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Abstract: Powertrain electrification in the agricultural vehicles is still in the initial stages. This article
analyzes the energy behavior of a Photovoltaic/Fuel Cell Agricultural Mobile Robot (PV/FCAMR)
as the preliminary step before development. This concept incorporates three energy storage sources
for the powertrain: a battery pack, a Fuel Cell (FC) system, and a Photovoltaic (PV) system. This
paper proposes an approach based on the Grey Wolf Optimization (GWO) and Particle Swarm
Optimization (PSO) algorithms to determine the sizes of the FC and battery of an FCAMR. A
differential drive mobile robot was used as a case study to extract the typical working cycles of
farming applications. The FCAMR vehicle model was developed in MATLAB/Simulink to evaluate
vehicle energy consumption and performance. For the energy analysis and evaluation, the FCAMR
was tested based on two realistic working cycles comprising circular and rectangular moving patterns.
The results showed that the proposed arrangement could extend the FCAMR autonomy by 350% as
opposed to the pure electric system. This allows for at least 8 h of work with a tank filled with 150 g
hydrogen and a PV system with a 0.5 m2 monocrystalline solar panel. The simulation results have
demonstrated the relevance and robustness of this approach in relation to various working cycles.
The cost comparison between the theoretical and optimization sizing methods showed at least an 8%
decrease for the FCAMR. Furthermore, adding the PV system extended the vehicle’s range by up to
5%. This study provides an optimal solution for energy sources sizing of mobile robots as futuristic
agricultural vehicles.

Keywords: agricultural mobile robot; non-road hybrid electric vehicles; particle swarm optimization;
grey wolf optimizer; photovoltaic; fuel cell

1. Introduction

Today, the world’s population is increasingly growing and is currently reaching
around eight billion [1]. At the same time, the demand for food and agricultural products
continues to increase as living standards improve. Meanwhile, the increase in the urban
population and the decrease in the rural population have also promoted the development
and application of new agricultural machinery due to the labor shortage issues. On the
other hand, the agriculture sector faces several challenges, such as increasing energy
demand, greenhouse gas emissions, and the effects of global warming [2]. Therefore, the
farm machinery of the future must be completely redesigned. It should be modular with
exchangeable equipment integrated into the machine, autonomous, and lightweight. Thus,
several small vehicles can operate in the field simultaneously, working continuously, 24 h a
day, automatically changing equipment and batteries/refueling when needed [3].

The development of agricultural robot technology is an inevitable requirement for
agriculture to find solutions to the challenges related to the shortage of labor, precision
control, farm work convenience, and green operation. Such challenges are difficult to solve
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with conventional agricultural machinery, which has an important carbon footprint [4].
As a result of the research efforts, there are several robotic solutions addressing several
different areas such as monitoring [5], mapping [6], crop and pest managing [7], envi-
ronmental control [8], phenotyping [9], and planting [10]. For example, the researcher
in [11] developed an original LiDAR-based high-throughput phenotyping system for cotton
plant phenotyping in the field. The Hortibot [12] is a robotic tool carrier for high-tech plant
care. In addition, the ByeLab [13] mobile vehicle has been developed to monitor and sense
the health status of orchards and vineyards. In another application, Vibro Crop Robotti [14]
can also perform field work such as mechanical weeding and precision seeding. Recently,
an Ackermann steering control system was developed and tested successfully for a four-
wheel-drive agricultural mobile robot in [15]. Moreover, in [9,16] the navigation problems
of mapping, localization, and path planning in navigation problems of agriculture wheeled
mobile robots were reviewed and the application prospects were discussed. They men-
tioned that, due to the agricultural environment’s complexity, the available methods still
need to be improved in their practicability and effectiveness. In this regard, the research
in [17] used a Robotic Operating System (ROS)-based simulation method to overcome
the phenotyping bottleneck in the real farm situations. Recently, advances in agriculture
robotics and challenges ahead were reviewed in the comprehensive survey in [18].

We have mentioned only some examples, but many more projects on mobile agricul-
ture platforms have been started worldwide. However, most of them have been unsuccess-
ful in their mission due to battery limitations and energy shortages. Moreover, regarding
the electric powertrain design aspect, a solar-powered unmanned ground vehicle was
studied in [19] for precision agriculture. However, the technical details of the sizing and
selection of the components have not been made available in the literature.

The main drawback of conventional agricultural machines is the high consumption
of fossil fuels, which has resulted in large emissions of harmful gases. The depletion of
fossil fuels and their adverse environmental impact have motivated governments and
communities to look for strategies enabling pollution-free renewable energy sources for
vehicle applications [20]. Therefore, tractors with internal combustion engines are neither
safe nor healthy, especially in closed working environments such as greenhouses. Based
on information from the Environmental Protection Agency (EPA), around 38 percent of
greenhouse gas emissions are from the transportation, agriculture, and industry sectors [21].
In this regard, the use of clean technologies such as powertrain electrification and alternative
energy has been proposed as a solution [22]. The literature shows that some progress has
been made in the case of agricultural tractors [23,24]. Still, hybridized powertrains for
agricultural robots have not received enough attention. Therefore, using new agricultural
machinery such as robotic systems and electrified vehicles is essential to achieve lower
emissions, higher fuel efficiency, and increased controllability [25]. On the other hand, the
use of robotics in agriculture has contributed to solving some problems. For instance, in
closed or semi-closed environments, such as greenhouse and warehouse applications, there
are two major issues. First, the fossil fuel combustion in engines releases air pollution,
which is harmful to the workers. Second, the working environment could be affected by
high engine noise levels. This is why most agricultural robots are powered by an electric
propulsion system, bringing many advantages such as improved efficiency, and powertrain
design flexibility [26].

A battery storage system is still one of the most limiting technologies for many elec-
tric mobile platforms such as robots [27]. Some non-road vehicles, such as forklifts and
warehouse robots, already have a long history of using electric propulsion systems [28].
However, the low durability and long recharging time of the current batteries have created
limitations in electric vehicles’ autonomy and performance, such as for AMRs in farm
applications. These limitations would be more drastic when the vehicles are working in
harsh environments such as large farms and greenhouses, which can increase the user cost
under multi-shift working conditions during the working season. In addition, the electric
AMRs must be charged after a certain operating period. However, in a real situation, a
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vehicle with nearly empty batteries is unavailable in the working process. Moreover, the
failure of a vehicle on a farm while performing a task can result in a catastrophe, and it
might cause many problems for farmers. Furthermore, using an electric vehicle with a low
battery State of Charge (SOC) might reduce the battery’s lifetime [29,30].

