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Abstract: This paper models an extensible catheter with an embedded magnet at its distal tip subject
to an external magnetic field. We implement a control method coined observed control to perform
model-based predictive control of the catheter using a Kalman smoother framework. Using this same
smoother framework, we also solve for catheter shape and orientation given magnetic and insertion
control using Cosserat rod theory and implement a disturbance observer for closed-loop control. We
demonstrate observed control experimentally by traversing a 3D cube trajectory with the catheter tip.
The catheter achieved positional accuracy of 3.3 mm average error in open-loop, while closed-loop
control improved the accuracy to 0.33 mm.

Keywords: observed control; magnetic catheter; continuum robots; Kalman smoother; Cosserat rod
theory

1. Introduction

Minimally invasive surgery is being adopted over traditional surgical methods due to
its ability to improve patient outcomes. In these procedures, compliant, flexible continuum
devices such as catheters are inserted through a single small incision. The flexible nature of
catheters reduces stress on surrounding tissue. Autonomous control of these devices has
advantages over traditional surgery because it can achieve extreme accuracy and stability
even beyond that of a trained surgeon [1]. Robotic minimally invasive methods also
increase dexterity when compared to manually guided devices, as flexible catheters can
be navigated through cavities to specific targets within the body [2]. Magnetic control of
continuum surgical devices is an effective solution for a broad range of surgical applications,
including cardiac ablation [3], inserting cochlear implants [4], and optometry [5].

Here we propose steering a flexible magnetic catheter using a new approach named
observed control, which employs the well-established Kalman smoother framework to per-
form model-based predictive control. As shown in the Figure 1 system diagram, we use
observed control to predict open-loop inputs to position the catheter tip on the desired
trajectory. A disturbance observer uses positional feedback to calculate model disturbances
that explain trajectory error. Finally, controls are applied to correct for these disturbances,
resulting in closed-loop control of an extensible magnetic catheter.
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Figure 1. Magnetic catheter system diagram. The observed control algorithm generates magnetic and
insertion controls to achieve the target trajectory. Closed-loop control is provided by a disturbance
observer using visual feedback [6,7].

Other methods currently exist to control magnetic catheters in real-time. Sikorski et al.
modeled the catheter as a pseudorigid-body and used stereo vision to get shape feedback
from a 3D point cloud [2]. This method achieved sub-millimeter trajectory tracking accuracy.
However, this control method is currently only possible when the entire catheter is in view
of a camera. Hybrid position and force control has also been used to localize catheters in
vivo. Heunis et al. visualized a catheter in the vasculature using a multi-modal approach,
including ultrasound imaging and Fiber Bragg sensors [8]. Kratchman et al. suggested
that open-loop control might be sufficient for magnetic steering after calibrating a system
with visual feedback [9]. However, the flexible nature of soft tissue could cause the desired
trajectory to shift during surgical procedures, so measurements and feedback may be
necessary for control. Boskma et al. achieved accurate magnetically steered closed-loop
control through ultrasound imaging [10].

Magnetic catheter devices have been implemented using various methods. Previously,
micro coils have been embedded into surgical instruments and controlled by inducing a
current using an MRI machine [11]. Variable stiffness catheters can be used to augment
magnetic steering [12]. Permanent magnets embedded into catheter tips can be used in
conjunction with variable strength external electromagnets [9,13–15]. In 2006, Tunay et al.
used elliptic integrals to model the magnetic field and used a closed-form solution of
magnetic torque and reaction forces to estimate the shape of a catheter using Euler-Bernoulli
beam theory [16]. However, this method uses small angle assumptions that break down
in complex catheter geometries [17]. Model-less methods have been explored for cardiac
ablation procedures using position and force control [18]. Cosserat rod theory has been
used to model catheters in conjunction with the implicit collocation method to find the
state of a magnetic catheter when subject to an external magnetic field [19]. In their
work, Edelmann et al. developed a general catheter model capable of multiple alternating
flexible and magnet segments and demonstrated control experimentally on a system of
one permanent magnet embedded in the tip of the catheter and steered with external
electromagnets [19]. However, control Jacobians needed to be developed separately from
the Cosserat solver to recover the effect of magnetic and insertion control on catheter
shape [19]. Complexity in modeling has resulted in a lack of model-based planning
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control for magnetic catheters, which may offer a refinement over existing Jacobian-based
control methods.

1.1. Planning Methods

While most system models predict a new state based on current states and controls,
planners solve the model inverse problem: finding control inputs that achieve a desired
state. Planning is inherently an optimization problem that requires a predictive model
and minimizes an objective function. Implementations of these functions are diverse
and include various conditions, but in their most simple form, they optimize for controls
that minimize the state error from a desired target. No motion planning methods have
previously been presented for magnetic catheters.

