
Citation: Psotka, M.; Duchoň, F.;

Roman, M.; Michal, T.; Michal, D.

Global Path Planning Method Based

on a Modification of the Wavefront

Algorithm for Ground Mobile Robots.

Robotics 2023, 12, 25. https://

doi.org/10.3390/robotics12010025

Academic Editors: Luis Payá, Oscar

Reinoso García and Helder

Jesus Araújo

Received: 20 January 2023

Revised: 2 February 2023

Accepted: 6 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Global Path Planning Method Based on a Modification of the
Wavefront Algorithm for Ground Mobile Robots
Martin Psotka 1 , František Duchoň 1,* , Mykhailyshyn Roman 2,3 , Tölgyessy Michal 1 and Dobiš Michal 1

1 Institute of Robotics and Cybernetics, Faculty of Electrical Engineering and Information Technology,
Slovak University of Technology, 811 07 Bratislava, Slovakia

2 Texas Robotics, College of Natural Sciences and the Cockrell School of Engineering, The University of Texas at
Austin, Austin, TX 78712, USA

3 Department of Automation of Technological Processes and Manufacturing, Ternopil Ivan Puluj National
Technical University, 46001 Ternopil, Ukraine

* Correspondence: frantisek.duchon@stuba.sk; Tel.: +421-915-719-462

Abstract: This article is focused on the problematics of path planning, which means finding the
optimal path between two points in a known environment with obstacles. The proposed path-
planning method uses the wavefront algorithm, and two modifications are implemented and verified.
The first modification is the removal of redundant waypoints. The first modification is applied because
the wavefront algorithm generates redundant waypoints. These waypoints cause unnecessary
changes in the direction of movement. The second one is smoothing the generated trajectory using
B-spline curves. The reason for applying the second modification is that trajectory generated by the
wavefront algorithm is in the form of the polyline, which is inadequate in terms of the smoothness
of the robot’s motion. The verification of the proposed method is performed in environments with
different densities of obstacles compared with standard Dijkstra’s and A* algorithms.

Keywords: global path planning; wavefront algorithm; B-spline curves; ROS; ground mobile robot

1. Introduction

For the safe movement of a mobile robot in the environment, it is necessary to perform
two basic activities—localization and navigation. Localization is performed using an
environment map and suitable sensors, and SLAM [1,2] is primarily concerned with this
issue. The localization, therefore, determines the robot’s position in the environment.

For the collision-free movement of the robot, the so-called reactive navigation is used.
This navigation must react fast enough concerning objects in the environment and the
robot’s activity. Reactive navigation usually uses only current measurements from sensors
and is also called local navigation [3]. The robot’s path planning (i.e., global navigation) is
implemented in a known or partially known environment with a predetermined goal. This
article focuses on the issue of path planning.

The optimality of the planned path cannot be determined in general [4]. The type of
robot chassis used, dimensions, dynamic limitations, etc., are essential. It is also because
mobile robots occur in various applications and environments. It depends on these facts
and application requirements which path characteristics are crucial and to what extent. The
following features are often considered essential in path-planning algorithms:

1. The computational complexity also depends on the computational power available to
the robot. Currently, some mobile devices are already performing such computing
power that in smaller environments and with slower motion, the need for both levels
of navigation (global and local) disappear.

2. In some cases, the shortest possible path may be preferred, while in other cases, a
slightly longer path may be suitable because it has better properties according to
another criterion.

Robotics 2023, 12, 25. https://doi.org/10.3390/robotics12010025 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12010025
https://doi.org/10.3390/robotics12010025
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0001-8676-0681
https://orcid.org/0000-0003-4140-9737
https://orcid.org/0000-0002-1203-3446
https://orcid.org/0000-0003-1697-1197
https://orcid.org/0000-0002-2453-212X
https://doi.org/10.3390/robotics12010025
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12010025?type=check_update&version=1

Robotics 2023, 12, 25 2 of 16

3. The distance of the path from the obstacles usually expresses the safety of movement.
For example, the Voronoi diagram [5] used in path planning ensures the maximum
possible distance from all obstacles.

4. Physical constraints need to be taken into account. It mainly depends on whether the
robot is holonomic. If it is non-holonomic, its radius of rotation must be considered
when planning the path.

Moreover, path planning is an optimization problem where different criteria can
be applied. According to the [6], four criteria must be considered in a path planning
algorithm—optimization (best paths in terms of distance, terrain traversability, energy
consumption, or other costs), completeness (all possible solutions for the path), accu-
racy/precision, and execution time.

Model-based path planning for mobile robots may include knowledge of kinematics
(or dynamics), the environment, the planning objective, and available resources [7]. A key
aspect in every path-planning method is modeling the environment, its representation
(map), and the model of the controlled system itself, i.e., the robot. In general, the following
three conditions must be met when creating a map [8]:

1. The accuracy of the map must be chosen appropriately given the required accuracy
when reaching the target.

2. The accuracy of the map and the type of recorded environment properties must
correspond to the sensors’ accuracy and ability to capture those properties.

3. The complexity of the environment representation is directly proportional to the
required computing power or the required computing time.

There are several maps [9–11], but it is generally impossible to say which one is the
most convenient. The choice depends on the environment and the specific application of
the mobile robot. It is also possible to use the advantages of several maps and suppress
their disadvantages by creating the so-called hybrid map. The output of path planning is
the points on the map where the robot’s direction changes. Reaching these points is the
task of reactive navigation, which ensures safe movement or modifies the path to make the
movement smoother.

In our research, metric maps were used for robot navigation. In our research, we focus
on using metric maps for robot navigation. A metric representation of the environment
can use two approaches to cell proximity. In 4-neighbors, we consider only cells in the up,
down, right, and left directions adjacent to the current cell. In 8-neighbors, we consider
four other cells in diagonal directions as adjacent cells.

The basic algorithms for finding a path in a metric map include the wavefront algo-
rithm, Dijkstra, and A*. The wavefront algorithm [12] considers free space a thermally
conductive material with obstacles not being thermally conductive. The individual cells in
the metric map are evaluated by spreading the heat between the start and the goal. The
optimal path is found by proceeding in the direction of the gradient, respectively against
the gradient’s direction.

Dijkstra’s algorithm [13] is typically used on graph structures (topological maps) but
can also be used on a metric map (the graph’s vertices create map cells). This algorithm
counts all the shortest paths from the specified starting vertex. The points in space represent
the graph’s vertices, and the distance between the given points evaluates the edges.

A* [13,14] is a heuristic algorithm that calculates the path from a specified starting
point to a defined goal with minimum costs. In path planning in mobile robotics, minimal
costs are most commonly used as the shortest path. The points in space also represent the
graph’s nodes, and the distance between the given points evaluates the edges. Each point
is also assigned a value representing the distance to the goal (e.g., Manhattan distance).

D* (Dynamic A*) [15] is a modification of the A* algorithm used in partially known or
dynamically changing environments. It provides a much faster path rescheduling process
but at the cost of using a large amount of memory.

One of the characteristic algorithms used on the metric map is the brushfire algo-
rithm [16]. This algorithm assigns values to all map cells depending on the distance to

Robotics 2023, 12, 25 3 of 16

obstacles. It evaluates the cells adjacent to the obstacles and proceeds toward the free space.
The values of the map cells express the distance to the nearest obstacle. Based on this
evaluation, we can create an array of repulsive forces from obstacles. We can then find the
path between the two points by combining repulsive forces from obstacles and attractive
forces from the target. The brushfire algorithm is similar to a wavefront algorithm, but its
disadvantages are evaluating all free space cells and the local minima problem [16]. The
advantage of these algorithms is the possibility of considering the terrain. It can be done
by modifying the cost function that evaluates the map cells or using the 3D model of the
environment. Our research does not deal with terrain analysis, but the purpose is primarily
for indoor mobile robots. Therefore, we assume a flat terrain with the same properties
throughout the environment and do not model it. If it is necessary to use the terrain model
as well, this issue is discussed, for example, in refs. [17,18].

