state and θ were used to calculate the current IASPB. The
current IASPB was then multiplied by the body mass and the mass of a sample to obtain
an instantaneous artificial stiffness (IAS). The actuator required the IAS and the desired
position (θdesired) to generate the moment for supporting the knee. The θdesired is set to be
10 degrees away from the θ. Finally, the IAS and θdesired were used to command the actuator.
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4. Simulation and Validation

This part shows the simulation method to validate the MLASCS concept and also
determines the effort over a gait cycle (modified from [31]) for comparing the walking
efficiency. The data for testing was from the average knee angle and knee omega of the
nine trial data recorded. In the simulation, the supporting moment, which is the moment
generated by the actuator for assisting the walking, was estimated by using instantaneous
artificial stiffness (IAS) equations. The simulation path was calculated as shown in Figure 12.
The sample knee angle and omega predicted the state of gait by the machine learning model.
Then, the predicted state and knee angle mapped the amount of IASPB using Equations
(13)–(16). Finally, the IASPB was multiplied by the sample mass and predicted the amount
of supporting moment by multiplying the IAS with the angle deflection. The validation is
carried out by comparing the amount of effort over a gait cycle when applying supporting
moments to the amount of effort without the support.
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4.1. Supporting Moment Simulation

The simulation settings were chosen to have the test as close to the real system. The knee
angle (θ) and the knee omega (ω) of the sample were imported one set at a time. Then, this
set was used to predict the state and determine the IAS and θdesired. The IAS from the IASPB
equations can be either positive or negative, but stiffness in the negative has no meaning. In
the case that the IAS is negative, it will be change to positive, and the θdesired will be negative
instead. The IAS, θ, and θdesired can be used to estimate the supporting moment (Ms) with
an adjustable percentage of support (n), between 0–1, by the following equation:

Ms = n|IAS| (θ− θdesired (17)

Furthermore, Ms was used to calculate the remaining knee moment (Mr), i.e., the
moment that is still required for walking after being supported by the device, via the
following equation:

Mr = Mknee −Ms. (18)

After simulating with many sets of gait data, it is found that Ms is frequently higher
than the exerted moment. As a result, the percentage of support should be reduced. After
optimizing the percentage of support to prevent over-assisting moments in all trial data, n
should be less than 70% or 0.7. Consequently, all Mknee data were compared to the average
and boundary of Mknee when the n is 0.7, as seen in Figure 13.
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percentage of support (n) is 0.7.

4.2. Effort over a Gait Cycle

An effort over a gait cycle can be used to validate and examine the difference of effort
between the sample path and the resulting path obtained from the effort over time presented
by Chaichaowarat et al. [31]. The effort over a gait cycle was divided into two parts, namely
the extension effort (EE) and the flexion effort (FE). The EE and the FE were determined by
integrating the extension moment (EM), i.e., the moment in extension direction, and the
flexion moment (FM), i.e., the moment in flexion direction, over a percent of gait (PoG), as
in Equations (19) and (20), respectively. Then, the summation of EE and FE is the total effort
(TE), as in Equation (21), which is used for comparing the efficiency of the MLASCS. The
efforts of each trial, calculated from the measured knee moment, and their remaining efforts,
determined from the remaining moments with assistance from the device, are shown in
Figure 14.

EE =
∫ 1

0
EMdPoG (19)
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FE =
∫ 1

0
FMdPoG (20)

TE = EE + FE (21)
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5. Results and Discussion

Knee assistive devices need knee data to control the device correctly without any harm
to the user. The primary information for controlling a knee device is the knee angle and the
knee moment. For controlling the walking gait, the secondary set of data required is the
phase of gait, as each phase needs a different amount of support. Therefore, the machine
learning and artificial stiffness control strategy (MLASCS) was applied to classify the phase
of gait: initial place, final place, initial lift, and final lift state. After that, the predicted state
and knee angle was used to estimate the amount of support by the instantaneous artificial
stiffness per body mass (IASPB) equations mentioned in the above section.

The instantaneous artificial stiffness per body mass (IASPB) equations were separated
into four equations, namely IASPBIP, IASPBFP, IASPBIL, and IASPBFL, which are the func-
tions of IASPB in the initial place, final place, initial lift, and final lift state, respectively. Each
IASPB function was calculated from the average knee moment per body mass (AMPBknee)
so that the supporting moment may exceed or be lower compared to the required knee
moment for walking. The percentage of support (n) was invented to adjust the supporting
moment. As a result, the n should be 0.7 so that the supporting moment does not exceed
the required moment.

In the simulation section, the MLASCS was tested by using all recorded trial data and
average data to validate the efficiency of the strategy by using the effort over a gait cycle, as
shown in the previous section. The results show that the prediction of the machine learning
model is working well. The model mostly predicts the current state correctly, and the
IASPB equations can give an amount of stiffness for supporting the knee in each position
which is mainly a bit lower than required for walking. The total effort of the recorded data
was converted to 100% for easy comparison with their total effort after it was supported in
each trial shown, as shown in Table 2.

The total remaining effort, i.e., the effort that is still required for walking after support-
ing in each trial, showed that this strategy assists knee moments while walking in every
trial. The percentage of the remaining effort will change if the percentage of support (n) is
adjusted. For example, if the n is too high, the supporting moment will exceed the moment
required, so the effort will be larger than the required effort, but if the n is too low, the effort
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will be close to the required effort which means it does not support enough. As seen in
Table 2, the extension effort was highly reduced by the strategy compared to the flexion. In
some trials, this strategy reduced the flexion effort by less than 10% or even increased the
effort. As a result, it caused an adverse effect on the user. Then, the n should be changed
individually depending on the user. Note that if the n is too small, the supporting moment
is minimal, and vice versa.