Model-based planning is a well-studied field, with frameworks available for outlin-
ing and visualizing planning problems, which are solved and implemented in a variety
of problem-specific approaches. Among these general frameworks are model predictive
control (MPC) and factor graphs. MPC is a control framework that includes a predictive
step that is effectively motion planning, followed by a sensor feedback step [20]. After the
optimized controls are executed, sensor feedback is incorporated to estimate the new state,
which is used as the new initial condition in the next cycle, resulting in continuous closed-
loop control. Factor graphs are generalized structures that represent complicated functions
as probabilistic factor nodes and variable nodes connected by edges that indicate depen-
dency [21]. MPC and factor graphs provide a framework and visualization for setting up a
planning problem, but they do not specify cost functions or optimization methods to use in
solving the problem. Nevertheless, both methods have been implemented very successfully.
With MPC, nonlinear control problems are often solved using numerical Newton-type
optimization schemes, such as collocation as implemented by Hedengren et al. [22].

While probabilistic inference with factor graphs has historically been used as a foun-
dation for state estimation, recent work has advanced its use in planning. This approach
naturally pairs with Markov methods, as Attias proposed using it to solve a partially ob-
servable Markov decision process (POMDP) [23]. With the help of factor graphs to identify
sparsity, Mukadam et al. developed an efficient motion planning method using Gaussian
process factors formed as a Gauss–Markov chain [24]. In their work, Mukadam et al. also
present the use of fictitious observations with low uncertainties to be used as constraints.
In particular, they implement fictitious measurements of a target state with low covariance
as a constraint in their planning optimization, which results in optimal controls to achieve
that target state.

While not always explicit, state estimation is integral to planning and control. How-
ever, state estimation and planning have historically been treated as separate problems. By
leveraging their overlap, significant efficiency improvements over independent approaches
can be achieved. In 2014, Penny introduced a simultaneous localization and planning
(SLAP) framework to simultaneously compute the current state estimate and a new plan
using probabilistic inference with a hidden Markov model (HMM) [25]. Ta et al. also
implemented simultaneous estimation and control using factor graph-informed inference
and MPC [26]. In 2019, Mukadam et al. generalized SLAP into their simultaneous trajec-
tory estimation and planning (STEAP) method, which computes the full continuous-time
trajectory conditioned on observations and costs in both the past and the future using
Gaussian processes [27]. In our work, we apply this approach to flexible continuum devices
by leveraging a Kalman smoother framework for computation.

1.2. Control Methods

Control does not require planning and can be purely error based, such as proportional-
integral-derivative (PID) control. While often effective, this simple control suffers robust-
ness limitations in nonlinear systems. Planning can often be used to create a control strategy
that leads to more robust real-time nonlinear control. However, model-based control has
not yet been explicitly implemented for magnetic catheters.
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All previous approaches to steer Cosserat rod catheters use Jacobian inverse control.
Computing a control Jacobian for such a complex model is difficult, so many previous
methods have chosen simplified models such as Euler–Bernoulli to obtain a control Ja-
cobian. In 2017, Edelmann et al. explicitly computed the control Jacobian for the full
magnetically controlled Cosserat rod catheter model [19]. They used this linearized control
sensitivity with proportional-derivative (PD) control to guide the catheter with closed-
loop positional feedback [19]. However, not only is this Jacobian complex to derive, it is
difficult to implement. It requires computing Jacobians iteratively for each segment and
then integrating these Jacobians in reverse order back down the length of the catheter.
Additionally, while effective for a single magnet catheter, this control method does not
scale well with multiple catheters, as a new control Jacobian would need to be derived.
Here we instead propose a more accessible control approach. Observed control provides
an adoptable way to find controls in a complex model without explicitly deriving a control
Jacobian, as the calculations are implicitly handled in the smoothing algorithm. Due to
its generalized structure, our method is also applicable to any catheter model, including a
system of multiple devices.

Thus, the primary contribution of this work is introducing observed control, which is
a generalizable model-based controller and demonstrating its advantages in closed-loop
control of a magnetic robotic catheter. Observed control predicts controls that achieve a
desired state using the Kalman smoother framework by including desired target conditions
as measurements to estimate the controls needed to navigate the catheter to a desired
position. We use this same Kalman smoother framework to solve a Cosserat rod model
concurrently for shape and controls. Finally, sensor measurement data is incorporated
using this framework as a state observer to provide model-based closed-loop feedback
control and increase catheter position accuracy. In summary, we solve for catheter shape,
predictive controls, and closed-loop control from observer feedback, all within this same
Kalman smoother framework.