There are also methods for solving path-planning tasks that use random space searches.
The first one is probabilistic roadmaps [19], which consists of two steps forming a graph
structure. It consists of vertices and edges. The first step is the learning phase. It generates
points (vertices) in free space to cover the free area reasonably. Subsequently, the individual
vertices join with the vertices located from them at a specified distance. They can only be
connected by edges that ensure a collision-free transition. The second step is the demand
phase. This step uses classic graph methods to find the shortest path between the start and
the goal. There must be a path from the start and goal to other points in the roadmap to
find a path.

The second one is rapidly-exploring random trees (RRT) [20]. The trajectory is the
rapidly-exploring random tree, which extends from the starting point. The procedure is
iterative, while the RRT can be expanded by a fixed distance or a path corresponding to
a specified time interval. In each iteration, a vertex in free space is randomly generated.
This vertex is then connected to the nearest vertex, providing a collision-free connection. A
path (sequence of vertices) connecting the start and goal is selected when one vertex gets
close enough to the goal. The advantage of this method is the ability to directly include the
kinematic and dynamic constraints of the robot when searching space.

As with probabilistic roadmaps, the genetic algorithm [21] can search the space.
Genetic algorithm solutions represent the sequence of visited transition points, starting at
the start and ending at the goal. The solution’s success is expressed by the value of the
fitness function, which can include the total length of the path, the distance from obstacles,
and more. The sequences, commonly named chromosomes, are initialized randomly.
They are modified using the so-called genetic operations (crossover, mutation), and better
solutions are selected for the next generation. When finished, the solution is the best
sequence found.

The advantage of random space searching methods is the ability to achieve good
(suboptimal) results with low computational complexity. The main disadvantage is that
they usually do not generate an optimal path in terms of path length, and the smoothness
of the path is also reduced.

In general, the topic of global path planning is pretty extensive, and it is not possible
to provide and analyze all aspects in the introduction of this article. More details can be
found in [22].

The article is divided as follows. Section 2 describes the prerequisites we used in our
research and development of the path-planning method. It also describes this proposed
approach. Section 3 describes different simulation results and presents different compar-
ison criteria of three path-planning methods with three criteria and their multi-criteria
combination. At the end of the article, there is a summary and proof that the proposed
path-planning method is usable and comparable to state-of-the-art methods.

2. Materials and Methods

Global navigation algorithms on a metric map commonly produce trajectories con-
taining breakpoints. The direction of movement changes sharply at this point, which is

Robotics 2023, 12, 25 4 of 16

inadequate in terms of the smoothness of the robot’s movement (e.g., the sum of changes in
rotation during the path execution). Therefore, it is appropriate to create a curve based on
the breakpoints, which will compromise the exact achievement of the given points and the
ideal curve shape from the dynamics point of view of the mobile robot. It can be achieved,
for example, by using B-spline curves [23].

B-spline curves are approximation curves that result from polynomial interpolation.
Unlike Bézier curves, which are defined as point interpolation, B-spline curves are defined
as interpolation of so-called basis functions. The degree of basic functions is predetermined
and does not depend on the total number of interpolated points. This degree determines
from how many points the curves of the basic functions are constructed. B-spline curves are
suitable for creating (adjusting) the path of a mobile robot because they are continuous. The
degree of their continuity (differentiability) or shape can be easily modified by changing the
degree of basic functions or adding control points. Let U = {u0, . . . , um} be a non-decreasing
sequence of real numbers. The elements ui are called knots, and U is a knot vector. Then
the i-th basic function of the B-spline curve of zero degree and degree p is defined as [24]:

Ni,0(u) =
{

1 ui ≤ u < ui+1
0 otherwise

(1)

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u) (2)

The basic functions of the zero degree are thus step functions with a value of 1 on a
given interval and a value of 0 outside it. The basic functions of degree p, for p > 0, are a
linear combination of two basic functions of degree p − 1. The B-spline curve of degree p
can then be expressed as:

C(u) =
n
∑

i=0
Ni,p(u)Pi a ≤ u ≤ b (3)

where Pi are the control points and Ni,p(u) are the basic functions of degree p defined on
the node vector:

U =
{

a, . . . , a, up+1, . . . , um−p−1, b, . . . , b
}

(4)

It contains the first and last node (p + 1)-times. It is so that the curve starts at the first
point and ends at the last point. Otherwise, there would be a gap between the first control
point and the beginning of the curve and between the end of the curve and the last control
point. The number of nodes in the vector U is m + 1, and the number of control points is
n + 1, where m = n + p + 1 [25].

Coordinates of the points on the B-spline curve can then be expressed from (3) as:

x =
n

∑
i=0

Ni,p(u)Pi,x (5a)

y =
n

∑
i=0

Ni,p(u)Pi,y (5b)

Pi,x, and Pi,y are the coordinates of the control point Pi. A number of the computed
points on the curve can be affected by vector u. This vector contains values from the interval
(0, 1) iterated by the inverse number of desired generated points.

Path planning with A* and Dijkstra algorithms is commonly used in ROS [26]. This
research proposes the modification of wavefront path planning to be suitable for robot
navigation and, in some aspects, better than these commonly used algorithms. The path
found by the wavefront algorithm is as close as possible to the obstacles, which follows
from the essence of the algorithm. It is also formed by waypoints, in which the robot’s
direction changes significantly, which is not very suitable from the point of view of robot
position control. Combined with getting too close to the environmental obstacles, this could

Robotics 2023, 12, 25 5 of 16

lead to collisions. Therefore, this modifies the algorithm by providing a greater distance of
the generated path from obstacles and smoothens the found path using B-spline curves.

In the first step, obstacles were inflated to ensure sufficient distance to maneuver the
robot. This distance can be changed parametrically and set differently for each type of
robot. An example of obstacle inflation in the ROS environment can be seen in Figure 1.

Robotics 2023, 12, x FOR PEER REVIEW 5 of 17

(), ,
0

n

i p i y
i

y N u P
=

=

(5b)

Pi,x, and Pi,y are the coordinates of the control point Pi. A number of the computed
points on the curve can be affected by vector u. This vector contains values from the
interval (0, 1) iterated by the inverse number of desired generated points.

Path planning with A* and Dijkstra algorithms is commonly used in ROS [26]. This
research proposes the modification of wavefront path planning to be suitable for robot
navigation and, in some aspects, better than these commonly used algorithms. The path
found by the wavefront algorithm is as close as possible to the obstacles, which follows
from the essence of the algorithm. It is also formed by waypoints, in which the robot’s
direction changes significantly, which is not very suitable from the point of view of robot
position control. Combined with getting too close to the environmental obstacles, this
could lead to collisions. Therefore, this modifies the algorithm by providing a greater
distance of the generated path from obstacles and smoothens the found path using B-
spline curves.

In the first step, obstacles were inflated to ensure sufficient distance to maneuver the
robot. This distance can be changed parametrically and set differently for each type of
robot. An example of obstacle inflation in the ROS environment can be seen in Figure 1.

Figure 1. Inflation of obstacles in the ROS environment by a safe distance and impact on the planned
path of the robot.

