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Abstract: Methods for solving planar dyads and triads in kinematic synthesis are scattered throughout
the literature. A review of and a new compilation of the complex number synthesis method for
planar dyads and triads is presented. The motivation of this paper is to formulate uniform solution
procedures, pointing out the commonalities of various approaches and emphasizing a consistent
method for synthesizing mechanisms defined by specified precision positions. Particular emphasis is
given to the solution method using compatibility linkages. The textbook Advanced Mechanism Design
Vol II by Erdman and Sandor (1984) only includes a small portion of the available information on
this method, and several researchers have added to the basic knowledge in the years since. In some
cases, the approach and nomenclature were not consistent, yielding a need to describe and chart
a generic formulation and solution procedure for dyads/triads using compatibility linkages and
solution structures. The present method offers benefits for solving for exact dyad/triad solutions for
complex multiloop mechanisms and could be a promising tool for reducing the computational load
of finding complex mechanisms, and for visualizing properties of the solution space.
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1. Introduction

The goal of synthesizing linkages and mechanisms to perform a particular task is
a centuries-old practice. One famous example, called the South Pointing Chariot, was
purportedly created by Chinese engineer Ma Jun (c. 200–265). As its name implies, a
clever gear system driven by a chariot’s wheels forces a statue on the back of the chariot to
continually point south. This was true no matter how many turns the chariot took, provided
both of its wheels rolled without slipping. This was a valuable navigational tool that
significantly pre-dated the invention of the conventional magnetic compass [1,2]. However,
for many centuries to follow, no formal or systematic methodology for synthesizing new
mechanisms was developed.

Professor Robert Willis articulated this problem in the preface of his 1841 text “Prin-
ciples of Mechanism” when he said, “By some strange chance, very few have attempted
to give a scientific form to the . . . results of mechanism; for it cannot be said that the few
and simple . . . examples in books of mechanics, are to be regarded as even forming a
foundation . . . that will enable us either to reduce the movements and actions of a complex
engine to system or to give answers to the questions that naturally arise upon considering
such engines” [3].

In the remainder of the text, Willis laid a foundation for later work and a challenge for
mathematicians and engineers to create mathematical synthesis techniques. This call was
taken up by the likes of Franz Reuleaux, James Watt, Ludwig Burmester, and Ferdinand
Freudenstein. Each of them made a unique contribution to the field, such that by the early-
mid 1900s, a mathematical basis for solving mechanism problems had been established.

The generations of kinematicians that followed more thoroughly fleshed out the
techniques formulated by these early researchers, and developed more methods, such as
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complex number and continuation methods. As the field has continued to expand, few
centralized solution methodologies have arisen, but rather a collection of largely unique
approaches that are mostly specific to the type of linkage topology.

There are many distinct ways to define problems, and, consequently, many distinct
methods to solve them. Some define precision positions (x, y coordinates and relative angle)
that a coupling link must pass through, some a path a single point must pass through,
and others seek to generate vast sets of possible mechanism solutions through continu-
ation methods [4–8]. Recent studies in kinematic synthesis have primarily emphasized
algorithmic approaches.

For example, Purwar and Deshpande investigated a machine-earning approach to
kinematic synthesis, with the intent of mitigating the solution mechanisms’ sensitivity
to the initial conditions [9]. In another paper, Baskar and Bandyopadhyay discuss an
algorithm aimed at reducing the computational load of calculating the finite roots of
large systems of polynomial equations, a problem that arose in kinematic synthesis as
the mathematical method of polynomial continuation was implemented [10]. Ref. [11]
demonstrates a procedure for synthesizing RR, PR or RP dyads, but using a blend of exact
and approximate positions.

While evidently valuable, this paper leans away from these algorithm driven ap-
proaches in favor of more classical synthesis approaches that focus on directly solving the
kinematic equations. Countless complex planar mechanisms can be formed by a combi-
nation of dyads and triads, which can be viewed as kinematic building blocks. As two
examples, consider the multilink mechanisms shown in Figures 1 and 2. The first deploys
the footrest of a chair, while the second moves the leading-edge flap of a wing into its
working position. Both mechanisms are composed of multiple dyad and triad chains.
Rather than attempting to develop a custom kinematic synthesis process for every complex
linkage, a uniform strategy is preferred.
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Figure 1. Patent figure of a chair with a deployable footrest [12].

Owing to some inherent properties of mechanisms and machines formed by links
and joints, kinematic synthesis methods found in the literature share certain underlying
mathematical principles that make finding one or more solutions possible. There exist a
few analytical approaches to solving triad synthesis synthesis problems, some of which
are analyzed in Reference [13], including a unique approach coined the “relative precision
position approach for triad synthesis (p. 433).” Here, emphasis is placed on the solution
method called the “compatibility linkage” for problems defined by precision positions.
This method was first introduced by Sandor and Freudenstein [14] and summarized in
Hartenberg, and Denavit [15] and later in Erdman and Sandor [4]. Further contributions
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building on the foundation established by Sandor and Freudenstein were made by Chuen-
Sen Lin and other authors [16–19].
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2. Body
2.1. Precision Position Solution Methods

The starting point for using the complex number method for solving kinematic syn-
thesis problems (defined by precision positions) is modelling the linkage mechanism using
a number of “standard form equations” [4]. The equations are slightly different for a dyad
and a triad. A dyad represents two links in the mechanism and has the form:

W
(

eiβ j − 1
)
+ Z

(
eiαj − 1

)
= δj (1)

A triad represents three links in relative motion and has the form:

W
(

eiαj − 1
)
+ V

(
eiβ j − 1

)
+ Z

(
eiγj − 1

)
= δj − hj (2)

Note that W, Z, V, δj and h are vectors defined with complex numbers. Links in the
mechanism that are not binary may be defined by more than one dyad or triad loop. These
equations are illustrated in Figure 3a,b.
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Each of the terms on the left-hand side in the standard form equations represent a link
(W, V, or Z) in an assembled mechanism. They are multiplied by rotational operators which
represent the rotations of the link from the starting position to each prescribed position.
The term δj represents the vector between the precision point in the i-th and j-th position
(i.e., δ2 goes between P1 and P2). In most cases, the terms δj and αj are prescribed in the
problem, and β j is taken as a free choice. As the number of precision positions increases,
the number of free choices that can be made decreases until there are no free choices left. As
seen in Table 1, for problems involving a dyad in two or three positions, the number of free
choices is such that the standard form equations can be solved with a linear solution, either
directly or by Cramer’s rule for a dyad in three positions. However, in the four-precision
position case, there are three vector equations (six scalar equations) which must be solved
simultaneously, but seven unknowns. As a result, a nonlinear solution method must be
used. This is where the method of compatibility linkages is so useful.