In recent years, FCs have gained popularity due to their high-power generation
efficiency, non-polluting, fast fueling, acceptable energy density, and low noise. In an
FC range extended (FCREx) architecture, the secondary power source (FC) produces
electricity to supply power as battery assistance. An FCREx mainly relies on batteries for
power and is equipped with an FC system to extend the range of a basic battery-powered
system. Regarding various kinds of FC technologies, proton exchange membrane fuel cells
(PEMFCs) have higher operating efficiencies up to 70% compared to ICEs with less than
30% [31]. In addition, the PEMFC has a less cyclic operation, resulting in longer lifetimes
and less system control design issues [32]. In this respect, hybridizing the vehicle’s power
supply using the battery and a PEMFC system as a range extender could reduce the size of
the FC stack, slowing power transients. Meanwhile, peak power is drawn into the battery
system. This could reduce cost and volume in the vehicle design process.

This research focuses on developing optimal solutions for the design of a renewable
energy-based (fuel cells + PV) hybrid configuration for an electric mobile robot in agri-
cultural application. The main idea is to design a Fuel Cell Agricultural Mobile Robot
(FCAMR) with the basic capabilities of a robotic system with low emission, no charge
anxiety, and safe operation. The goal is to extend the autonomy so the vehicle can be
operated for an entire day without needing to recharge the electrical system. Compared
with the traditional agricultural vehicles, which closely follow the manufacturing pro-
cess of automobiles, the agricultural robot industry is more complex, and there are not
enough standards for these machines. As an outline, the current study discusses the design
concerns of a renewable energy-based hybrid electric agricultural mobile robotic concept
which is discussed rarely in literature. An FCAMR model developed in MATLAB/Simulink
and two Optimization algorithms from Particle Swarm optimization (PSO) and Grey Wolf
optimization (GWO) are proposed to simulate and optimize the vehicle. The rest of this
paper is organized as follows: The project background, designing process, and modeling
for an AMR as a case with an experimental tests procedure are given in Section 2. Section 3
describes a sizing design process based on the optimization algorithms and model in the
loop process. Results are presented and discussed in Section 4. Finally, conclusions are
drawn in Section 5.

2. Materials and Methods
2.1. Project Background

In this research, a battery-powered agricultural robot which was designed by our
research team at University of Quebec in Trois-Rivieres and considered as a case study
for developing a PV/FC/battery hybrid electric mobile robot for agricultural applications.
This robot contains two main criteria, including software structure and hardware structure.
The software structure contains control strategies, designing and developing path plan
algorithms, energy management systems, etc. On the other, the hardware structure contains
aspects such as component sizes, and electronic and electrical circuits, which are described
in the following sections. The hardware structure of the case study AMR was made by
considering the design requirements. Therefore, the differential drive–steering method
was used to navigate the robot. Figure 1 presents the studied AMR. The robot powertrain
consists of two electric motors with single-speed gearboxes (16:1 aspect ratio) for each
driven wheel. In this context, the regenerative braking system is neglected due to the
low-speed application and drive control limitation.
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(a) (b)

Figure 1. The hardware structure of studied AMR; (a) The preliminary design, (b) 3D model of the
future platform.

The AMR stored position data in a time series database using sensors such as an
Inertial Measurement Unit (IMU), Global Positioning System (GPS), encoders, and Light
Detection and Ranging (LIDAR). In addition, an onboard computer (Raspberry Pi) was
utilized to compute localization, navigation algorithms, and data acquisition. A remote
control system is equipped to manually control the robot at a visual distance. The data
acquisition system monitors the wheels’ speed and the battery status by measuring the
battery voltage and current drawn from the battery pack. Table 1 shows the specifications of
the AMR’s main electrical and electronic components. The AMR can be operated in manual
(remotely controlled) and autonomous modes. A remote-control system is equipped to
manually control the robot at a visual distance which is used for primary working cycle
measurement in the predefined paths. Moreover, the AMR relies on a Lidar-based algorithm
for obstacle detection and to avoid collision with workers and crops [33].

Table 1. The main electrical and electronic components specifications of the AMR [33].

Element Description

LIDAR Sensor YDLIDAR X2
GPS BN-220
IMU MPU-6050

Wheel Encoders US Digital E3-500-375-NE-E-D-3
Main Microprocessor ARM Cortex-A72 processor
Main Microcontroller Atmega 328p

Current Sensor LEM CAS 25-NP
Motor Controller AF160

Motors Ampflow E30-150-12-G16

The primary energy system was designed according to the requirements of the drive
system including a 24 Ah lead acid battery pack. The analysis is specially set during
June 2022, when the working cycle can begin at 8 a.m. and end at 18 p.m., which would
require making at least 8 h of work.

Based on the experimental tests, the vehicle could not make more than three hours at
an average speed of 1.2 m/s under typical working conditions. Choosing a bigger battery
would not be reasonable due to the cost, weight, and environmental concerns. Therefore,
it decided to hybridize the powertrain system by using more environmentally friendly
power sources.