The result of the wavefront algorithm is a polyline connecting the start and goal cells
on the map, respectively, waypoints on this line, where the robot rotation changes. The
centers of the found map cells were determined as waypoints. The path found this way
may contain redundant waypoints, which causes more frequent changes of direction. It is
due to the wavefront algorithm’s nature and is usually due to the shape or location of the
obstacles. Another reason is the searching of neighboring cells, performed in an 8-
adjacent, which creates lines at multiples of an angle of 45°. If the robot follows the exact
path, then the polyline is unsuitable for robot dynamics. Its direction changes significantly
at individual waypoints, which cannot be achieved when moving at a certain speed at a
given point. The first step in modifying the original algorithm is to remove redundant
waypoints.

Removing redundant waypoints works on searching all waypoints, and determining
the minimum set of these points ensures a collision-free transition through the
environment. After removing one of the points, a new line is created on the polyline. The
beginning and end of this line are adjacent waypoints to the deleted point. Thus, a given

Figure 1. Inflation of obstacles in the ROS environment by a safe distance and impact on the planned
path of the robot.

The result of the wavefront algorithm is a polyline connecting the start and goal cells
on the map, respectively, waypoints on this line, where the robot rotation changes. The
centers of the found map cells were determined as waypoints. The path found this way
may contain redundant waypoints, which causes more frequent changes of direction. It is
due to the wavefront algorithm’s nature and is usually due to the shape or location of the
obstacles. Another reason is the searching of neighboring cells, performed in an 8-adjacent,
which creates lines at multiples of an angle of 45◦. If the robot follows the exact path,
then the polyline is unsuitable for robot dynamics. Its direction changes significantly at
individual waypoints, which cannot be achieved when moving at a certain speed at a given
point. The first step in modifying the original algorithm is to remove redundant waypoints.

Removing redundant waypoints works on searching all waypoints, and determining
the minimum set of these points ensures a collision-free transition through the environment.
After removing one of the points, a new line is created on the polyline. The beginning and
end of this line are adjacent waypoints to the deleted point. Thus, a given point can only be
removed if the adjacent waypoints can be joined by a new line that passes only through the
free cells of the map (Figure 2).

An algorithm based on the parametric expression of the line can determine all the map
cells through which the generated path passes [27]. Let the two points (beginning and end
of the line) be denoted as A = [a1;a2] and B = [b1;b2], the directional vector of the line u =
(u1;u2) = B − A and the parametric expression of the line:

x = a1 + tu1 (6a)

y = a2 + tu2 t ∈ R (6b)

Using goniometry, we can calculate the increments for x and y, by which we need
to increase the parameter t to move in the given direction by the cell’s dimensions (∆tx,
∆ty). The variables tx_max and ty_max express the value of the parameter t, in which the line
intersects the edge of the cell in the given direction (x, y). These two variables are initialized
to the values corresponding to the first intersection of the line with the cell edges in the

Robotics 2023, 12, 25 6 of 16

given direction (x, y), which can be calculated using the parametric equations of the line (6).
It is necessary to express the directions in which we move as stepx = sgn(u1) and stepy = sgn
(u2). The signs of the components of the direction vector u give these. In this way, it is
possible to traverse all the map cells through which the line passes. After each iteration,
the current cell is checked, and if we can get to point B, it is clear that all the transition cells
are free. In this manner, waypoints and their adjacent waypoints are checked.

Robotics 2023, 12, x FOR PEER REVIEW 6 of 17

point can only be removed if the adjacent waypoints can be joined by a new line that
passes only through the free cells of the map (Figure 2).

Figure 2. Example of removing two redundant points (right) at the top left and bottom right on the
original path (left).

An algorithm based on the parametric expression of the line can determine all the
map cells through which the generated path passes [27]. Let the two points (beginning
and end of the line) be denoted as A = [a1;a2] and B = [b1;b2], the directional vector of the
line u = (u1;u2) = B − A and the parametric expression of the line:

1 1x a tu= + (6a)

2 2y a tu t R= + ∈ (6b)

Using goniometry, we can calculate the increments for x and y, by which we need to
increase the parameter t to move in the given direction by the cell’s dimensions (Δtx, Δty).
The variables tx_max and ty_max express the value of the parameter t, in which the line
intersects the edge of the cell in the given direction (x, y). These two variables are
initialized to the values corresponding to the first intersection of the line with the cell
edges in the given direction (x, y), which can be calculated using the parametric equations
of the line (6). It is necessary to express the directions in which we move as stepx = sgn(u1)
and stepy = sgn (u2). The signs of the components of the direction vector u give these. In
this way, it is possible to traverse all the map cells through which the line passes. After
each iteration, the current cell is checked, and if we can get to point B, it is clear that all
the transition cells are free. In this manner, waypoints and their adjacent waypoints are
checked.

For smoothening, the path B-spline curves were used. The shape of the B-spline curve
can be influenced in two ways. The first is the addition of control points, and the second
is the use of weights to determine the effect of individual points on the shape of the
resulting curve. Control points are considered waypoints, but not all waypoints are
control points (Figure 3). For smoothing the path, it is appropriate to use the first option
and thus modify the shape of the B-spline curve by adding control points.

Figure 2. Example of removing two redundant points (right) at the top left and bottom right on the
original path (left).

For smoothening, the path B-spline curves were used. The shape of the B-spline curve
can be influenced in two ways. The first is the addition of control points, and the second is
the use of weights to determine the effect of individual points on the shape of the resulting
curve. Control points are considered waypoints, but not all waypoints are control points
(Figure 3). For smoothing the path, it is appropriate to use the first option and thus modify
the shape of the B-spline curve by adding control points.

Robotics 2023, 12, x FOR PEER REVIEW 7 of 17

Figure 3. Example of adding control points around a waypoint (original curve on the (left), two
control points added on the (right)).

In this way, it is possible to limit the maximum distance of the curve from the
waypoints. It is essential because we do not know what the distribution of the waypoints
will be. If only points generated using the wavefront algorithm were used, it could happen
that the modified path would pass through obstacles, which is, of course, not desirable.
For the case of path planning, the basic functions of the second degree were used. It means
that three waypoints define each function. The algorithm uses the cpthold parameter,
specified as the maximum distance at which another control point must be located from
the waypoint. This distance determines the resulting curve’s maximum distance from the
waypoints. All lines of the polyline formed by the waypoints are verified, and the
following cases may occur:
1. The distance between two waypoints (line length) is less than or equal to cpthold. It

means there is no need to add additional control points.
2. The distance between two waypoints is greater than cpthold but less than or equal to 2

× cpthold. In this case, one control point is added to the center of the two waypoints.
3. The distance between two waypoints is greater than 2 × cpthold but less than or equal

to 3 × cpthold. Then two control points are added, dividing the line into thirds.
4. The distance between the two waypoints is greater than 3 × cpthold. In this case, two

control points are added at a distance of cpthold from one and the other end of the line
inwards.
In this way, the maximum distance of the B-spline curve from the waypoints is

limited, its continuity is ensured, and an unnecessarily high number of control points is
not used. Figure 4 shows the entire algorithm procedure. Figure 5 then shows the results
of the individual steps of the algorithm for a simple example of a path.

Figure 3. Example of adding control points around a waypoint (original curve on the (left), two
control points added on the (right)).

In this way, it is possible to limit the maximum distance of the curve from the way-
points. It is essential because we do not know what the distribution of the waypoints will
be. If only points generated using the wavefront algorithm were used, it could happen that
the modified path would pass through obstacles, which is, of course, not desirable. For the

Robotics 2023, 12, 25 7 of 16

case of path planning, the basic functions of the second degree were used. It means that
three waypoints define each function. The algorithm uses the cpthold parameter, specified as
the maximum distance at which another control point must be located from the waypoint.
This distance determines the resulting curve’s maximum distance from the waypoints.
All lines of the polyline formed by the waypoints are verified, and the following cases
may occur:

1. The distance between two waypoints (line length) is less than or equal to cpthold. It
means there is no need to add additional control points.