Table 1. Maximum number of solutions for an unknown dyad/triad when δj and αj are prescribed

in the equation W
(

e−iβ j − 1
)
+ Z

(
e−iαj − 1

)
= δj for dyads, and W

(
e−iαj − 1

)
+ V

(
e−iβ j − 1

)
+

Z
(

e−iγj − 1
)
= δj − hj for triads.

Dyad/
Triad

Number of
Positions

Number of
Scalar Equations

Number of
Scalar Unknowns

Number of
Free Choices

Number of
Solutions

Dyad 2 2 5 3 O(∞3)

Dyad 3 4 6 2 O(∞2)

Dyad 4 6 7 1 O(∞1)

Dyad 5 8 8 0 Finite *

Triad 2 2 7 5 O(∞5)

Triad 3 4 8 4 O(∞4)

Triad 4 6 9 3 O(∞3)

Triad 5 8 10 2 O(∞2)

Triad 6 10 11 1 O(∞1)

Triad 7 12 12 0 Finite *
* Solutions come in sets of 0, 2, or 4 for dyads, and sets of 0, 2, 4, or 6 for triads [4] (p. 94), [21] (p. 21).

Unlike the standard form dyad equation, the triad equation also includes the vector
term h. This term adjusts the tail end of the vector chain, allowing for the solution method
applicability even in completely ungrounded triad cases. The dyad equation can be
modified to include the term h if required.

Figure 4 illustrates how a linkage system can be viewed as combinations of dyads and
triads. Even though this six-bar is far less complex that the mechanisms shown in Figures 1
and 2, the following process can be applied to mechanisms with more loops and links in
a similar way. For example, although a Stephenson III six-bar is shown, the other six-bar
chains can be placed in the dyad-triad standard form as reported by Lonn [22].

The six-bar shown in Figure 4 has three loops, one dyad and two triads. They are
defined by Equations (3)–(5) [4]. The first loop equation describes a dyad, while the next
two describe triad loops.

Z1

(
eiϕj − 1

)
+ Z2

(
eiγj − 1

)
= δj (3)

Z5

(
eiψj − 1

)
+ Z4

(
eiβ j − 1

)
− Z3

(
eiγj − 1

)
= δj (4)

Z6

(
eiθj − 1

)
+ Z7

(
eiβ j − 1

)
− Z3

(
eiγj − 1

)
= δj (5)
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Using free choices of link vectors, this mechanism can be solved with three dyads [4]
(p. 113). Ref. [4] has other examples of assigning dyad and triad standard form modelling
to multiloop mechanisms including an eight bar with four triads and geared mechanisms.
Once a linkage system is modelled with combinations of dyad and triad standard form
equations, the compatibility linkage solution process is used to reveal the potential solu-
tion space.
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Figure 4. (a) A multiloop mechanism shown in an assembled form. (b) The same multiloop mecha-
nism decomposed into three components, two triads and one dyad.

A practical mechanism which reveals these loops can be seen in Figure 5a, with the
loops shown in Figure 5b. The mechanism guides a rotor on a drone from a vertical position
into a horizontal position, allowing for the same rotor to produce vertical or forward thrust.
This setup would allow for the drone to takeoff vertically but fly in a typical “fixed-wing”
configuration once in the air, improving its efficiency. This particular example is very
challenging due to significant constraints on both the ground and moving pivots. The
ground pivots must both be within the nacelle, and the moving pivots are very close to
the link holding the propellor. In addition, the mechanism must deploy smoothly without
exhibiting poor transmission angles. The dimensional synthesis resulted in the Z values
shown in Table 2.
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Table 2. Synthesized Z-Vectors.

Link Vector (PP1)

Z0 −3.377 + 0i

Z1 0.405 − 3.178i

Z2 0 + 3.178i

Z3 −1.522 − 2.037i

Z4 −0.436 + 1.620i

Z5 2.364 + 0.416i

Z6 −1.560 − 2.773i

Z7 2.978 + 2.357i

Z8 1.927 − 1.141i

Z9 −3.170 − 0.684i

A proof-of-concept prototype was assembled, seen in Figure 6.
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open, vertical liftoff configuration.

2.2. Compatibility Linkage Solution Procedure, Dyad for 4 Precision Points

The purpose of the compatibility linkage is to find “compatible values” of several
unknown variables in a set of nonlinear synthesis equations that are compatible with
the known or specified variables. This method results in a closed-form solution to these
equations. The compatibility linkage technique, which was introduced by Sandor and
Freudenstein [14], takes advantage of insights gained by graphical and analytical preci-
sion position methods—both approaches provide keys to generating solutions for triads
and dyads.

As with other precision position methods, it is assumed that the designer has either
determined or measured the required x and y locations, and angles, of the precision point in
each position, meaning that δi-j and αi-j are known. Depending on the number of positions
being considered for a particular problem, the designer may have additional free choices to
make, but the change in position coordinates and angle between positions should always
be known.

The compatibility linkage general solution procedure will be emphasized and illus-
trated with a planar dyad. The first step is to translate the known information into the
standard form vector equations [4,12] (see Equations (1) and (2)). As seen in Figure 3, each
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vector W, Z, (and for triads, V), represents a link in a dyad or triad. Note that the two links
Z and Z’ shown in Figure 3a do not represent two unique links, but rather two vectors
embedded in the same link.