2.2. Proposed Design Process for the PV/FCAMR Architecture

Despite acceptable energy efficiency in basic pure electric AMR, because of the inherent
limitations of the battery-powered vehicles, it was faced with a lack of energy in long-time
operations due to the limited capacity and fast degradation of the battery. One of the
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opportunities for solving the problem of autonomy is to incorporate a PV system to collect
free energy from the sun while doing farm tasks outside during the day. In addition,
using PV panels could protect the AMR because most of the farm tasks are outside under
the possibility of harsh environments such as rain, sun, and dust. Moreover, these could
increase the energy independence of the robot on faraway farms. Another option is to
integrate a modular PEMFC system with a hydrogen tank as an energy source that can
be refuelled in less than five minutes [22] as opposed to a battery with several hours of
recharging time. Regarding the architecture of the designed AMR, the FCREx powertrain
configuration seems to be more applicable in an FCAMR application because of its flexibility
and simplicity. Similar to the series hybrid electric architecture, the FCREx is a battery
dominant system which uses a FC as an alternative for the internal combustion engine.
Indeed, this architecture allows a secondary power source (FC) to operate at its optimal
region, belong its more flexible location option for the designer [34]. For previous reasons,
a plug-in PV/FC hybrid-electric configuration is considered a suitable powertrain for the
AMR application because it can connect to the electric grid and might be charged from
external electric power sources such as stationary solar power plants as well. This system
has three energy sources: a battery pack, an onboard PV system, and a hydrogen tank with
FC. A simplified powertrain for the proposed plug-in hybrid PV/FC-AMR is presented in
Figure 2.

Figure 2. Proposed configuration of the hybrid electric PV/FCAMR platform.

In fact, the design and development of non-road agricultural hybrid electric vehicles
is a complex process; nevertheless, there is no standard methodology. Therefore, a general
design process of the hybrid PV/FCAMR is proposed in this paper. In this regard, the
following steps are considered. First, define typical farm working cycles based on customer
needs. Next, modeling an AMR for component sizing and EMS evaluation before construc-
tion. Then, designing and developing a PV/FC range extender system. After that, designing
and developing a heuristic EMS. Finally, components integration and evaluation of the
hybrid electric FCAMR. In the following sections, the design process is discussed in detail.

2.3. Working Cycle Design and Extraction

Concerning performance assessment, conventional vehicles are usually tested in spe-
cific conditions using different dynamometers. Several standard driving cycles are used in
the automotive development [34]. For non-road vehicles, if standardized tests exist, they
are still unrepresentative of all real-world applications, since every application is inherently
different. Based on the author’s knowledge, there is no standard working cycle for agri-
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cultural robots. Therefore, one of the main challenges of the AMR simulation is the lack of
standardized drive cycles, which makes comparing results from different studies difficult.

As highlighted above, the lack of standardized working cycles often leads to re-
searchers developing their own cycles to suit their particular needs. In this regard, some
typical working cycles need to be designed and conducted to powertrain designing and
evaluating the hybrid electric AMR. Based on the typical characteristics of non-road vehi-
cles such as AMRs, the driving cycle measurement has been considered the starting point.
Subsequently, the basic AMR is moved using different velocities similar to typical real
working cycles to measure the actual power requirement and energy consumption. In real
farms, an AMR is usually employed in stop-and-go-loop working conditions. Therefore,
we propose two typical pathways by considering the mixture of transitional and rotational
movement patterns. They include row linear and perimeter circular movement patterns as
shown in Figure 3. Each motion pattern was simulated for a 100 m distance and repeated
three times in the same condition, considering a flat asphalt surface to minimize unexpected
situations.

(a) (b)

Figure 3. Testing routes; (a) Row linear movement pattern (b) Perimeter circular movement pattern.

In addition, each test includes four sections, acceleration from stationary, constant
velocities, and deceleration to stationary, then turning 90 degrees left or right. In this respect,
the battery voltage and current, motor power, and velocity of the wheels are recorded by
the developed data logger with a 0.1 s sample rate. The speed profile and the traction power
required for completing the working cycles could be employed by a dynamic model in the
designing process, such as estimating energy requirements, tuning energy management
strategies, and component sizing.

2.4. The FCAMR Powertrain Modeling

As mentioned before, designing a hybrid electric AMR is a complex process and is
usually constrained by time and budget. Therefore, model-based design is usually used as
an engineer aid tool to simulate vehicles in a computer before construction. Some software
such as ADVISOR [35], and Autonomie [36] are used in literature to simulate hybrid electric
vehicle powertrain. However, they are not applicable directly in non-road vehicles and
robots’ powertrain simulation due to specific powertrain architectures and features. In
one of the authors’ previous works of the authors [23], a differential drive mobile robot
powertrain model is presented and evaluated. Those details will not be repeated in this
paper. Consequently, that model was modified for the energetic analysis of an FCAMR in
this work. In this regard, a realistic MATLAB Simulink model is developed to simulate the
hybrid FCAMR. Some fundamental aspects that are necessary to develop the PV/FCAMR
powertrain are mentioned in the following sections. Figure 4a shows the free body diagram
of the forces that interact with the AMR which will be described more in the next section.
Figure 4b shows a schematic view of a differential drive AMR with two drive wheels and
two castors that have been added for the vehicle balance. Each drive wheel could be rotated
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independently fore-and-aft. Subsequently, the robot’s trajectory can be determined by
changing the drive wheels’ revolution.

(a) (b)

Figure 4. Differential drive AMR schematic model (a) Free body diagram, and (b) Kinematic diagram.

2.4.1. Powertrain Model Evaluation

To evaluate the developed model, a comparative study in the first step is performed
between the simulation results and the extracted experimental data by the basic battery-
powered AMR. Therefore, the AMR is tested without a load while the wheels are off the
ground to achieve full speed (1.8 m/s). This test has been conducted in order to eliminate
surface effects on the performance of the AMR to assess model accuracy. Hence, the
experimental data and simulation results for the vehicle when the environmental resistance
and the vehicle weight are removed from the wheels are shown in Figure 5. Figure 5a
compares the DC-bus instantaneous voltage from the real-world test and the simulation,
and Figure 5b compares the consumed current by the motors. These results confirm an exact
synergy (with an accuracy of 95%) between the energy model and the real battery-powered
AMR performance.

(a) (b)

Figure 5. Comparison results between experimental data and simulations: (a) instantaneous voltage
of the DC-bus, (b) current by traction motors.

The actual power requirement and energy consumption using a trapezoid speed
profile are compared with the result from the AMR Simulink model. In this regard, the
maximum linear velocity in the trapezoidal speed profile scenario was considered as 1 m/s
(Figure 6a). Similarly, the acceleration time from rest to maximum speed and vice versa
was adjusted to two seconds to prevent high mechanical and electrical stresses. Figure 6b
shows an adequate match between the measured power requirement based on the speed
profile as a reference for the Simulink model and the obtained power requirement from the
simulation. These results showed that the Simulink model has enough accuracy for energy
estimation purposes for the rest steps of the hybrid AMR powertrain designing process.
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(a) (b)

Figure 6. Comparison results of experimental data from real AMR versus the developed Simulink
model by trapezoidal speed profile, (a) velocity, and (b) power demand.