2. The distance between two waypoints is greater than cpthold but less than or equal to
2 × cpthold. In this case, one control point is added to the center of the two waypoints.

3. The distance between two waypoints is greater than 2 × cpthold but less than or equal
to 3 × cpthold. Then two control points are added, dividing the line into thirds.

4. The distance between the two waypoints is greater than 3 × cpthold. In this case, two
control points are added at a distance of cpthold from one and the other end of the
line inwards.

In this way, the maximum distance of the B-spline curve from the waypoints is limited,
its continuity is ensured, and an unnecessarily high number of control points is not used.
Figure 4 shows the entire algorithm procedure. Figure 5 then shows the results of the
individual steps of the algorithm for a simple example of a path.

Robotics 2023, 12, x FOR PEER REVIEW 8 of 17

Figure 4. The proposed algorithm.

Figure 5. (Top left)—path found by wavefront algorithm, (top right)—path without redundant
points, (bottom left)—addition of control points, (bottom right)—result path.

Two parameters can influence the behavior of the algorithm. The first parameter is
cthold, which determines the distance of the path from obstacles. With this parameter, the
search space for the wavefront algorithm is limited (Figure 6). This parameter is the
threshold value for cells from the map, the evaluation of which decreases with increasing
distance from obstacles as follows: 0—free space; 1–127, there is no collision with an
obstacle; 128–252, there may be a collision with an obstacle depending on the robot’s ori-
entation; 253–254, there is a collision with an obstacle.

Figure 4. The proposed algorithm.

Two parameters can influence the behavior of the algorithm. The first parameter
is cthold, which determines the distance of the path from obstacles. With this parameter,
the search space for the wavefront algorithm is limited (Figure 6). This parameter is the
threshold value for cells from the map, the evaluation of which decreases with increasing
distance from obstacles as follows: 0—free space; 1–127, there is no collision with an
obstacle; 128–252, there may be a collision with an obstacle depending on the robot’s
orientation; 253–254, there is a collision with an obstacle.

The second optional parameter is the already mentioned cpthold, which expresses the
maximum distance of the waypoint from the neighboring control point in the B-spline
curve. The change of this parameter mainly affects the distance of the B-spline curve from
the waypoints, its smoothness, and the number and distribution of control points. Figure 7
shows the impact of the value of cpthold on the trajectory.

Robotics 2023, 12, 25 8 of 16

Robotics 2023, 12, x FOR PEER REVIEW 8 of 17

Figure 4. The proposed algorithm.

Figure 5. (Top left)—path found by wavefront algorithm, (top right)—path without redundant
points, (bottom left)—addition of control points, (bottom right)—result path.

Two parameters can influence the behavior of the algorithm. The first parameter is
cthold, which determines the distance of the path from obstacles. With this parameter, the
search space for the wavefront algorithm is limited (Figure 6). This parameter is the
threshold value for cells from the map, the evaluation of which decreases with increasing
distance from obstacles as follows: 0—free space; 1–127, there is no collision with an
obstacle; 128–252, there may be a collision with an obstacle depending on the robot’s ori-
entation; 253–254, there is a collision with an obstacle.

Figure 5. (Top left)—path found by wavefront algorithm, (top right)—path without redundant
points, (bottom left)—addition of control points, (bottom right)—result path.

Robotics 2023, 12, x FOR PEER REVIEW 9 of 17

Figure 6. Influence of the parameter cthold—on the (left) with the value 200 and on the (right) with
the value 128.

The second optional parameter is the already mentioned cpthold, which expresses the
maximum distance of the waypoint from the neighboring control point in the B-spline
curve. The change of this parameter mainly affects the distance of the B-spline curve from
the waypoints, its smoothness, and the number and distribution of control points. Figure 7
shows the impact of the value of cpthold on the trajectory.

Figure 7. Influence of the cpthold parameter on the shape of the B-spline curve (value 0.25 on the (left)
and value 0.5 on the (right)).

3. Results
The proposed algorithm was implemented as a global planner in ROS in C++

language so it could be used in the move_base package to navigate a robot. Simulations
were made with the help of Gazebo and RViz environments. The results of the proposed
algorithm (later denoted as FlFill) were compared with currently commonly used
methods in the path planning of mobile robots—A* and Dijkstra. The first criterion for
comparing the algorithms was execution time. It also includes the time to call the service
in ROS and to get the answer. It is, therefore, slightly higher than the real execution time.
The second criterion was the length of the path. The third criterion is the total change in
the orientation angle around axis z required to complete a given path. This criterion is
computed based on two direction vectors created from three consecutive curve points.
The first direction vector is from the first point to the second. The second direction vector
is from the second point to the third. Let them denote a = (ax, ay), b = (bx, by). Their scalar
product can be expressed in two ways:

. . .cosθ=a b a b (7a)

. . .x x y ya b a b= +a b
 (7b)

From this system of equations then follows:

Figure 6. Influence of the parameter cthold—on the (left) with the value 200 and on the (right) with
the value 128.

Robotics 2023, 12, x FOR PEER REVIEW 9 of 17

Figure 6. Influence of the parameter cthold—on the (left) with the value 200 and on the (right) with
the value 128.

The second optional parameter is the already mentioned cpthold, which expresses the
maximum distance of the waypoint from the neighboring control point in the B-spline
curve. The change of this parameter mainly affects the distance of the B-spline curve from
the waypoints, its smoothness, and the number and distribution of control points. Figure 7
shows the impact of the value of cpthold on the trajectory.

Figure 7. Influence of the cpthold parameter on the shape of the B-spline curve (value 0.25 on the (left)
and value 0.5 on the (right)).

3. Results
The proposed algorithm was implemented as a global planner in ROS in C++

language so it could be used in the move_base package to navigate a robot. Simulations
were made with the help of Gazebo and RViz environments. The results of the proposed
algorithm (later denoted as FlFill) were compared with currently commonly used
methods in the path planning of mobile robots—A* and Dijkstra. The first criterion for
comparing the algorithms was execution time. It also includes the time to call the service
in ROS and to get the answer. It is, therefore, slightly higher than the real execution time.
The second criterion was the length of the path. The third criterion is the total change in
the orientation angle around axis z required to complete a given path. This criterion is
computed based on two direction vectors created from three consecutive curve points.
The first direction vector is from the first point to the second. The second direction vector
is from the second point to the third. Let them denote a = (ax, ay), b = (bx, by). Their scalar
product can be expressed in two ways:

. . .cosθ=a b a b (7a)

. . .x x y ya b a b= +a b
 (7b)

From this system of equations then follows:

Figure 7. Influence of the cpthold parameter on the shape of the B-spline curve (value 0.25 on the (left)
and value 0.5 on the (right)).

Robotics 2023, 12, 25 9 of 16

3. Results

The proposed algorithm was implemented as a global planner in ROS in C++ language
so it could be used in the move_base package to navigate a robot. Simulations were made
with the help of Gazebo and RViz environments. The results of the proposed algorithm
(later denoted as FlFill) were compared with currently commonly used methods in the
path planning of mobile robots—A* and Dijkstra. The first criterion for comparing the
algorithms was execution time. It also includes the time to call the service in ROS and to
get the answer. It is, therefore, slightly higher than the real execution time. The second
criterion was the length of the path. The third criterion is the total change in the orientation
angle around axis z required to complete a given path. This criterion is computed based on
two direction vectors created from three consecutive curve points. The first direction vector
is from the first point to the second. The second direction vector is from the second point to
the third. Let them denote a = (ax, ay), b = (bx, by). Their scalar product can be expressed in
two ways:

a.b = |a|.|b|. cos θ (7a)

a.b = ax.bx + ay.by (7b)

From this system of equations then follows:

θ = arccos

 ax.bx + ay.by(√
a2

x + a2
x

)
.
(√

b2
x + b2

x

)
 (8)

If the vectors are unit vectors, the equation can be simplified:

θ = arccos
(
ax.bx + ay.by

)
(9)

The total rotation change is then obtained by counting all partial angles. Figure 8
shows some partial angles marked in green on the example of a simple curve.