The number of standard-form equations should be one less than the number of pre-
cision positions selected in the problem. The only terms that change in each of these
equations are the angles βj, αj, γj, and the vector δj for each additional position j. These
equations are then translated into a matrix form, which looks like this:eiβ2 − 1 eiα2 − 1

eiβ3 − 1 eiα3 − 1
eiβ4 − 1 eiα4 − 1

[W
Z

]
=

δ2
δ3
δ4

 (6)

[4] (p. 180).
This equation will look roughly the same for a triad, except a column is added for

V in the first matrix, and V is added to the column vector WVZ. An augmented matrix
can be formed by adding the column vector δ2–4 to the matrix on the left-hand side. A
known property of this type of system is that a solution only exists if the rank of the
augmented matrix is two (for a dyad in four positions), with rank referring to the number
of linearly independent rows in the matrix. The rank can be most easily checked by finding
the determinant of the matrix. For square matrices such as the augmented matrix under
consideration, if the determinant equals zero, the rank of the matrix is based on the non-zero
cofactor (also called minor in math) of the maximum possible order [25]. The following
expressions are derived from these properties.

Det M = Det

eiβ2 − 1 eiα2 − 1
eiβ3 − 1 eiα3 − 1
eiβ4 − 1 eiα4 − 1

δ2
δ3
δ4

 = 0 (7)

[4] (p. 181).
This determinant can be written into the following expression, known as the compati-

bility equation:
∆2eiβ2 + ∆3eiβ3 + ∆4eiβ4 + ∆1 = 0 (8)

[4] (p. 181).
where each vector ∆2–4 is the cofactor matrix associated with the corresponding β value
in the augmented matrix. The cofactors are found by eliminating the row and column
containing each value of β, as follows (e.g., ∆2):eiβ2 − 1

eiβ3 − 1
eiβ4 − 1

eiα2 − 1 δ2[
eiα3 − 1 δ3
eiα4 − 1 δ4

]  (9)

The cofactor matrix formed from what remains after eliminating this row and column
is marked in the gray box. For a dyad in four positions, the cofactor matrices are given
as follows:

∆2 =

∣∣∣∣eiα3 − 1 δ3
eiα4 − 1 δ4

∣∣∣∣ (10)

∆3 = −
∣∣∣∣eiα2 − 1 δ2
eiα4 − 1 δ4

∣∣∣∣ (11)

∆4 =

∣∣∣∣eiα2 − 1 δ2
eiα3 − 1 δ3

∣∣∣∣ (12)

[4] (p. 181).
Note that for dyads, the cofactor matrices will always be 2 × 2, while for triads, the

cofactor matrices will be 3 × 3. Additionally, each of the vectors ∆2–4 is a matrix signified
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with vertical lines rather than conventional matrix brackets. This is a mathematical short-
hand representing a determinant, meaning that each of these terms (once the determinant
is evaluated) is a vector with a magnitude and direction. The term ∆1 is unique from the
others, defined by the following expression:

∆1 = −∆2 − ∆3 − ∆4 (13)

[4] (p. 181).
As brilliantly noted in [14], this equation can be viewed as a four link mechanism in

its starting position—thus named the compatibility linkage. Equation (13) is the equation
of closure where ∆1 is the fixed link and the rest of the vectors close the loop by connecting
the chain’s head to its tail. Plotting each of the four above vectors without applying any of
the beta rotation angles mathematically will resemble Figure 7 (for a dyad in four positions,
see Table 3 for more configurations).
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Table 3. Summary of the solution process for compatibility linkages for dyads and triads.

Dyad/
Triad

Number of
Positions

Number of
Links

Number of
Cofactor Matrices Procedure Compatibility Linkage BKC

Dyad 4
Four-bar

compatibility
linkage

4; ∆1, ∆2, ∆3, ∆4

1. Write standard form equations, put them in an
augmented matrix form, write the cofactor matrices
2. Create ∆1 as the sum of ∆2–4, then draw the linkage.
3.Rotate ∆2 by β2, rotate ∆3 and ∆4 to close the loop.
4. Read off the angular displacement of ∆3 and ∆4 to get
β3 and β4.
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Dyad 5

Seven—bar
structure, six-bar

compatibility
linkage

7; ∆1, ∆2, ∆3, ∆4, ∆1
′,

∆2
′, ∆3

′

1. Write standard form equations, put them in an
augmented matrix form, write the cofactor matrices.
There are two sets, ∆ and ∆′.
2. Using a consistent scale, plot both complete loops, with
the base of the ∆1 links at the same x, y position
3. Rotate either loop until ∆2 and ∆2

′ are colinear.
4. Form a parallelogram about the ∆3 links, creating
point D.
5. Remove the newly formed link DE to find the final
compatibility linkage.
6. Rotate ∆2 by β2, adjusting other links accordingly.
Positions where BE and CD are parallel
represent solutions.
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Triad 5
Five-bar 2-DOF

compatibility
linkage

5; ∆1, ∆2, ∆3, ∆4, ∆5

Repeat steps 1–4 of the dyad in 4PP. The difference is that
the loop has five links instead of four, so the designer will
need to set two free choices, typically the angles of ∆2
and ∆5.
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Table 3. Cont.

Dyad/
Triad

Number of
Positions

Number of
Links

Number of
Cofactor Matrices Procedure Compatibility Linkage BKC

Triad 6

Eleven-bar
structure,
ten-bar

compatibility
linkage

9; ∆1, ∆2, ∆3, ∆4, ∆5,
∆1

′, ∆2
′, ∆3

′, ∆4
′

Repeat steps 1–6 for the dyad in five positions. In the
example at right, ∆3 is used as the ground pivot. There
are two parallelogram loops to form in step four. One
about ∆4, forming BCEF, and one about ∆1, forming GIJK.
Remove a link from either parallelogram to convert to the
compatibility linkage.
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Triad 7

Fifteen-bar
structure,

fourteen-bar
compatibility

linkage

13; ∆1, ∆2, ∆3, ∆4, ∆5,
∆1

′, ∆2
′, ∆3

′, ∆4
′, ∆1”,

∆2”, ∆3”, ∆4”

Repeat steps 1–6 for the dyad in five positions. There are
several parallelogram loops to form in step four. Loops
should be formed between each layer of the linkage.
Here, they are formed about ∆4 and ∆1, and the layers of
link ∆2 are fused to form a single link. Remove a link
from any parallelogram to convert to the compatibility
linkage *.
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One frequent point of confusion is that the compatibility linkage is related to the actual
solution dyad. This is not the case. Rather, the constructed compatibility linkage is only the
tool to allow the user to find compatible solutions for the unknown angles in the standard
form equations.