2.4.2. Energy Requirements of Traction System

An AMR operates at a low speed in the field and mainly overcomes some forces such
as rolling resistance, slope resistance, and acceleration resistance. The AMR also needs to
overcome load resistance for agricultural tasks which distinguishes them from conventional
vehicles. Thus, the total energy consumption (ETot.) connected to the AMR motion could be
formulated as the following equation:

ETot = Eres + EOthers (1)

where Eres, and EOthers denote the energy needed to overcome the kinetic resistance forces,
and energy losses by other accessories, such as sensors plus the actuators’ energy con-
sumption, respectively. To obtain the required energy to drive the AMR during the given
working cycle, it is necessary to consider vehicle dynamic behavior by calculating the
opposite forces Fres such as rolling Froll , aerodynamic resistance Fair, and slope resistance
Fhill that prevent the movement. Eres could be calculated using Equation (2) [23].

Eres =
∫ t

0
(Froll + Fair + Fhill)dt

=
∫ t

0
(Croll ·m · g)dt

+
∫ t

0

(
1
2

ρ · A · Cair · (V + Vw)
2
)

dt

+
∫ t

0
(m · g · sinα)dt (2)

where Croll is the rolling resistance coefficient; g is the gravity acceleration; ρ, Cair, A, and
Vw are the air density, drag coefficient, frontal area, and wind velocity, respectively. α
is the road or field slope. Rolling resistance can be modeled as a coefficient of friction
which is reported in the range of coefficients expected on a farm [37]. Table 2 lists the main
parameters that have been considered for modeling.

Table 2. The main components specifications of the AMR.

Specification Symbol Value

Vehicle total mass m 90 kg
Frontal area A 0.7 m2

Aerodynamic drag coefficient Cair 0.45
Air density ρ 1.225 kg/m3

Wheel Radius (R) R 0.096 m
Wheelbase L 0.75 m

Rolling resistance coefficient CRoll 0.1
Gearbox ratio ξ 16

Gravity acceleration g 9.81 m/s

2.4.3. Initial Parameters of Energy Storage Subsystem

The total instant traction power required by the AMR is estimated to determine the
batteries’ size. Then, the energy consumption was calculated to assess the characteristics
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of the energy storage system (EBatt) using the measured working cycles and the Simulink
model. An initial calculation can be performed by the following formula:

EBatt =
∆EBatt

SOCFinal − SOCInit
(3)

where ∆EBatt is energy consumption, SOCFinal, and SOCInit denote the battery’s final and
initial state of charge during the cycle, respectively. Based on the SOC curve, a SOCFinal of
30% , and SOCInit equal to 100% are considered, which are representative values to prevent
fast battery degradation. Consequently, battery pack capacity (QBatt) could be estimated as:

QBatt =
EBatt
VBus

ηBatt · F (4)

where VBus, ηBatt, and F represent the nominal voltage, efficiency, and charge factor of
the battery. The battery’s efficiency is considered equal to 85% [38], and the charge factor
guarantees to obtain the battery capacity at 1C is equal to 1.5. The SOC estimation of the
battery is a fundamental parameter in electric vehicles. The physical model of the battery
estimates the SOC using the Coulomb counting technique, which is a preferred way in EVs
simulations. The technique consists of calculating the battery SOC (SOCBatt) by measuring the
current of the battery (IBatt) and integrating it over time by the following expression [39,40]:

SOCBatt = SOCInit −
100

3600QBatt

∫ t

0
IBatt dt (5)

2.4.4. Fuel Cell as a Range Extender

The FC is considered a voltage source based on its static polarization curve. In addition,
the hydrogen flow rate is estimated based on experimental data by a linear function fitting,
where a and b signify fitting parameters [41].

ṁH2 = a + b · iFC (6)

Consequently, the H2 cost can be calculated considering the total fuel consumption:

CostH2 = H2USD

∫ t

0
ṁH2 dt (7)

To take into account the added onboard energy source, the SOC of the H2 tank
(SOCH2−Tank) is calculated by the following equation:

SOCH2−Tank =
mH2−Init −

∫ t
0 ṁH2 dt · iFC

mH2−Init
(8)

Then, mH2−Init is the initial mass of H2 (g), ṁH2 is the H2 mass flow (g/s) and iFC is the
FC current. A 300 W PEMFC parameters (FCS-C300 from Horizon Fuel Cell Technologies,
Singapore) is considered as a base [42]. In addition, the FC system is composed of a DC-DC
converter, a boost chopper, and a smoothing inductor for its current control. Their energetic
performances are included in the FC static characteristics.

2.4.5. Photovoltaic System as an Energy Assistance

The PV system is considered a voltage source. In this regard, the onboard PV system
with approximately 0.5 m2 (available surface on top of the FCAMR) acts as an energy
assistant, shade, and protector. A 50 W peak power (Wp) could be generated using a
monocrystalline panel [43]. The average amount of hourly available PV power in Trois-
Rivieres, QC, Canada (latitude 46°20′49.7” N, longitude 72°34′37.7” W) is applied as the
PV system model. This information can be obtained from the National Renewable Energy
Laboratory website [43]. In eastern Canada, agricultural operations are usually performed
from April to September. Therefore, the average hourly solar power in this period, is
applied to the model as a lookup table. It should be noted that the FCAMR system has other
components, such as sensors, microcontrollers, and other onboard electronic components,
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which are accessory parts. These components are extremely efficient nowadays but still
consume a portion of the battery’s current. These components are modeled based on the
data provided by the manufacturers in lookup table blocks. Subsequently, the current loss
due to the electronic components is signified as IOthers. Kirchhoff’s current law is used
to model the parallel connection among the battery pack, traction motors (ITS), FC (IFC)
system, PV system (IPV), and IOthers as follows:

IBatt = ITS − IFC − IPV + IOthers (9)

Once the mathematical model was developed, the final dynamic model for the vehicle
and the respective simulations were obtained using MATLAB Simulink. Each model part
was provided based on the manufacturer’s datasheets and experimental test results. The
model allowed a comprehensive parametric study of sizing and performance evaluation
of the hybrid powertrain to be analyzed. Consequently, the size of the electric motor,
batteries, and FC system could be established based on the vehicle’s energy requirements
by using rule-based and optimization-based methods. Moreover, the range-extender
capacity (required power and fuel tank capacity) can be sized by considering the available
energy of the onboard battery.