Robotics 2023, 12, x FOR PEER REVIEW 10 of 17

() ()2 2 2 2

. .
arccos

.
x x y y

x x x x

a b a b

a a b b
θ

 + = + +

(8)

If the vectors are unit vectors, the equation can be simplified:

()arccos . .x x y ya b a bθ = +

(9)

The total rotation change is then obtained by counting all partial angles. Figure 8
shows some partial angles marked in green on the example of a simple curve.

Figure 8. Rotational angles are derived from points on the robot’s path.

In the case of the Dijkstra and A* algorithms, only some points were used to calculate
the overall change in the rotation angle. Generally, only every fifth point was used, and
every tenth point was used for the last two environments. The reduction of the analyzed
points was proposed because the points generated by these algorithms were close to each
other and were not lying on the lines, which was observable, especially in the case of
algorithm A* (Figure 9). This fact caused a high value of the sum of changes in the rotation
angle. In the case of the proposed algorithm (based on wavefront), such a problem did not
occur because the points from the generated path are located on lines. In the case of the
proposed algorithm, even a tenfold increase in the number of generated points caused
only a tiny change in the sum of angles.

Figure 9. Oscillation of the path generated by the A* algorithm.

Five pairs of starting and goal points were tested in each modeled environment. The
algorithms were run five times for each point pair to determine the average execution
time. That means 25 times for every environment. The real execution times and the
duration of its parts are also stated for the proposed (wavefront-based) algorithm. For this
purpose, in most cases, the time representing the median of the five runs was selected,
and the average was calculated from them. The path length and the sum of the rotation
angle changes were also calculated as the average result of five pairs of points for a given

Figure 8. Rotational angles are derived from points on the robot’s path.

In the case of the Dijkstra and A* algorithms, only some points were used to calculate
the overall change in the rotation angle. Generally, only every fifth point was used, and
every tenth point was used for the last two environments. The reduction of the analyzed
points was proposed because the points generated by these algorithms were close to each
other and were not lying on the lines, which was observable, especially in the case of
algorithm A* (Figure 9). This fact caused a high value of the sum of changes in the rotation
angle. In the case of the proposed algorithm (based on wavefront), such a problem did not
occur because the points from the generated path are located on lines. In the case of the
proposed algorithm, even a tenfold increase in the number of generated points caused only
a tiny change in the sum of angles.

Robotics 2023, 12, 25 10 of 16

Robotics 2023, 12, x FOR PEER REVIEW 10 of 17

() ()2 2 2 2

. .
arccos

.
x x y y

x x x x

a b a b

a a b b
θ

 + = + +

(8)

If the vectors are unit vectors, the equation can be simplified:

()arccos . .x x y ya b a bθ = +

(9)

The total rotation change is then obtained by counting all partial angles. Figure 8
shows some partial angles marked in green on the example of a simple curve.

Figure 8. Rotational angles are derived from points on the robot’s path.

In the case of the Dijkstra and A* algorithms, only some points were used to calculate
the overall change in the rotation angle. Generally, only every fifth point was used, and
every tenth point was used for the last two environments. The reduction of the analyzed
points was proposed because the points generated by these algorithms were close to each
other and were not lying on the lines, which was observable, especially in the case of
algorithm A* (Figure 9). This fact caused a high value of the sum of changes in the rotation
angle. In the case of the proposed algorithm (based on wavefront), such a problem did not
occur because the points from the generated path are located on lines. In the case of the
proposed algorithm, even a tenfold increase in the number of generated points caused
only a tiny change in the sum of angles.

Figure 9. Oscillation of the path generated by the A* algorithm.

Five pairs of starting and goal points were tested in each modeled environment. The
algorithms were run five times for each point pair to determine the average execution
time. That means 25 times for every environment. The real execution times and the
duration of its parts are also stated for the proposed (wavefront-based) algorithm. For this
purpose, in most cases, the time representing the median of the five runs was selected,
and the average was calculated from them. The path length and the sum of the rotation
angle changes were also calculated as the average result of five pairs of points for a given

Figure 9. Oscillation of the path generated by the A* algorithm.

Five pairs of starting and goal points were tested in each modeled environment. The
algorithms were run five times for each point pair to determine the average execution time.
That means 25 times for every environment. The real execution times and the duration of
its parts are also stated for the proposed (wavefront-based) algorithm. For this purpose, in
most cases, the time representing the median of the five runs was selected, and the average
was calculated from them. The path length and the sum of the rotation angle changes were
also calculated as the average result of five pairs of points for a given environment. The
map resolution used was 0.05 m. The cthold parameter was set to 3 for all algorithms so that
all three algorithms maintain a similar distance from obstacles. First, a smaller environment
was tested for three different obstacle densities. The low-density environment can be seen
in Figure 10. The size of the map is approximately 200 × 95 cells.

Robotics 2023, 12, x FOR PEER REVIEW 11 of 17

environment. The map resolution used was 0.05 m. The cthold parameter was set to 3 for
all algorithms so that all three algorithms maintain a similar distance from obstacles. First,
a smaller environment was tested for three different obstacle densities. The low-density
environment can be seen in Figure 10. The size of the map is approximately 200 × 95 cells.

Figure 10. An environment with low obstacle density.

The execution time was the lowest for the proposed method (Table 1). Although the
proposed approach did not reach the shortest path, it was characterized by a relatively
low sum of changes in rotation.

Table 1. Comparison of results of individual algorithms for the environment with low obstacle
density.

Algorithm Execution Time [ms] Path Length [m] ∑ θi [rad]
FlFill 5.0684 9.3293 1.2678

Dijkstra 5.2612 9.1902 2.6219
A* 6.2873 9.7801 5.3037

Four additional obstacles were added to the medium obstacle density environment
(Figure 11). The results show (Table 2) that the proposed algorithm is again the best
concerning the robot’s sum of rotations. However, at the time of the computation, it is
only second behind A*, and in terms of path length, it is also second after Dijkstra’s
algorithm.

Figure 11. An environment with medium obstacle density.

Table 2. Comparison of results of individual algorithms for the environment with medium obstacle
density.

Figure 10. An environment with low obstacle density.

The execution time was the lowest for the proposed method (Table 1). Although the
proposed approach did not reach the shortest path, it was characterized by a relatively low
sum of changes in rotation.

Table 1. Comparison of results of individual algorithms for the environment with low obstacle density.

Algorithm Execution Time [ms] Path Length [m] ∑ θi [rad]

FlFill 5.0684 9.3293 1.2678
Dijkstra 5.2612 9.1902 2.6219

A* 6.2873 9.7801 5.3037

Four additional obstacles were added to the medium obstacle density environment
(Figure 11). The results show (Table 2) that the proposed algorithm is again the best

Robotics 2023, 12, 25 11 of 16

concerning the robot’s sum of rotations. However, at the time of the computation, it is only
second behind A*, and in terms of path length, it is also second after Dijkstra’s algorithm.