Once the linkage is assembled, the user applies a rotation of β2 to link ∆2. Conse-
quently, the links for ∆3 and ∆4 need to translate and rotate by some amount to keep the
loop closed, as ∆1 is considered ground, and does not move. Once solved, the displacement
angles of links ∆3 and ∆4 represent the solution values of β3 and β4. These values are then
plugged into the original standard form dyad equations. With β3 and β4 identified, solving
for the vectors W and Z using standard linear algebra techniques is possible.

While the problems may be a bit more complex, increasing the number of precision
positions or transitioning from a dyad to a triad changes very little about the underlying
methodology for compatibility linkages. While this paper will not emphasize quadriads,
it is even possible to apply the method of compatibility linkages to solving four link
chains [21]! Here, each higher-order case up to seven precision positions will be briefly
examined, highlighting the key differences of each from the dyad in four positions explained
above. See Table 3 for a summary of these cases and see Appendix A for a detailed solution
procedure of the triad in six and seven positions.

2.3. Dyad in 5 Precision Positions

Moving from four to five positions is likely the biggest single jump in complexity for
solving problems using the method of compatibility equations. This is because there is no
longer a single compatibility equation, but rather two. The compatibility equations for a
dyad with five prescribed positions (no free choices) are:∣∣∣∣∣∣

eiβ2 − 1 eiα2 − 1
eiβ3 − 1 eiα3 − 1
eiβ4 − 1 eiα4 − 1

δ2
δ3
δ4

∣∣∣∣∣∣ = 0 (14)

and ∣∣∣∣∣∣
eiβ2 − 1 eiα2 − 1
eiβ3 − 1 eiα3 − 1
eiβ5 − 1 eiα5 − 1

δ2
δ3
δ5

∣∣∣∣∣∣ = 0 (15)

[4] (p. 201).
Or, in their simplified form:

∆2eiβ2 + ∆3eiβ3 + ∆4eiβ4 + ∆1 = 0 (16)

∆′2eiβ2 + ∆′3eiβ3 + ∆4eiβ5 + ∆′1 = 0 (17)

[21] (p. 107) where
∆1 = −∆2 − ∆3 − ∆4 (18)

∆′1 = −∆′2 − ∆′3 − ∆4 (19)

The ∆′ terms are formed in the same way as the ∆ terms (cofactors of the augmented
matrix), but they are taken from the second matrix. These equations must be fulfilled
simultaneously to find a valid solution for W and Z. Previously, finding the solution to
these compatibility equations would have required using a technique known as “Sylvester’s
Dyalitic Eliminant”. While this method worked, the process is computationally involved and
mathematically rigorous. Using the method of compatibility linkages described below allows
the designer to avoid this complexity while being able to visualize the solution process.

To form a solution structure, identify each of the two independent four-bar loops
formed by the ∆ terms. The first loop includes ∆1 through ∆4, while the second is formed
from ∆1

′, ∆2
′, ∆3

′, and ∆4 (∆4 used twice because ∆4
′ is identical to it, either notation is

acceptable). Using a consistent scale, line up these two four bars such that the tails of
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∆2 and ∆2
′ share the same x, y coordinate, and rotate either four-bar linkage (keeping all

internal angles the same) such that ∆2 and ∆2
′ have the same angular direction. The result

should now resemble Figure 8, with ∆1 (A-G-H) and ∆2 (A-B-C) appearing as ternary links.
There are two distinct four-bar chains, or loops, between them.
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Figure 8. The compatibility linkage for a dyad in five precision positions. Linkage positions in which
the lines CD and BE are parallel represent solutions to the synthesis problem [21] (p. 109).

The final key step shown in Figure 8 is adding point D. This point is found by creating
the parallelogram BCDE, turning link CF (corresponding to ∆3) into a ternary link. The
completed mechanism is known as the solution structure. Once identified, the link DE may
be removed, but point D will remain as a reference. After removing link DE, the mechanism
transforms from a zero degree-of-freedom structure to a one degree-of-freedom linkage;
this is the final compatibility linkage.

To find solutions, rotate the (now ternary) link ∆2. The rotation of ∆2 is the only input
required to fully define the system, so each other link is determined once the angle of ∆2 is
set. As this mechanism moves, at any position where the links CD and BE are parallel, the
linkage represents a compatible solution to the original problem. The exception is the first
position, as CD and BE will always be parallel initially, by definition.

For each unique parallel position, the displacement angles of the links correspond to
the angles β2–5. Specifically, ∠∆3 = β3, ∠∆4 (outer loop)= β4, and ∠∆4 (inner, ∆′ loop)=
β5. These compatible angles are then inserted back into the standard form dyad equations.
With four vector equations and two vector unknowns, the equation can now be solved for
W and Z via a linear solution. The number of geometric inversions of the compatibility
linkage corresponds to the number of solution sets to the compatibility equations. The
term geometric inversion refers to the number of unique mechanisms that can be created
by changing which link is fixed, meaning distinct inversions do not have unique angular
displacements, just different grounded links. In this case, that means there are six sets of
unique combinations of β2–5 which fulfill the original compatibility equations. However,
two of these solutions correspond to the slider and concurrency special points. As a result,
only up to four dyad solutions exist—that is, there are zero, two or four viable solutions for
each choice of independent variable x.

2.4. Triad in 5 Precision Positions

As a designer transitions from synthesizing a dyad to a triad, the underlying solution
procedure will remain the same, but a few key steps will either change or be added. First,
the standard triad equation has an additional term, eiγj-1, associated with the Z vector. See
Figure 3b depicting the vector form of a triad to see where this term fits in the vector chain.
Similarly, an intermediate vector V has been added, increasing the number of links in the
chain from two to three. The meaning of some of the angles have changed as well. The
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angle α no longer describes the angle of the coupler link, but rather the angle of the vector
W. β is now assigned to the intermediate link V and will continue to be selected as the
free choice for these problems. The new angle, γ, replaces α as the angle describing the
coupler’s rotation. It is important to note that using triads instead of dyads for five precision
positions does not increase the number of loops in the compatibility linkage—there is still
only a single loop—but the triad does increase the number of terms that must be identified.
All values of γ must also be prescribed along with all the information that was prescribed
for a dyad in five positions. This volume of free choices enables a designer to make many
decisions about their desired mechanism, but this can also be overwhelming due to the
vast potential solution space. For the triad in five positions, there are four simultaneous
vector equations, and one compatibility equation:

∆2eiβ2 + ∆3eiβ3 + ∆4eiβ4 + ∆5eiβ5 + ∆1 = 0 (20)

[21] (p. 111)
∆1 = −∆2 − ∆3 − ∆4 − ∆5 (21)

As with the compatibility linkage for a dyad in four positions, only one compatibility
equation exists for a triad in five positions. As a result, the compatibility equation only has
a single loop. However, one significant difference between the two is the additional link in
the five-bar compatibility equation. This results in a solution structure with two degrees of
freedom rather than one. However, this challenge can be avoided by giving the designer a
second free choice. Typically, these free choices are chosen as β2 and β5, though any other
combination of two angles is also valid. Once these free choices are made, the solution
procedure is the same as the dyad in four positions, as all that is left is a geometrically
deterministic triangle. The remaining link positions and angles can be solved by using the
law of cosines. Table 3 and Figure 9 represent summaries of the dyad and triad solution
procedures using the compatibility linkage approach. The similarities across these cases
are indicated, perhaps suggesting a future software kinematic synthesis package. One
example in this direction was achieved by Chase [26], although there was limited use of
this software at that time.

A full explanation of the solution procedure using the compatibility linkage for a
triad in six and seven precision positions can be found in Appendix A. While kinematic
chains above dyads and triads will not be discussed in detail here, Lin demonstrated the
general solution procedure for the compatibility linkage of a quadriad [21]. Theoretically,
even higher-order chains also ought to be solvable by compatibility linkages. However, it
becomes increasingly difficult to fathom a sufficiently complex yet practical mechanism
synthesis problem that would justify their use. Even so, chains incorporating five or more
vectors/links, and their potential applications, remain a possible area for further study.
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2.5. General Solution Procedure

A flow chart is provided in Figure 9 depicting the general solution procedure using the
method of compatibility linkages. Inspiration for the chart comes from [21] (pp. 140–143).

To solidify the general solution procedure, the authors find it prudent to provide the
following numerical example, a dyad in five precision positions. The problem is defined by
the precision positions stated in Table 4.
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Table 4. Precision positions and alpha angles.

Position Coordinates Alpha (deg)

1 −21.700 + 22.035i 0

2 −11.883 + 12.018i 19.684

3 −5.973 + 11.767i 30.751

4 4.744 + 10.766i 59.361

5 5.345 + 12.318i 84.696

Using Equations (7)–(13) and (19), the vectors representing the links in the compatibil-
ity linkage are found, shown in Table 5. These vectors form two four-bar loops, shown in
Figure 10. The end of vector ∆1 is chosen as the shared point between the two loops.

Table 5. Direction and magnitude of each ∆ vector.

Delta Link Vector Coordinates

∆1 −1.2736 + 0.1990i

∆2 0.9214 − 3.4612i

∆3 1.5541 + 3.7924i

∆4 −1.2018 − 0.5302i

∆1
′ −3.3851 + 1.1261i

∆2
′ 5.2149 − 9.7840i

∆3
′ −0.6280 + 9.1881i
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At this point, the links ∆2 and ∆2
′ are chosen as the input which will drive the

compatibility linkage. As a result, all of the ∆′ links are rotated about the head of vector ∆1
to align ∆2 and ∆2

′ so that they are colinear, a rotation of−13.15 degrees (CW). Additionally,
a parallelogram is formed by drawing a vector from the end of ∆3

′ in the direction of ∆2.
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This vector has length ∆2 − ∆2
′=1.9307 − 7.2528i. After applying these changes, the

compatibility linkage takes the form shown in Figure 11.
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Figure 11. The solution structure for a dyad in five precision positions.

Figure 11 is the solution structure representing this problem. Removing the link DE
forms the compatibility linkage. To use it, the designer can directly begin rotating the
linkage to try to find solutions. However, a useful intermediate step is to find the range
of acceptable β2 values for which the compatibility linkage closes. This range is found by
drawing a circle with radius ∆2 around the tip of ∆1, as well as a circle of radius |∆2| +
|∆3| + |∆4| around the tail of ∆1. Repeat this process for the ∆′ loop. Here the range
of the ∆ loop is more limiting. The range of ∆2 is shown in Figure 12, with the circle’s
intersections denoting the limits of ∆2.
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From these circle intersections, it is possible to calculate an upper and lower bound
of β2 as 116 degrees above the initial position (CCW), and 27 degrees below the initial
position (CW). The mechanism is rotated over this range, and any positions where links CD
and BE are parallel to each other is recorded. In this problem, there are two such positions,
shown in Figure 13a,b.
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Figure 13. (a) Compatibility linkage in solution position one. (b) Compatibility linkage in solution
position two.

In each of these two compatibility linkage positions, the links are measured to deter-
mine their angular displacement relative to the initial position. From these displacements,
two dyads are found, corresponding to two solution positions, by plugging the values back
into the standard form equations and finding a linear solution. These two dyads are plotted
using the software Lincages in Figure 14 [26,27].
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Figure 14. Final solution linkage visualized in the Lincages software. The triangles represent the
ground pivots of this mechanism.
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2.6. Special Cases

As with other synthesis methods, there are several special cases when solving problems
using the compatibility linkage. A few of the most common will be emphasized here, and
Figure A4 shows a more complete table of special cases.

The first set of special cases occurs when the free choice angle β2 is equal to α2, γ2, or
0. This results in Equation (2) taking the form shown in Equation (22) (for β2 = α2). Each of
these cases is resolved by the solution containing a slider.

W
(

eiαj − 1
)
+ V

((
pj
)
eiαj − 1

)
+ Z

(
eiγj − 1

)
= δj − hj (22)

In this solution case, all angle variables are predefined prior to performing any calcu-
lations. The only scalar term which is not defined is pj. pj is called the stretch factor, and p2
is the free choice for this problem.

The second set of special cases is also caused by other angular similarities. They are:
one link with no angular displacement (i.e., αj = 0), two links with the same angular
displacement (i.e., αj = γj), and multiple links with no angular displacement (i.e., αj =
γj = 0). Each of these special cases is resolved through some combination of sliders, with
the exception of γj = 0, for which no solutions exist. For a full depiction of the special cases
for triads, see Figure A4.