3. Component Sizing and Design Optimization

As mentioned above, the component selection and prototyping of a hybrid powertrain
system for an AMR are problematic because of various design choices and constraints.
Generally, an FCREx is a battery electric vehicle with an FC range extender. In the FCRExs
architecture, the electric machine is usually sized to comply with vehicle performance
requirements. The FC system power meets the requested continuous loads. Typically,
the battery pack can support a road with a 15% grade for a specific speed and is sized to
drive 50% of the daily driving range. The hydrogen storage is sized to extend the expected
range [44]. However, in optimal component sizing, vehicle performance requirements
and constraints must be satisfied at the same time. Literature consideration shows that a
variety of optimization algorithms are available for HEV design [34]. A detailed review
of component sizing methods can be found in [45]. One choice for component sizing of
HEVs is the application of nature-inspired optimization techniques, such as evolutionary
and swarm algorithms [46]. It has been demonstrated that those techniques are capable of
finding the global optimum solutions, even if the solution domain is a large scale, highly
nonlinear, constrained and complex [47]. For instance, a Genetic Algorithm (GA) was ap-
plied to the component sizing optimization of a fuel-cell-powered PHEV in [48]. In addition,
an integrated Particle Swarm optimization (PSO) was used for the optimal powertrain
component design of an FC locomotive application in [49]. The PSO is relevant considering
its few optimization parameters, good accuracy, and short computation time compared
to other optimization approaches. Its disadvantage is the selection of constant values for
updating velocity. If inappropriate constants are chosen, then the problem may not converge
to the optimum [45]. However, there are other meta-heuristic based optimization methods
such as Grey Wolf optimization (GWO) that was introduced recently and applied to the
optimization in different fields. Therefore, the PSO is employed alongside of GWO to
optimize the design parameters of the initial rule-based method. Consequently, the effects of
the powertrain system and working cycle on component sizes are analyzed and compared.
A brief description of both algorithms’ processes is given in the following sections.

3.1. Particle Swarm Optimization (PSO)

The idea of PSO came from the swarm intelligence found in many natural systems
with group behavior. Ant colonies, bird flocks, and animal herds are a few examples of such
natural systems. By considering an optimization function for the problem, PSO attempts
to capture the global maximum or minimum value. More details about the optimization
function and constraints are described in Section 3.3. The PSO algorithm follows some steps
to solve an optimization problem. Firstly, the algorithm allocates initial random velocities



Robotics 2023, 12, 13 11 of 22

and positions to all particles in space, the best particle of the particular (pbest), and the
best particle of the swarm (gbest) to upgrade the position of each particle in turn [50]. The
procedure is written as the following equations:

vi+1 = ωvi + c1r1(pbesti − xi) + c2r2(gbesti − xi) (10)

xi+1 = vi+1 + xi (11)

where c1 and c2 are the cognitive and the social parameters which are considered 0.5 and 2.0,
respectively. r1 and r2 are random numbers between 0 and 1. ω is the inertial weight equal
to 0.8. Equation (10) gives the new velocity of the ith particle. Equation (11) determines
the new position of the ith particle at each iteration. Particles are iteratively updated using
these equations until an optimal solution is found or the number of iterations is reached.
The number of iterations is set to 100, and the population set to 25.

3.2. Grey Wolf Optimization (GWO)

The Grey Wolf Optimizer is a metaheuristic algorithm originally developed by [51].
The GWO optimization method recreates the hunting behavior and leadership hierarchies
of grey wolves. Based on the GWO algorithm, grey wolves live in packs at four levels
of the hierarchy in nature. At the first level, there is a leader named alpha (α); at the
second level, there is the group beta (β); at the third level, the group delta (δ); and the
lowest-ranked group is omega (ω). The grey wolves are characterized by a special group
hunting technique including three principal phases including [52];

• Observe, race, and approach prey;
• Chasing, turning and provoking the prey until it stops;
• Attack on prey.

The hunting behavior of the grey wolves is modeled by a set of mathematical equations
that can be implemented in numerical software tools. In the optimization algorithm, the
prey is considered the optimal solution, and the wolves are considered the fittest solution.
The wolves β and δ represent the second and the third-best solutions, respectively, and the
rest of the solutions are considered as the wolves ω that follow the other wolves during the
hunt based on the optimization function and constraints (see Section 3.3). The mathematical
model of the encircling phase is given as:

~D =
∣∣∣~C ~YT(k)− ~Y(k)

∣∣∣
~Y(k + 1) = ~YT(k) + ~A~D

(12)

Then, k denotes the current iteration, ~D is the vector representing the distance between
the prey and the wolf, ~A and ~C are coefficient vectors, ~YT is the prey position vector and
~Y indicates a grey wolf position vector. The exploration is guaranteed by A with random
values proving the condition |A| > 1 that assists the search agent to deviate from its prey.
The exploitation (attack on the prey) starts when the condition |A| < 1 is confirmed. This
condition guarantees that the next agent position could be in a random location between
the prey and its current position.

3.3. Model-in-the-Loop Optimization Process and Problem Definition

The approach for HEV design optimization is typically a model-in-the-loop design
optimization process, as shown in Figure 7. The performance and design objectives, such
as overall powertrain cost and fuel economy, can be evaluated using the vehicle model and
computer simulation tools to design a hybrid powertrain for the AMR. Accordingly, using
the design variables’ initial values, the vehicle model is simulated to obtain the numerical
values of the objective function in the first step. At the same time, the constraint functions
should be evaluated. These simulated results are then fed back into the optimization
algorithm to produce a new set of values for the design variables. Then, the vehicle model
is simulated again to achieve the values of the objective and constraint functions. The
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simulation results are fed back into the optimization algorithm to generate another new
set of design variables. This iterative process repeats until the optimization process is
finished. Note that the design variables remain within their limitation boundaries during
this process.