Robotics 2023, 12, x FOR PEER REVIEW 11 of 17

environment. The map resolution used was 0.05 m. The cthold parameter was set to 3 for
all algorithms so that all three algorithms maintain a similar distance from obstacles. First,
a smaller environment was tested for three different obstacle densities. The low-density
environment can be seen in Figure 10. The size of the map is approximately 200 × 95 cells.

Figure 10. An environment with low obstacle density.

The execution time was the lowest for the proposed method (Table 1). Although the
proposed approach did not reach the shortest path, it was characterized by a relatively
low sum of changes in rotation.

Table 1. Comparison of results of individual algorithms for the environment with low obstacle
density.

Algorithm Execution Time [ms] Path Length [m] ∑ θi [rad]
FlFill 5.0684 9.3293 1.2678

Dijkstra 5.2612 9.1902 2.6219
A* 6.2873 9.7801 5.3037

Four additional obstacles were added to the medium obstacle density environment
(Figure 11). The results show (Table 2) that the proposed algorithm is again the best
concerning the robot’s sum of rotations. However, at the time of the computation, it is
only second behind A*, and in terms of path length, it is also second after Dijkstra’s
algorithm.

Figure 11. An environment with medium obstacle density.

Table 2. Comparison of results of individual algorithms for the environment with medium obstacle
density.

Figure 11. An environment with medium obstacle density.

Table 2. Comparison of results of individual algorithms for the environment with medium obsta-
cle density.

Algorithm Execution Time [ms] Path Length [m] ∑ θi [rad]

FlFill 5.5888 9.4812 2.3788
Dijkstra 6.9644 9.2192 3.7174

A* 3.9387 9.8144 7.7095

Thirteen obstacles were placed to make the high-density environment (Figure 12).
In this environment, the advantages of the proposed algorithm have already manifested
themselves significantly (Table 3). Its calculation time is the best, the path length is the
second best, and it is the best to minimize the robot’s rotation along the path. This tested
environment is relatively small, so the calculation of all algorithms is very fast. It means a
relatively large portion of the execution time is communicating with the service. Therefore,
the average values of the calculation time may not be considered a significant characteristic.
The average time it took to call for service was 3.336 ms for the proposed algorithm and this
environment. The following table (Table 4) shows the average execution times for the indi-
vidual phases of the proposed algorithm. These are averages for all three obstacle densities
because the calculation times were comparable. The most computationally demanding part
was filling the matrix (map) with values, which took more than half of the execution time.

Robotics 2023, 12, x FOR PEER REVIEW 12 of 17

Algorithm Execution Time [ms] Path Length [m] ∑ θi [rad]
FlFill 5.5888 9.4812 2.3788

Dijkstra 6.9644 9.2192 3.7174
A* 3.9387 9.8144 7.7095

Thirteen obstacles were placed to make the high-density environment (Figure 12). In
this environment, the advantages of the proposed algorithm have already manifested
themselves significantly (Table 3). Its calculation time is the best, the path length is the
second best, and it is the best to minimize the robot’s rotation along the path. This tested
environment is relatively small, so the calculation of all algorithms is very fast. It means a
relatively large portion of the execution time is communicating with the service.
Therefore, the average values of the calculation time may not be considered a significant
characteristic. The average time it took to call for service was 3.336 ms for the proposed
algorithm and this environment. The following table (Table 4) shows the average
execution times for the individual phases of the proposed algorithm. These are averages
for all three obstacle densities because the calculation times were comparable. The most
computationally demanding part was filling the matrix (map) with values, which took
more than half of the execution time.

Figure 12. An environment with a high density of obstacles.

Table 3. Comparison of results of individual algorithms for the environment with high obstacle
density.

Algorithm Execution Time [ms] Path Length [m] ∑ θi [rad]
FlFill 4.4656 9.7948 4.9412

Dijkstra 7.2702 9.4945 5.0040
A* 6.5048 9.8728 9.0146

Table 4. Execution times of individual phases of the FlFill algorithm.

Phase of Algorithm Execution Time [ms] Portion [%]
Initialization 0.3345 19.86

Filling the map 0.8711 51.72
Finding a path 0.3101 18.42

Removing redundant points 0.0503 2.98
Creating control points 0.0111 0.66
Generating curve points 0.1071 6.36

∑ 1.6841 100

Figure 12. An environment with a high density of obstacles.

Robotics 2023, 12, 25 12 of 16

Table 3. Comparison of results of individual algorithms for the environment with high obstacle density.

Algorithm Execution Time [ms] Path Length [m] ∑ θi [rad]

FlFill 4.4656 9.7948 4.9412
Dijkstra 7.2702 9.4945 5.0040

A* 6.5048 9.8728 9.0146

Table 4. Execution times of individual phases of the FlFill algorithm.

Phase of Algorithm Execution Time [ms] Portion [%]

Initialization 0.3345 19.86
Filling the map 0.8711 51.72
Finding a path 0.3101 18.42

Removing redundant points 0.0503 2.98
Creating control points 0.0111 0.66

Generating curve points 0.1071 6.36

∑ 1.6841 100

The other environments tested were two larger environments. The size of the first
one is approximately 290 × 180 cells; for example, it can represent one floor of the house
(Figure 13).

Robotics 2023, 12, x FOR PEER REVIEW 13 of 17

The other environments tested were two larger environments. The size of the first
one is approximately 290 × 180 cells; for example, it can represent one floor of the house
(Figure 13).

Figure 13. Medium-sized environment (house).

In this environment (Table 5), the proposed algorithm also reached the lowest sum
of the rotation angle. As in previous environments, Dijkstra’s algorithm found the shortest
average path. Algorithm A* achieved the shortest average execution time.

Table 5. Comparison of results of individual algorithms for medium-sized environments.

Algorithm Execution Time [ms] Path Length [m] ∑ θi [rad]
FlFill 10.5711 19.2237 5.5476

Dijkstra 9.6750 19.0329 6.5439
A* 7.3334 19.5487 11.5688

The largest portion of the execution time, in this case, more than 80 percent, was again
taken up by the evaluation of the map cells, as can be seen in Table 6. The second largest
portion was taken by finding the path on the evaluated matrix. The other phases needed
significantly less time to be completed. The last environment is the largest, with a size of
approximately 1100 × 900 cells. It is a mapped Willow Garage robotic laboratory (Figure 14)
containing many interconnected rooms of various sizes.

Table 6. Execution times of individual phases of the FlFill algorithm for a medium-sized
environment.

Phase of Algorithm Execution Time [ms] Portion [%]
Initialization 0.1868 2.46

Filling the map 6.1534 80.98
Finding a path 0.8188 10.78

Removing redundant points 0.1672 2.20
Creating control points 0.0208 0.27
Generating curve points 0.2516 3.31

∑ 7.5986 100

Figure 13. Medium-sized environment (house).

In this environment (Table 5), the proposed algorithm also reached the lowest sum of
the rotation angle. As in previous environments, Dijkstra’s algorithm found the shortest
average path. Algorithm A* achieved the shortest average execution time.

Table 5. Comparison of results of individual algorithms for medium-sized environments.

Algorithm Execution Time [ms] Path Length [m] ∑ θi [rad]

FlFill 10.5711 19.2237 5.5476
Dijkstra 9.6750 19.0329 6.5439

A* 7.3334 19.5487 11.5688

The largest portion of the execution time, in this case, more than 80 percent, was again
taken up by the evaluation of the map cells, as can be seen in Table 6. The second largest

Robotics 2023, 12, 25 13 of 16

portion was taken by finding the path on the evaluated matrix. The other phases needed
significantly less time to be completed. The last environment is the largest, with a size of
approximately 1100× 900 cells. It is a mapped Willow Garage robotic laboratory (Figure 14)
containing many interconnected rooms of various sizes.