2.7. Advantages of the Compatibility Linkage Method

By analyzing a compatibility linkage for range of rotation of the “input link” of the
compatibility linkage, some interesting properties of possible solution mechanisms are
revealed. Frequently, the link ∆2 will have a finite rotational range, meaning that only
values of β2 falling in the acceptable range can produce solutions. This is quite useful,
as previously, the range of acceptable β2 (free choice) values would have been found
through an exhaustive search. Through the method of compatibility linkages, the designer
can clearly identify the upper and lower bounds of β2 based on how far link ∆2 in the
compatibility linkage will rotate in either direction from its starting position. For example,
a crank-rocker type compatibility linkage will give β2 a range that allows any value to be
used as a free choice. In contrast, a double-rocker compatibility linkage will restrict the
range of β2 [17–19]. In the latter case, one can expect solutions only for a limited range
of β2, clockwise or counterclockwise—thus larger values of ±β2 are rare. This is a quite
useful design rule.

Applying the Grashof theory to a compatibility linkage reveals some interesting
behavior. Depending on the type of mechanism formed by the compatibility equations
(Grashof vs non-Grashof, crank-rocker, double-rocker, etc.), solution regions may emerge. If
a compatibility linkage has more than one branch (e.g., more than one unique configuration,
such that reaching the second configuration requires temporarily removing at least one pin
joint), then there will correspondingly be multiple sets of β2 values that produce viable
solutions. This can be seen in reference [18] (p. 4), depicting the Center-point Burmester
curve for a double-rocker compatibility linkage.

A non-Grashof triple-rocker mechanism, on the other hand, has a single circuit. As a
result, it will have continuous solutions throughout its full potential range of motion of the
input angle. However, this will still not cover a full 360 degrees, as rockers are inherently
limited in this regard.

J.A. Schaaf and J.A. Lammers furthered this research, identifying fourteen specific
classes of compatibility linkages and their corresponding center-point curve shapes [19].
These fourteen groups are divided into three categories; Grashof, non-Grashof, and change-
point mechanisms. Within each of these groups, depending on which link ∆1–4 is the
shortest, the general shape of the center-point curve can be determined. See their paper for
a full list of these categories [19]. While this theory has presently only been applied to the
compatibility linkage of a dyad in four precision positions, there is reason to believe that
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the same line of analysis may yield similar findings for the triad in five precision positions,
and perhaps even higher numbers of precision positions.

Applying the Grashof criteria to the compatibility linkage is not the same as applying the
same criteria to the finished solution. Its use for the compatibility linkage reveals interesting
information about potential solution regions in which, for any value of β2, a solution exists,
or regions where no dyad/triad solutions exist. However, mechanisms produced from the
compatibility linkage approach may still be subject to circuit, branch, and order defects.
Additionally, they may have poor force properties or low transmission angles.

2.8. Defects

The compatibility linkage is useful in that it reveals numerous prospective solutions,
but the designer will still need to determine if a candidate mechanism found by this method
meets their requirements and that it does not exhibit defects, such as the combination of
dyads selected not reaching all design positions on one circuit of the mechanism. Chase
and Mirth detailed an effective procedure for identifying and addressing these defects [28].
Whether there is a relationship between the Grashof type of compatibility linkage and
any or all these properties remains a possible area for research. Similarly, applying the
Grashof criteria to the higher-order compatibility linkages could be further investigated.
Investigating the circuit defects of a compatibility linkage will reveal unique solution
regions as there are gaps where no solutions exist for a particular value of β2.

2.9. Eight or More Precision Positions

Cases that would require more than seven precision positions are less common in
industry, as usually, a less complex solution method can produce a satisfactory mechanism
design. However, a few options are available if a designer wishes to move beyond this
limit. First, Chuen-Sen Lin derived compatibility linkage solutions for quadriads in up to
nine positions. The solution structures produced for these mechanisms are quite complex
but are solved in largely the same way as the dyads and triads. See his work from the
University of Minnesota [21] or the subsequent work he and his students completed at the
University of Alaska Fairbanks [29,30].

2.10. Connections to General Burmester Theory

Burmester Theory underpins many of the precision position synthesis techniques
in the field of mechanisms. The theory largely revolves around the position of the poles
for a particular moving plane. They are found by identifying the intersection of the
perpendicular bisectors between two positions for two arbitrary points on the moving
plane. In four positions, the center-point curve passes through the six standard poles, while
the circle-point curve passes through the poles P12, P13, P14, and the image poles P23

′, P24
′

and P34
′.

In addition to the poles, points called “opposite pole quadrilaterals”, or “Π-points”,
are found by identifying the intersection of lines passing through each pair of non-adjacent
poles. There are twelve of these points in four positions. The first six are shown in Equation
(23), each of which intersects the center-point curve, much like the natural poles.

Π12 = P13P23 x P13P23 Π13 = P12P23 x P14P34
Π14 = P12P24 x P13P34 Π23 = P12P13 x P24P34
Π24 = P12P14 x P23P34 Π34 = P13P14 x P23P24

(23)

[31,32] (pp. 25–26).
The next six are formed from some combination of the image poles and are shown in

Equation (24). The circle point curve passes through each of these points in addition to the
poles listed above.
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Π1
12 = P13P1

23 x P14P1
24 Π1

13 = P12P1
23 x P14P1

34
Π1

14 = P12P1
24 x P13P1

34 Π1
23 = P12P13 x P1

24P1
34

Π1
24 = P12P14 x P1

23P1
34 Π1

34 = P13P14 x P1
23P1

24

(24)

[31,32] (pp. 25–26).
Using the full collection of these points, an initial depiction of both Burmester curves

can be drawn. This visual tool may lend exceptional value. A sample plot of the Burmester
curves for a dyad can be seen in Figure 15:
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Each point on the Burmester curve is part of a ‘Burmester Point Pair’, or a Burmester
point set in the case of the triad. These pairs represent a corresponding moving pivot
location and ground pivot location. The method of compatibility linkages is an extremely
effective tool for finding these curves—for each value of the free choice that is valid, a new
pair of points in the curves is generated.