Figure 7. Model-in-the-loop design optimization process.

As a case study, the model in the loop has been programmed in MATLAB to optimize a
PV/FCAMR for the overall vehicle powertrain cost on the extracted typical working cycles.
The input variables including FC nominal power, battery capacity, hydrogen consumption,
and electricity usage should be optimized. As the four input variables change, the vehicle
model performs vehicle performance tests while checking constraints’ boundaries. The
optimization process uses previous results to change the input parameters. A feedback
process is then performed until the algorithm finds the optimal value for the objective
function to find a trade-off relationship between FC and battery size. Table 3 shows the
design variables used in this study with the boundary values. Accordingly, the optimiza-
tion objective function (J) is defined to minimize powertrain cost of design variables,
including the cost of the FC system (CFC), battery (CBatt), hydrogen (CmH2), and electricity
(CElec) [34,45] as following expressions:

J = CFC + CBatt + CmH2 + CElec

CFC = PFCΥFC

CBatt = QBattΥBatt

CmH2 = mH2ΥmH2

CElec = EElecΥElec

(13)

where PFC, QBatt, mH2, and EElec are the FC nominal power (kW), battery pack capacity (Ah),
mass of hydrogen consumption (kg), and electrical energy consumption (kWh), respectively.
ΥFC, ΥBatt, ΥmH2 and ΥElec are respectively the unitary cost of FC (USD/kW), batteries
(USD/Ah), hydrogen (USD/kg), and electricity (USD/kWh).

The design constraints for both optimization methods are defined and bounded
as follows: PFC−min < PFC(t) < PFC−max

PBatt−min < PBatt(t) < PBatt−max

SOCBatt−min < SOCBatt(t) < SOCBatt−max

(14)

where PFC−min, PFC−max,PBatt−min, PBatt−max, SOCBatt−min, and SOCBatt−max are the min-
imum and maximum values of the FC power, the battery power, and the battery SOC,
respectively. Control strategy parameters include SOC values. At the same time, the design
problem’s constraints come from the following required vehicle performance:

• Maximum speed : 2 m/s;
• Maximum acceleration : 1 m/s2;
• Gradeability ≥15% (1 m/s).

It should be noted that the driving speed was limited to 2 m/s to avoid dangerous
collisions between the mobile vehicle, workers, crops, etc. In addition, the maximum
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acceleration rate is limited to 1 m/s2 in order to use the electric motor at its higher efficiency
region and to prevent high mechanical and electrical stresses on components.

Table 3. Initial design variables and boundary values for optimization.

Design Initial Lower Upper
Variable Value Bound Bound

FC power rating (W) 300 40 1000
Battery capacity (Ah) 24 3 40

Minimum SOC allowed (%) 30 20 40
Maximum SOC allowed (%) 90 80 100

3.4. Energy Management Strategy

When an FCAMR is being driven, the small-size range extender FC will provide power
for the electric motors belonging to the battery. The batteries are charged when the vehicle
is stopped. This task belongs to the EMS system of the hybrid electric powertrain. Two
general control strategies, including charge depleting (CD) and charge sustaining (CS)
could be used to determine the energy distribution of the FC and battery. In this work,
a combination of these strategies is called the charge blending (CB) energy management
strategy [23]. After its battery is fully charged, a PHEV operates in CD mode until its
electric energy falls below the defined value, after which it switches to CS mode. The
desired objectives in the CB mode include the following: the satisfaction of the power
demanded by the motor driver and keeping the SOC as close as possible to the lowest safe
level (20%) at the end of the working day. This strategy is suitable for applications where
motion parameters (acceleration, velocity, slope, etc.) are the top priority for a low-speed
vehicle with frequent stops and starts like an FCAMR. Since these control strategies are
employed in the authors’ previous work [23] is not explained here again.

4. Results and Discussion
4.1. Working Cycle Evaluation

During the work of an AMR on a typical farm, there are several times of Stop and
Go situations for avoiding obstacles and following the path. In addition, there are several
times of rotating situations for finding the route. In large measure, the operating working
range of an electric AMR depends on the working conditions, such as accelerations and
decelerations at the beginning and end of the movement. Therefore, the obtained speed
profile can be assumed as the typical behavior of a driver on the FCAMR working cycle.
In this regard, several experimental tests have been conducted on a test bench in different
scenarios and cycles based on their speed profiles from the experiment. In this article, an
analysis of the AMR is performed on the two measured cycles described in the previous
section to evaluate the proposed methodology.

Figure 8 shows the results of the rectangular working cycle pattern over time.
Figure 8a illustrates a part of the angular velocity profile of the left and right wheels
as a control command from the AMR control unit during driving in real conditions. The
wheels have the same rotational speed while the robot runs in a straight direction. However,
the wheels have different rotational directions when turning in the corners because of the
deferential drive architecture of the AMR powertrain. These data result in the linear move-
ment velocity profile of the AMR moving in the working cycle in Figure 8b. Consequently,
from measured data (battery output current and voltage) by the data acquisition unit, the
instant total power consumption could be calculated as shown in Figure 8c. Finally, total
energy consumption can be estimated from the accumulated instantaneous power. As a
result of estimating energy requirements in different scenarios, other design aspects such
as component sizes, EMS performance, and battery SOC can be optimized.
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(a)

(b)

(c)

Figure 8. Obtained results for the measured speed profile during the rectangular movement pattern
working cycle by the AMR in one round (20 m), (a) Wheels angular velocity (control command),
(b) AMR linear velocity, (c) Instant traction power.

In addition, Figure 9 shows the circular working cycle pattern with a different speed
profile in the whole cycle. In these scenarios the AMR move in a circular path (as presented
in Section 2.3). Therefore the diameter of the moving path increase during the test. Since
the moving pattern differs from the rectangular one, its speed profile, power requirement,
and energy consumption were obtained differently. Based on data obtained at the two
typical working cycles, it should be noted that the maximum capacity of electric motors is
rarely used. In fact, the drive system works most of the time in the partial load range. Note
that, electric motors operate in several ranges of angular velocities and under different
conditions, so their efficiency deviates from its maximum level. Thus, the fluctuation
in power consumption could be occurred due to the various power requirements for
acceleration, rolling resistance, and electric efficiency at different speeds.