Table 6. Execution times of individual phases of the FlFill algorithm for a medium-sized environment.

Phase of Algorithm Execution Time [ms] Portion [%]

Initialization 0.1868 2.46
Filling the map 6.1534 80.98
Finding a path 0.8188 10.78

Removing redundant points 0.1672 2.20
Creating control points 0.0208 0.27

Generating curve points 0.2516 3.31

∑ 7.5986 100
Robotics 2023, 12, x FOR PEER REVIEW 14 of 17

Figure 14. Large environment—Willow Garage.

As in the previous environment, the shortest execution time was achieved by the A*
algorithm. Dijkstra’s algorithm found the shortest average path, and the proposed
algorithm again achieved the lowest overall change in the rotation angle (Table 7). As we
can observe, the portion of time (Table 8) required to evaluate the cells of the map grows
with the increasing size of the map. It is also because several phases of the algorithm do
not depend directly on the size of the environment. In the case of the largest environment,
the filling of the map represented over 95 percent of the total execution time.

Table 7. Comparison of results of individual algorithms for the large environment (Willow Garage).

Algorithm Execution Time [ms] Path Length [m] ∑ θi [rad]
FlFill 99.6838 59.5385 7.7551

Dijkstra 107.0439 57.7588 10.2174
A* 41.6553 60.2191 26.9868

Table 8. Execution times of individual phases of the FlFill algorithm for a large environment.

Phase of Algorithm Execution Time [ms] Portion [%]
Initialization 1.0310 1.09

Filling the map 90.1950 95.44
Finding a path 2.2764 2.41

Removing redundant points 0.1698 0.18
Creating control points 0.0308 0.03
Generating curve points 0.7972 0.84

∑ 94.5002 100

Since all three algorithms provide a specific advantage (Dijkstra’s, the shortest path;
A*, the fastest calculation; FlFill, the smallest sum of rotational changes), a comparison of
the algorithms’ multi-criteria was made. Let the execution time be denoted by t, the length
of the path l, and the total change of the angle of rotation θ. First, these parameters are
multiplied by the constants kt, kl, and kθ (Table 9) so that their effect on the resulting value
is balanced on average. They are then multiplied by the weights wt, wl, and wθ, which

Figure 14. Large environment—Willow Garage.

As in the previous environment, the shortest execution time was achieved by the
A* algorithm. Dijkstra’s algorithm found the shortest average path, and the proposed
algorithm again achieved the lowest overall change in the rotation angle (Table 7). As we
can observe, the portion of time (Table 8) required to evaluate the cells of the map grows
with the increasing size of the map. It is also because several phases of the algorithm do
not depend directly on the size of the environment. In the case of the largest environment,
the filling of the map represented over 95 percent of the total execution time.

Table 7. Comparison of results of individual algorithms for the large environment (Willow Garage).

Algorithm Execution Time [ms] Path Length [m] ∑ θi [rad]

FlFill 99.6838 59.5385 7.7551
Dijkstra 107.0439 57.7588 10.2174

A* 41.6553 60.2191 26.9868

Robotics 2023, 12, 25 14 of 16

Table 8. Execution times of individual phases of the FlFill algorithm for a large environment.

Phase of Algorithm Execution Time [ms] Portion [%]

Initialization 1.0310 1.09
Filling the map 90.1950 95.44
Finding a path 2.2764 2.41

Removing redundant points 0.1698 0.18
Creating control points 0.0308 0.03

Generating curve points 0.7972 0.84

∑ 94.5002 100

Since all three algorithms provide a specific advantage (Dijkstra’s, the shortest path;
A*, the fastest calculation; FlFill, the smallest sum of rotational changes), a comparison of
the algorithms’ multi-criteria was made. Let the execution time be denoted by t, the length
of the path l, and the total change of the angle of rotation θ. First, these parameters are
multiplied by the constants kt, kl, and kθ (Table 9) so that their effect on the resulting value
is balanced on average. They are then multiplied by the weights wt, wl, and wθ , which
express the selected preference of the properties of individual algorithms. The criterion
function for the evaluation of algorithms can be formulated as follows:

f = wt.kt.t + wl .kl .l + wθ .kθ .θ (10)

Table 9. Parameters for individual environments.

Parameter Value Parameter Value

kth 1.0878 ktw 0.1208
klh 0.519 klw 0.169
kθh 0.9787 kθw 0.6673

Two larger environments were evaluated in this way. Constants with indices contain-
ing h belong to the house environment, and if they have the index w, they belong to the
Willow Garage environment.

Due to the fact mentioned above, with the evaluation of the total rotation angle in the
Dijkstra and A* algorithms, the weight of the parameter θ was chosen to be 0.6. The path
length was first preferred for the remaining two parameters, so the parameters wt = 1 and
wl = 1.2 were chosen. Results can be seen in Table 10 In the second part, the execution time
was preferred over the path length, and therefore the parameters wt = 1.2 and wl = 1 were
chosen (Table 11). In the results, both types of environments are compared. The value of the
function for the house environment is denoted as fh, for the Willow Garage environment as
fw, and for their sum as f.

Table 10. Comparison results for wt = 1 and wl = 1.2.

Algorithm wtktht wlklhl Wθkθhθ wtktwt wlklwl wθkθwθ fh fw f

FlFill 11.5 11.97 3.26 12.04 12.07 3.11 26.73 27.22 53.951
Dijkstra 10.52 11.85 3.84 12.93 11.71 4.09 26.22 28.74 54.956

A* 7.98 12.17 6.79 5.03 12.21 10.81 26.95 28.05 54.995

Table 11. Comparison results for wt = 1.2 and wl = 1.

Algorithm wtktht wlklhl wθkθhθ wtktwt wlklwl wθkθwθ fh fw f

FlFill 13.80 9.98 3.26 14.45 10.06 3.10 27.03 27.62 54.651
Dijkstra 12.63 9.88 3.84 15.52 9.76 4.09 26.35 29.37 55.719

A* 9.57 10.15 6.79 6.04 10.18 10.80 26.51 27.02 53.532

Robotics 2023, 12, 25 15 of 16

4. Discussion

We can conclude that all three algorithms achieved similar overall results, but each
excelled in a different area. The A* algorithm achieved the lowest execution time in many
scenarios. Still, its path length was higher, and it needed a higher sum of changes in
rotation angle to execute the resulting path. Dijkstra’s algorithm was computationally more
expensive. It achieved the shortest path length and needed a higher sum of changes in
the robot’s rotation angle. The proposed algorithm FlFill achieved low execution time in
smaller environments (higher in more complex environments); the resulting path length
was in the middle of the three algorithms, but the sum of changes in the rotation angle was
the lowest in all scenarios.

One interesting area where the proposed algorithm could be useful is the navigation
of visually impaired people, mainly because of its property of keeping low total change in
the orientation angle around the z-axis. It would be beneficial in all cases, emphasizing the
smoothness of the generated trajectory or low changes in the rotation angle.

5. Conclusions

This research presents the proposed algorithm using the wavefront algorithm and
modifying its generated path using B-spline curves. This algorithm was compared with the
A* and Dijkstra algorithms and achieved similar results. However, it excels in smaller action
interventions and the execution of a given path, which can be very important for some
mobile robot applications. The algorithm can be further improved using dual wavefront
propagation during the map-filling phase. This phase took up most of the computational
time. The result should be a shorter computational time and, thus, an improvement in this
feature of the algorithm. In future work, we would also like to conduct experiments with a
robot in a real environment. That should verify the dynamic properties of the presented
algorithm and could lead to some adjustments and improvements.