2.11. Closing Thoughts

The potential applications of kinematic synthesis through the compatibility linkage are
intriguing, and there are still opportunities for further investigation. Throughout this paper
β2 has been used as the free choice, and the compatibility linkage has been applied to find
the values of the angles βi-j. For dyads, this paper assumes the designer wants to solve the
problem for motion generation. However, by forming new cofactor matrices about α rather
than β, the compatibility linkage could be used for path with prescribed timing problems
as well. The LINCAGES software package utilized this realization [33–35]. Similarly for
triads, it should be possible to use the compatibility linkage to solve the standard form
equation for any of the angles β, α or γ, with the only procedural change being rewriting
the cofactor matrices. This would allow the designer to solve triad synthesis problems
defined for motion generation or for path with prescribed timing. There are typically
two path generators for each motion generator due to cognates [4]. As a result, further
investigation into the unique properties of the compatibility linkage and their cognates
is warranted.

Schaaf and Lammers investigated the compatibility linkage of a dyad in four positions
and found that its Grashof type played a distinctive role in determining the shape of the
Burmester curves [19]. Inspired by their findings, we speculate that the compatibility
linkage of the triad for five precision positions will exhibit similar properties. The triad
has a five-bar compatibility linkage with two degrees of freedom, but it only has a single
loop. Additionally, after setting the angle of one of the free choices (e.g., β5), the rest of the
linkage behaves like a four-bar, and the second free choice can be rotated through all its
values (e.g., β2). This likely means that the findings of Schaaf and Lammers are applicable
to the triad, and that for each free choice of β5 a new center-point curve could be generated
which resembles the corresponding class of dyads.

In addition to the applications for multiple prescribed position synthesis, we speculate
that the compatibility linkage can be utilized for mixed position-velocity synthesis as well.
Using the standard form equations mixed position-velocity synthesis is already possible.
In a two-precision position problem, for example, a designer may choose to include a third
equation describing the velocity of the precision point in the first position. The standard
form equation can be rewritten as:

W
(

ei
.

β j − 1
)
+ Z

(
ei

.
αj − 1

)
= Vj (25)

Here
.

β j and
.

αj represent the angular velocities of their respective links, and Vj is the
velocity vector of the precision point. To evaluate this expression using a compatibility
linkage, the cofactors would need to be rewritten, but after making that change the general
solution procedure should flow in exactly the same way [4,36,37].

Multiple researchers have demonstrated using multiply separated positions to synthe-
size a path generation mechanism by using derivative equations [4] (pp. 239–245), [38]. The
resultant tracer point curve closely resembles a prescribed function for a significant range
of that function. However, to achieve this result for a problem defined by a single position
and its four derivatives, Sylvester’s dialytic eliminant was employed. In the same way
as before, we speculate that this method can be avoided by employing the compatibility
linkage method. This would only require rewriting the cofactor matrices with appropriate
derivatives.
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3. Conclusions

In this paper, the compatibility linkage approach to kinematic synthesis has been
shown to have broad applicability to a large range of linkage mechanisms. Computationally,
it is a simplified way of traversing the solution space of potential dyads and triads. Similarly,
the method adds the ability to visualize spatial properties of the solution space which are not
easily identified through other methods. The process of using the assembled compatibility
linkage to find solutions flows naturally from common mechanism analysis techniques,
meaning that once completed, the compatibility linkage can be used to generate numerous
potential solutions. Furthermore, while the scope of the method presented in this paper
is already quite unifying, there remain many opportunities to expand the method even
further through additional research.
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Appendix A. Detailed Solution Procedure for a Triad in Six and Seven Precision
Positions Using the Method of Compatibility Linkages

Triad in six precision positions:
Displacement equations:

eiα2 − 1 eiβ2 − 1
eiα3 − 1 eiβ3 − 1

eiγ2 − 1 δ2 − h2
eiγ3 − 1 δ3 − h3

eiα4 − 1 eiβ4 − 1
eiα5 − 1
eiα6 − 1

eiβ5 − 1
eiβ6 − 1

eiγ4 − 1 δ4 − h4
eiγ5 − 1
eiγ6 − 1

δ5 − h5
δ6 − h6




⇀
W
⇀
V
⇀
Z
−1

 =
⇀
0 (A1)

[21] (p. 22).
As with a dyad in five positions, there are two compatibility equations to solve

simultaneously from this matrix. They are:

∆2eiβ2 + ∆3eiβ3 + ∆4eiβ4 + ∆5eiβ5 + ∆1 = 0 (A2)

And:
∆′2eiβ2 + ∆′3eiβ3 + ∆′4eiβ4 + ∆5eiβ6 + ∆′1 = 0 (A3)

[21] (p. 23).
Once the ∆ terms have been defined, the compatibility linkage is drawn. As before,

align the tails of vectors ∆2 and ∆2
′, and rotate the ∆′ loop (keeping inter-link angular

relations constant) so that ∆2 and ∆2
′ point in the same direction. In this case, there are

two parallelogram loops to form. The first is the loop BCEF, and the second is GIJK, as
seen below.

Note that Figure A1 was generated slightly differently from the previous compatibility
linkages. Here, ∆3 and ∆3

′ were chosen as the ground pivots, and these links were overlaid
with each other, with the head rather than the tail of ∆2 taken as the common point between
the two loops. As a result, the parallelogram BCEF is formed about the link ∆4 and ∆4

′ (∆4
is extended to form the ternary link CDE), while the parallelogram GIJK was formed about
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links ∆1 and ∆1
′ (∆1 is extended to form the ternary link HIJ). Finally, a ternary link AJK is

formed incorporating ∆2 and ∆2
′ (connecting the points J and K). A critical observation

to make regarding these parallelogram loops is that each was made possible by existing
relationships between the ∆ and ∆′ terms. ∆2 and ∆2

′ share the same angular displacement,
even prior to being connected. The same is true of ∆3 and ∆3

′, and ∆4 and ∆4
′. This means

that combining these links is an unnecessary but helpful simplification of the compatibility
linkage, as this new form above requires only a single input to fully determine the rest of
the mechanism. This is a significant advantage, as each independent five-bar loop had two
degrees of freedom, making the problem more complex.
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Figure A1. (a) The two loops of the triad in six positions shown without modification; (b) The
compatibility linkage of a triad in six positions after aligning ∆3 and forming parallelograms [21]
(pp. 31–35).