(a)

(b)

(c)

Figure 9. Obtained results for the measured speed profile during the circular movement pattern
working cycle by the AMR in one cycle (100 m), (a) Wheels angular velocity (control command),
(b) AMR linear velocity, (c) Instant traction power.
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Table 4 shows the results from the measured working cycles. Both working cycles
have the same travel distance of 100 m. Still, in the case of the circular movement pattern,
around 50 s more time is needed to reach the final destination due to lower speed at
short movement distance at the beginning and extra required rotational movement. The
average linear velocity is 0.56 m/s for the rectangular movement pattern compared with
0.43 m/s for the circular one. However, the average power requirements for both of the
working cycles are almost the same amount, while in the circular movement pattern, the
robot needs to have one more rotation movement to reach its destination. These results
demonstrate a higher energy consumption of 8.86 kJh compared with 6.79 kJh on the
rectangular movement pattern with almost 2 kJh more energy requirements.

Table 4. Measured parameters of the rectangular and circular movement pattern during the experiment.

Rectangular Circular Standard
Parameters Movement Movement Deviation

Pattern Pattern

Travel distance (m) 100 100 0
Time (s) 180 230 50

Average linear velocity (m/s) 0.56 0.43 0.13
Maximum linear velocity (m/s) 1.29 1.2 0.09
Average power requirement (W) 135.86 138.61 2.75

Maximum power requirement (W) 460.95 371.03 61.92
Number of rotational movements (N) 18 19 1

Total energy requirement (kJh) 6.79 8.86 2.06

It should be noted that most agricultural work is performed repeatedly in certain
rows with specific work patterns. Still, cyclical and random movements can occur in free
working conditions and trajectory planning situations. Therefore, the measured data from
both cycles are integrated (called mixed motion pattern) and used as a third working cycle
in the simulation process.

4.2. Optimization Performance Evaluation and Working Cycle Effect on Components Size of
the FCAMR

In order to evaluate the performance of the component sizing optimization process
for the designed FCAMR powertrain, three working cycle scenarios, including circular,
rectangular, and mixed movement patterns compared in terms of component sizing and
fuel economy under the two different optimization methods. Subsequently, the GWO, and
PSO are looped with the MATLAB and Simulink model, and the optimization is carried
out as explained in the previous sections. Figure 10 shows how the objective function
value improves versus the design iteration number in both optimization methods for the
Mixed working cycle. The dashed curve is for the GWO case, and the dotted curve is for
the PSO case. Fuel economy improvement with the GWO and PSO algorithms is very
close until about 10 times function evaluations, after which GWO fall down of PSO until
about 30. However, finally, the PSO catch the GWO. After about 30 function evaluations,
the GWO did not find any good design point to get further improvement in the objective
function value. However, the performance of PSO is improved to 50 iterations. Overall,
PSO performed the best for this particular design optimization problem.
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Figure 10. Performance comparison of PSO and GWO optimization versus the design iteration
number for the FCAMR in a mixed working cycle (circular + rectangular movement pattern).

A comparison of the fuel economy before and after the optimization is given in Table 5.
In this regard, the AMR was primarily simulated based on initial parameters obtained by the
rule-based method in the developed MATLAB Simulink model. The fuel economy for the
initial rule-based method, PSO, and GWO was observed to be 55, 50, and 51 g on average
for the rectangular movement pattern working cycle. Similarly, an average hydrogen
consumption of around 62, 56, and 58 g is estimated for the circular movement pattern
working cycle. Finally, approximately 59, 53, and 54 g in average hydrogen consumption
are estimated for the mixed movement pattern working cycle, as given in the last row of
Table 5. Essentially, all the optimization algorithms resulted in improved FCAMR fuel
economy performance. A significant improvement (approximately 8 per cent) in the fuel
economy is seen due to optimization (to a lesser extent in the case of the GWO compared
to the PSO, though).

Table 5. Fuel consumption comparison between rule-based and optimization-based designing methods.

Working Cycle Fuel Consumption

Movement Before After Optimization
Pattern Optimization GWO PSO

Rectangular +55 +51 +50
Circular +62 +58 +56
Mixed +59 +54 +53

The optimization problems of the measured working cycles are solved to study the
effect of a working cycle on the component sizing. The optimization results for the circular,
rectangular, and mixed working cycles are compared with the initial values in Figure 11.
Given the vehicle performance constraints, the trade-off of the FC and battery pack sizing
can be realized by adjusting the lower and upper bounds of the design variables. Results
showed that the rating of the FC power is significantly reduced, implying that the FC
system has been downsized in all working cycle scenarios. For instance, the initial FC
power for the mixed movement pattern obtained is approximately 229 W and 239 W in
PSO and GWO, respectively. On the other hand, the battery is upsized to a greater extent of
26.5 and 25.7 Ah in the PSO and GWO cases to use more renewable energy-based electricity
to be charged by the PV system. In addition, the circular pattern parameters show higher
values than other working cycles due to the requirement of more stop-and-go conditions
during the experimental test.
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(a) (b)

Figure 11. Comparison of the FCAMR initial and optimized design variable values for different
working cycles, (a) FC nominal power (W), and (b) Battery nominal capacity (Ah).

Table 6 summarizes optimal values of the design variables for the mixed movement
working cycle for the FCAMR system. The simulation results indicated that the PSO could
outperform the GWO for the component sizing problem. However, the difference was not
obtained significantly for the mixed working cycle, which could be due to the similarity of
their meta-heuristic theory origin from nature.

Table 6. PSO and GWO optimization results for the mixed working cycle.

Variable Unit
Value

GWO PSO

FC nominal power W 239 229
Battery Max Power W 615 630

Battery Capacity Wh 562 571
Hydrogen tank

capacity kg@ 300bar 0.15 0.15

We assumed USD 16 as the hydrogen price per gasoline gallon equivalent (0.997 kg
of H2) to calculate the energy cost. Component costs are considered based on the 2020’
automotive FC system price defined by the US Department of Energy [53]. Battery cost is
estimated using energy and power, i.e., USD 570 for a 24 Ah 24 Volt lead acid battery pack,
including charger. The FC system cost is calculated based on the peak power of the stack
and the capacity for the tank based on the assumptions used to analyze fuel cell technology
in 2018 [54].