Moreover, the generated path can be easily modified according to the real kinematics
(or dynamics) of the robot. It is possible by the designed and proven way of reducing
redundant waypoints in the path as well as by using B-spline curves for smoothing the
path. By simple parameterization, it is possible to modify the generated path concern-
ing the limitations of the robot and, at the same time, minimize costs according to the
required criteria.

Author Contributions: Conceptualization, M.P. and F.D.; methodology, M.P.; software, M.P.; validation,
M.P., D.M. and T.M.; formal analysis, M.R.; investigation, D.M.; resources, F.D.; data curation, M.P.;
writing—original draft preparation, F.D.; writing—review and editing, T.M.; visualization, M.P.;
supervision, F.D.; project administration, F.D.; funding acquisition, F.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by projects KEGA 028STU-4/2022, ESA AO/1-10044/19/NL/SC,
and UAVLIFE (“Research and development of the applicability of autonomous flying vehicles in
the fight against the pandemic caused by COVID-19”, Project no. 313011ATR9, co-financed by the
European Regional Development Fund.).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Durrant-Whyte, H.; Bailey, T. Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110. [CrossRef]
2. Thrun, S. Simultaneous Localization and Mapping. In Robotics and Cognitive Approaches to Spatial Mapping; Jefferies, M.E., Yeap,

W.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 13–41. [CrossRef]
3. Ünver Akmandor, N.; Padır, T. A 3D Reactive Navigation Algorithm for Mobile Robots by Using Tentacle-Based Sampling. arXiv

2020, arXiv:2001.09199.
4. Aggarwal, S.; Kumar, N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Comput.

Commun. 2020, 149, 270–299. [CrossRef]
5. Ayawli, B.B.K.; Mei, X.; Shen, M.; Appiah, A.Y.; Kyeremeh, F. Mobile Robot Path Planning in Dynamic Environment Using

Voronoi Diagram and Computation Geometry Technique. IEEE Access 2019, 7, 86026–86040. [CrossRef]

http://doi.org/10.1109/MRA.2006.1638022
http://doi.org/10.1007/978-3-540-75388-9_3
http://doi.org/10.1016/j.comcom.2019.10.014
http://doi.org/10.1109/ACCESS.2019.2925623

Robotics 2023, 12, 25 16 of 16

6. Teleweck, P.E.; Chandrasekaran, B. Path planning algorithms and their use in robotic navigation systems. In Journal of Physics:
Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1207, p. 012018.

7. Wolek, A.; Woolsey, C.A. Model-based path planning. In Sensing and Control for Autonomous Vehicles: Applications to Land, Water
and Air Vehicles; Fossen, T., Pettersen, K., Nijmeijer, H., Eds.; Springer: Cham, Switzerland, 2017; pp. 183–206.

8. Siegwart, R.; Nourbakhsh, I.R. Introduction to Autonomous Mobile Robots; Bradford Company: Holland, MI, USA, 2004.
9. Nakajima, K.; Premachandra, C.; Kato, K. 3D environment mapping and self-position estimation by a small flying robot mounted

with a movable ultrasonic range sensor. J. Electr. Syst. Inf. Technol. 2017, 4, 289–298. [CrossRef]
10. Sakurama, K.; Sugie, T. Generalized Coordination of Multi-robot Systems. Found. Trends®Syst. Control. 2021, 9, 1–170. [CrossRef]
11. Kuric, I.; Bulej, V.; Saga, M.; Pokorny, P. Development of simulation software for mobile robot path planning within multilayer

map system based on metric and topological maps. Int. J. Adv. Robot. Syst. 2017, 14, 1729881417743029. [CrossRef]
12. Murphy, R.R. Introduction to AI Robotics, 1st ed.; MIT Press: Cambridge, MA, USA, 2000.
13. Bräunl, T. Embedded Robotics: Mobile Robot Design and Applications with Embedded Systems, 2nd ed.; Springer: Berlin/Heidelberg,

Germany, 2006.
14. Nemec, D.; Gregor, M.; Bubeníková, E.; Hruboš, M.; Pirnik, R. Improving the Hybrid A* method for a non-holonomic wheeled

robot. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419826857. [CrossRef]
15. Ferguson, D.; Stentz, A. Using interpolation to improve path planning: The Field D* algorithm. J. Field Robot. 2006, 23, 79–101.

[CrossRef]
16. Choset, H.; Lynch, K.; Hutchinson, S.; Kantor, G.; Burgard, W.; Kavraki, L.; Thrun, S. Principles of Robot Motion: Theory, Algorithms,

and Implementations; MIT Press: Cambridge, MA, USA, 2005.
17. Saranya, C.; Unnikrishnan, M.; Ali, S.A.; Sheela, D.S.; Lalithambika, V.R. Terrain based D∗ algorithm for path planning. IFAC-

PapersOnLine 2016, 49, 178–182. [CrossRef]
18. Zhang, B.; Li, G.; Zheng, Q.; Bai, X.; Ding, Y.; Khan, A. Path planning for wheeled mobile robot in partially known uneven terrain.

Sensors 2022, 22, 5217. [CrossRef] [PubMed]
19. Ichter, B.; Schmerling, E.; Lee, T.W.E.; Faust, A. Learned Critical Probabilistic Roadmaps for Robotic Motion Planning. In

Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August
2020; pp. 9535–9541. [CrossRef]

20. Karur, K.; Sharma, N.; Dharmatti, C.; Siegel, J.E. A Survey of Path Planning Algorithms for Mobile Robots. Vehicles 2021, 3,
448–468. [CrossRef]

21. Nagib, G.; Gharieb, W. Path planning for a mobile robot using genetic algorithms. In Proceedings of the International Conference
on Electrical, Electronic and Computer Engineering, Cairo, Egypt, 5–7 September 2004; pp. 185–189. [CrossRef]

22. LaValle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, MA, USA, 2006.
23. Lin, H.Y.; Huang, Y.C. Collaborative Complete Coverage and Path Planning for Multi-Robot Exploration. Sensors 2021, 21, 3709.

[CrossRef] [PubMed]
24. Dung, V.T.; Tjahjowidodo, T. A direct method to solve optimal knots of B-spline curves: An application for non-uniform B-spline

curves fitting. PLoS ONE 2017, 12, e0173857. [CrossRef]
25. Piegl, L.; Tiller, W. The NURBS Book, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1997.
26. Looi, C.Z.; Ng, D.W.K. A Study on the Effect of Parameters for ROS Motion Planer and Navigation System for Indoor Robot. Int.

J. Electr. Comput. Eng. Res. 2021, 1, 29–36. [CrossRef]
27. Amanatides, J.; Woo, A. A Fast Voxel Traversal Algorithm for Ray Tracing. In Eurographics; Department of Computer Science,

University of Toronto: Toronto, ON, Canada, 1987; Volume 87.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jesit.2017.01.007
http://doi.org/10.1561/2600000025
http://doi.org/10.1177/1729881417743029
http://doi.org/10.1177/1729881419826857
http://doi.org/10.1002/rob.20109
http://doi.org/10.1016/j.ifacol.2016.03.049
http://doi.org/10.3390/s22145217
http://www.ncbi.nlm.nih.gov/pubmed/35890897
http://doi.org/10.1109/ICRA40945.2020.9197106
http://doi.org/10.3390/vehicles3030027
http://doi.org/10.1109/ICEEC.2004.1374415
http://doi.org/10.3390/s21113709
http://www.ncbi.nlm.nih.gov/pubmed/34073565
http://doi.org/10.1371/journal.pone.0173857
http://doi.org/10.53375/ijecer.2021.21

	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References