The compatibility linkage of the triad in six positions can be used to find solutions
in the form described above. However, the linkage is unique in that it has an additional
layer of possible simplification that the designer can take advantage of. As was discussed
earlier, the number of unique geometric inversions of the compatibility linkage corresponds
to the number of unique solutions to the original problem. In this case, though, once the
free-choice angle β2 is selected and implemented, the relative positions of links AJK and
HIJ remain consistent regardless of which geometric inversion is considered. As a result,
several links can be eliminated. The pivots A, G, and H can be considered as a single
ternary link, reducing the ten-bar linkage to a seven-bar zero-DOF structure [17] (p. 36).
After implementing each of these steps, the new structure looks like this (Figure A2):
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The final positions of each of the points in this compatibility linkage are shown in
Table A1. To find solutions, remove the link EF, creating a Watt-II solution linkage. For
positions (apart from the starting position) in which links, CE and BF are parallel, the
mechanism represents a solution to the original problem.

Table A1. Simplified compatibility linkage global point positions (triad, 6PP).

Point Position in Plane

A (0,0)

B ∆3
′

C ∆3

D ∆3 + ∆4

E ∆3 + ∆4
′

F ∆3
′ + ∆4

′

G −∆2
′ + ∆1

H −∆2 + ∆1

The solution values are then taken from the angular displacements of links AH, BF, HD,
and GF, which correspond to the values of -β3, β4-β3, β5-β3, and β6-β3, respectively. These
relationships are shown in Table A2. While making these simplifications does take more time
initially, the payoff is substantial. Analysis of a six-bar mechanism is easier than a ten-bar
linkage, not to mention that the Watt-type mechanisms are much more thoroughly covered
in the literature. A designer working through this process will find the following relations:

Table A2. Selected Links in the simplified compatibility linkage and their corresponding beta values.

Link Angular Displacement

AH -β3

BF * β4-β3

HD β5-β3

GF β6-β3

* BF or CE can be used, as they share the same angular displacement.

The attentive reader may note that the angle β2 is neglected in Tables A1 and A2, and
it no longer plays a role as a free choice or as a solution angular displacement. Fortunately,
once the beta values have been calculated, not all of them must be used. Only three of the
beta values need to be incorporated to calculate the value of each unique solution for the
triad. Chuen-Sen Lin shows an example, here taken as Equation (A4), using β2, β3, and β4.

⇀
W
⇀
V
⇀
Z

 =

eiα2 − 1 eiβ2 − 1 eiγ2 − 1
eiα3 − 1 eiβ3 − 1 eiγ3 − 1
eiα4 − 1 eiβ4 − 1 eiγ4 − 1

−1δ2 − h2
δ3 − h3
δ4 − h4

 (A4)

[21] (p. 39).
The solutions to this reduced system of standard form equations are the final solutions

to the precision position problem.
Triad in seven precision positions:
A triad in seven precision positions is by far the most mathematically complex of the

compatibility linkage types listed here. As with the transition from four to five positions
for a dyad, the transition from six to seven positions for a triad reduces the number of
potential solutions from an infinite number (based on the infinite number of potential free
choice values) to a finite value, Solutions come in sets of 0, 2, 4, or 6 depending on the
intersections of the Burmester curves. As a result, most authors recommend refraining
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from using seven positions when synthesizing triads. The benefits of having a free choice
almost always outweigh the cost of giving up a precision position. With that said, should
a designer choose to proceed with the compatibility linkage approach to a triad in seven
positions, they’ll find that there are three compatibility equations that must be fulfilled.
These equations are shown below, with loop one:

∆2eiβ2 + ∆3eiβ3 + ∆4eiβ4 + ∆5eiβ5 + ∆1 = 0 (A5)

Loop Two:
∆′2eiβ2 + ∆′3eiβ3 + ∆′4eiβ4 + ∆5eiβ6 + ∆′1 = 0 (A6)

Loop Three:

∆′′ 2eiβ2 + ∆′′ 3eiβ3 + ∆′′ 4eiβ4 + ∆5eiβ7 + ∆′′ 1 = 0 (A7)

[21] (p. 115).
where,

∆1 = −∆2 − ∆3 − ∆4 − ∆5 (A8)

∆′1 = −∆′2 − ∆′3 − ∆′4 − ∆5 (A9)

∆′′ 1 = −∆′′ 2 − ∆′′ 3 − ∆′′ 4 − ∆5 (A10)

Conveniently, as with the previous analyses of triads, each of these compatibility
equations represents a five-bar chain in the compatibility linkage. As a result, the setup
of the linkage, in this case, will feel quite familiar. As before, the angular displacements
of some equivalent ∆ terms are equal. Now, however, a third link is added to each set,
yielding (∆2, ∆2

′, ∆2”), (∆3, ∆3
′, ∆3”), and (∆4, ∆4

′, ∆4”). In response to some stimulus
in the mechanism, each of these links in the compatibility linkage will have the same
displacement angle as the others in its set. This allows for the forming of several sets of
parallelograms between the different chains formed from the compatibility equations. The
chains start out in the form shown in Figure A3.
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Figure A3. The three loops of the triad compatibility linkage for seven precision positions prior to
modification. The end of link ∆1 is selected as the common point [21] (p. 116).

After rotating the links to create alignment and creating the appropriate parallelograms
between each layer of the loop, the linkage takes the form shown in Table 2. Links IJ, IH, MP,
and PQ have all been created to form parallelogram loops. These parallel motion structures
are created around links ∆1, ∆2, ∆3, and ∆4, which were each of the links that had identical
angular displacement relationships. As with the lower-order structures, the designer may
use this linkage by removing any of these created links, changing the chain from a 15-bar
zero-degree-of-freedom structure to a 14-bar one-degree-of-freedom linkage. From here, the
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designer must identify the mechanism positions (outside of the starting position) in which
the sides of the parallelogram from which the link was removed are parallel to each other. At
these positions, the angular displacements of links CD, DE, EH, HM, KN, and LO from their
starting positions correspond to β2-β7, respectively [21] (p. 115). Further simplifications of the
compatibility linkage for a triad in seven precision positions remain an area for further study.

Appendix B. Special Cases of the Triad Compatibility Linkage
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