4.3. Working Cycle and Optimization Effects on the FCAMR Energy Cost

In this section, the performance of the initial and optimized powertrain architecture
in terms of equivalent energy cost is compared based on simulations. The bar chart in
Figure 12 compares the total energy costs of each working cycle between initial and op-
timized powertrain components in 8 h. Details show that the consumed energy cost of
circular movement patterns at the initial design parameters obtained a maximum of almost
2.32 USD per working day (8 h). By contrast, the PSO optimized powertrain architecture
for the rectangular movement pattern consumed a minimum of 2.07 USD per working
day. Results from the simulation indicate that more than half of energy costs in the initial
and optimized powertrains are related to hydrogen consumption. However, in the opti-
mization method, the system used more batteries than FC. Overall, the PSO and GWO
optimization methods achieved around 10 and 8 percent less energy consumption, re-
spectively, compared to the initial rule-based component sizing method for the FC range
extender AMR.
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Figure 12. Working cycles cost comparison for recharging the battery pack and hydrogen consump-
tion by FC system.

It should be noted that considering the average power of the PV system and battery
charger efficiency, approximately 800 Wh of renewable electrical energy is produced and
used to charge the battery pack. This amount could save almost 0.8 USD per day.

4.4. Power Split Between Power Sources on Different Working Cycles

Figure 13a presents the power flow of the optimal FCAMR system response, including
the FC system, battery pack, PV system, and storage systems’ SOC, compared to the total
power load during 8 h of working daytime. As can be seen, the hybrid drivetrain system
is ensured by the hybrid power sources. Powers delivered in total (PFC + PBat + PPV)
matches the total required power PTot. It can also be noticed from these figures that the
load energy and power are effectively shared between the FC, battery, and PV system. The
battery supplies the fluctuated content of the power requirement. The FC provides the
lower dynamic component (after several minutes of start-up) and ensures the highest part
of the required energy. The algorithm tries to use the FC in its most efficient range (nominal
power) with less ON/Off switch. For instance, the FC starts and stops 5 times during the
rectangular working cycle. Each time it was ON for approximately 1700 s. When the FC
system is ON, the battery pack power consumption is less. It recharges when the driving
demanded power is less than the FC and the PV systems’ generated power. The sources
are, thus, well sized according to the load requirement.

The SOC trajectory (Figure 13b) tends to follow vehicle dynamic behavior and reaches
the required final condition. The relevance of the sizing with respect to the energy storage
systems’ capacity constraints is also verified through the battery SOC. The recommended
final limits (SOCBatt ≈ 0.4 and SOCH2−Tank ≈ 0.6) are respected for the two storage
systems. This demonstrates the effectiveness of the CB control strategy for finding the
proper SOC values for both the battery pack and the hydrogen tank. Since the proposed
hybrid powertrain architecture for the FCAMR is a PHEV, the initial SOC of the battery
pack and the hydrogen tank is assumed to be 100% at the start of the day. The final Depth
of Discharge (DOD) reached a reasonable level (0.7) for the battery. Therefore, the energy
storage system (ESS) sizing results agree with the energy demand. The proposed design
process fulfills the performance requirements under typical working cycles. It achieves an
acceptable power splitting between the FC, battery and PV, thus, prolonging the continuous
working time of the FCAMR.
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(a)

(b)

Figure 13. Results of (a) Instant power of the battery pack, FC system, and PV system compared to
the total load requirement, and (b) Battery SOC and hydrogen tank SOC, for the final PSO optimized
FCAMR case during 8 h working daytime.

These results are favorable and approve the aim of the arrangement to extend the
vehicle’s autonomy with satisfactory performance under the tested situations so that it
can work an entire day. The hydrogen that supplies power to the FC could be stored in a
metallic hydrides tank with 0.15 kg H2, storage capacity at 300 Bars pressure. This tank
extends the autonomy up to 15 h by incorporating a small-sized 225 W FC and 25 Ah lead
acid battery pack without needing to charge the vehicle during the working day. Finally,
these results have proven that using the proposed design process could be feasible for other
vehicles with similar applications.

5. Conclusions

This article analyzed the energy behavior of an AMR as the preliminary step to develop-
ing a photovoltaic/fuel cell hybrid electric light-duty vehicle in the agriculture 5.0 concept.
In this regard, an optimization-based process is proposed to design a PV/FC-powered AMR
application. The experiments, simulations, and optimizations results show that:

• The FC system and battery pack size increased on working cycles with more rotational
motion and stop-and-go situations. Therefore, the vehicle was less efficient, and the
powertrain obtained higher cost in this working cycle. The drivetrain fuel consump-
tion with a rule-based component sizing method is reduced by up to 12.21% compared
to a PSO optimization-based method. The total cost of the PSO optimized powertrain
was 8.79% lower than the one obtained by theoretical sizing method.

• Adding the PV system to the energy system increases the initial cost of the PV/FCAMR
but slightly decreases the FC and battery pack size parameters. In addition, a PV
system can extend the vehicle range by up to 5% and reduce fuel consumption costs
by 7% compared to energy storage systems without PV.

• The proposed powertrain arrangement extends the autonomy of the basic pure electric
system by 350% as opposed to the sole battery-powered system. This autonomy could
allow the vehicle run for more than 10 h a day under the typical cycle with a hydrogen
tank filled with 0.15 kg H2. The system studied in this research is a primary test bed for
future works of the hybrid FCAMR in various applications such as seeding, spraying,
and plant phenotyping. This technique could be used as a prototypical design strategy
for other hybrid AMRs according to the customer’s needs.

The future perspective is that this kind of alternative energy-powered vehicle could be
a feasible architecture for agricultural mobile robots applications as up-to-date renewable
energy-based non-road vehicles. Furthermore, the software package for the autonomous
guide and farm tasks will be designed to analyze the capabilities of the AMR in a real-world
scenario in future studies.
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