Table 2. Comparison of the effort over a gait cycle from the recorded data and remaining moment.

Trials Data Flexion Effort (FE) Extension Effort
(EE) Total Effort (TE) Reduction

Trial 1
Effort without assist 33.0% 67.0% 100%

62.9%Remaining effort 25.2% 11.9% 37.1%

Trial 2
Effort without assist 30.9% 69.1% 100%

63.4%Remaining effort 24.4% 12.2% 36.6%

Trial 3
Effort without assist 34.2% 65.8% 100%

57.2%Remaining effort 21.8% 21.0% 42.8%

Trial 4
Effort without assist 35.1% 64.9% 100%

59.4%Remaining effort 31.7% 8.9% 40.6%

Trial 5
Effort without assist 17.1% 82.9% 100%

62.6%Remaining effort 11.0% 26.4% 37.4%

Trial 6
Effort without assist 16.8% 83.2% 100%

36%Remaining effort 9.6% 54.4% 64.0%

Trial 7
Effort without assist 12.8% 87.2% 100%

60%Remaining effort 15.3% 24.7% 40.0%

Trial 8
Effort without assist 14.1% 85.9% 100%

45.8%Remaining effort 3.6% 50.6% 54.2%

Trial 9
Effort without assist 11.3% 88.7% 100%

61.3%Remaining effort 1.8% 36.9% 38.7%

Average Effort without assist 17.7% 82.3% 100%
28.3%Remaining effort 11.3% 60.3% 71.7%

After testing and validating the MLASCS, it seems that the strategy can be used in a
knee-assistive device. The technique can predict the amount of supporting moments from
the recorded gait data. The MLASCS speed is around 165 observers/s. In a single gait
cycle while walking around 1.5 m/s, the time duration is around 1.1 s, so the MLASCS can
handle gait data and estimate the amount of supporting moment. The results showed that
the walking effort was reduced to 63.4% when the n was 0.7.

6. Conclusions

In a knee assistive device, a control algorithm is one of the most important parts.
Depending on the controlling system, the device can operate smoothly or harm a user.
This study aims to validate a new type of control strategy called the machine learning
and artificial stiffness control strategy (MLASCS) for commanding the proper amount of
support moment to assist while walking. The MLASCS is composed of a trained machine
learning model and the instantaneous artificial stiffness per body mass (IASPB) equations.
The trained model can classify the state of a gait cycle by using knee angle and omega. The
accuracy of the modified machine learning model is around 99.9%. The IASPB equations
require the knee angle and the state to map the amount of stiffness to support the knee
moment. The support moment will change if the user adjusts the percentage of support (n),
so the user can select the amount of assistance. After validating the MLASCS with nine
trial data sets, the strategy can reduce the total effort over a gait cycle up to 63.4% when the
n was 0.7. The extension effort was mainly reduced, so for those who want to combine this
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strategy with the knee assistive device, the posterior support device is recommended. The
authors highly recommend a device that is designed for supporting extension direction
instead of flexion direction because of the high extension moment required for walking.
Moreover, the knee joint of a knee device might not align with the human knee joint, so
the machine learning model should be retrained following the joint angle while walking.
Because there are many variables in this article, Table 3 summarizes important variables in
this paper for a better understanding.

Table 3. Variables table.

Category Variable Name Axis Variable
Symbol Unit

Force

Ground reaction force
x GRFx N
z GRFz N

Ankle reaction force
x Fx, ankle N
z Fz, ankle N

Foot weight −z Wfoot N
Weight of the lower leg −z Wleg N

Moment

Ankle moment y Mankle Nm
Knee moment −y Mknee Nm

Knee moment per body mass −y MPBknee Nm/kg
Average knee moment per body mass −y AMPBknee Nm/kg

Extension moment - EM Nm
Flexion moment - FM Nm

Point
Instantaneous center of rotation of the ankle - ICRankle -
Instantaneous center of rotation of the knee - ICRknee -

Distance

Perpendicular distance between the ICRankle and the
direction of the GRF

x Rx, GRF m
z Rz, GRF m

Perpendicular distance between the ICRankle and the
direction of the Wfoot x Rcm, ankle m

Perpendicular distance between the ICRknee and the
direction of the Wleg x Rcm, knee m

Perpendicular distance between the ICRknee and the
direction of the ankle reaction force

x Rx, leg m
z Rz, leg m

Mass
Body mass - mbody kg
Foot mass - mfoot kg

Acceleration
Foot acceleration

x ax, foot m/s2

z az, foot m/s2

Foot angular acceleration y αankle rad/s2

Knee angular acceleration y αknee rad/s2

Moment of
inertia

Moment of inertia around ICRankle - Iankle kg-m2

Moment of inertia around ICRknee - Iknee kg-m2

Stiffness

Instantaneous artificial stiffness - IAS Nm/deg
Instantaneous artificial stiffness per body mass - IASPB Nm/kg-deg

Instantaneous artificial stiffness per body mass equation in
the initial place state - IASPBIP Nm/kg-deg

Instantaneous artificial stiffness per body mass equation in
the final place state - IASPBFP Nm/kg-deg

Instantaneous artificial stiffness per body mass equation in
the initial lift state - IASPBIL Nm/kg-deg

Instantaneous artificial stiffness per body mass equation in
the final lift state - IASPBFL Nm/kg-deg
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Table 3. Cont.

Category Variable Name Axis Variable
Symbol Unit

Effort over a gait cycle
Total effort over a gait cycle - TE Nm-deg

Extension effort over a gait cycle - EE Nm-deg
Flexion effort over a gait cycle - FE Nm-deg

Others
Percent of gait - PoG -

Centered finite difference - CFD -
Percentage of support - n -
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