2. Observed Control

Observed control is a model-based controller that optimizes a state space model for
control inputs to achieve a desired condition from the current state. Observed control lies
at the intersection of MPC and factor graph motion planning. As in MPC, observed control
requires a predictive model, an algorithm to optimize for controls, and a cost constraint.
Additionally, both incorporate sensor feedback for closed-loop control. As with factor
graphs, observed control implements a Bayesian-inspired representation for planning,
estimation, and constraints.

A primary advantage of observed control over MPC and factor graphs is implementing
a Kalman smoother as a convenient optimization method and constraint framework. Both
MPC and factor graphs often require problem-specific implementations because they
just outline solving approaches without specifying exact methods. To provide a general
functional methodology, observed control leverages the heritage of the Kalman smoother
framework’s well-defined and efficient optimization approach, while Kalman measurement
updates provide a standardized method to implement cost constraints. The most simple
implementation of observed control then only requires a dynamic model and a desired
condition, such as a target state, to solve for control inputs.

2.1. Smoother Framework

Since the states are not directly known but are observable, observed control can be
formulated as a POMDP if the Markov property is held. In accordance with this property,
observed control state space models follow the generic discrete nonlinear form in (1),
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which is adapted from the Gauss–Markov model generated from a stochastic differential
equation [28].

x=+1 = f(x= , u=) +w= (1a)

y9,< = h9(x<) + v9,< (1b)

with w ∼ N(0,Q) and v9 ∼ N(0,R9,<), and where Q is the unknown process noise co-
variance, R9,< are the unknown independent measurement noise covariances, h9 are the
corresponding measurement models, and f is the state transition function from time =
to = + 1. Subscript 9 indicates different measurement models and associated measure-
ments. Subscript < indicates that measurements are time independent from model updates
indicated with subscript = .

Adhering to the Markov property is a prerequisite of Kalman smoothing. A Kalman
smoother minimizes the variance of the output estimation error of a given dataset for
a linear system model. Structuring observed control models in the form of Equation (1)
allows for inference with a nonlinear Kalman smoother [28]. While many nonlinear Kalman
smoother implementations are available, we chose the extended Kalman smoother (EKS) for
this application since it is a well-established method to estimate state and state covariance
using model dynamics and measurements in nonlinear applications [29–33]. EKS applies
linear Kalman smoothing to first-order local linearizations of a nonlinear system. The
generic system in Equation (1) can be linearized using a first-order Taylor series expansion
so that it can be approximated as the following time-varying linear system and smoothed
using the EKS:

x=+1 = A=x= +B=u= +w= (2a)

y9,< = C9,<x< + v9,< (2b)

A full explanation is omitted for brevity, but the Extended Kalman filter (EKF) forward
pass equations of the EKS are summarized in Equations (3) and (4).

Predict State:

x:+1|: = A:x: +B:u: (3a)

P:+1|: = A:P: |:A>: +Q (3b)

where x:+1|: and P:+1|: are the a priori state estimate and covariance, and : includes all
previous measurement 9,< and model = updates.

Measurement Update:

z̄9,< = y9,< −C9,<x:+1|: (4a)

S = C9,<P:+1|:C>9,< +R9,< (4b)

K = P:+1|:C>9,<S
−1 (4c)

x:+1|:+1 = x:+1|: +Kz̄9,< (4d)

P:+1|:+1 = (I−KC9,<)P:+1|: (4e)

z̄9,< |:+1 = y9,< −C9,<x:+1|:+1 (4f)

where z̄ is the measurement residual, S is the innovation covariance, K is the Kalman gain,
and x:+1|:+1 and P:+1|:+1 are the a posteriori state estimate and covariance.

We employ the Rauch, Tung–Striebel (RTS) smoother type of the EKS as given in [34].
A full explanation is again omitted, but the backward pass “smoothed” variables are
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summarized in Equation (5). Numerical integration of the state and sensitivity matrices in
the EKS is computed using the Dormand–Prince 8th order Runge–Kutta integrator [35].

L: = P: |:A>: |:P
−1
:+1|: (5a)

P: | = P: |: +L:(P:+1| − P:+1|:)L>: (5b)

x: | = x: |: +L:(x:+1| − x:+1|:) (5c)

The iterated extended Kalman smoother (IEKS) repeats the EKS until it converges
since, due to the nature of nonlinear systems, it is not guaranteed to be optimal in one
pass [36,37]. Observed control uses the smoother to find certain boundary conditions, so
they will necessarily have inaccurate initial values. Multiple smoothing passes with IEKS
converge these values to the desired accuracy.

2.2. Smoother Modifications

To use the smoother framework to find controls, the controls must be treated as
states, and their associated dynamics included in the predictive model. This allows for the
smoother to converge their values concurrently with the states. The traditional smoother
control vector and control updates are not used, as controls are instead augmented to the
state vector:

x =
[
xBC0C4B x2>=CA>;B

]>
Desired conditions are encoded as measurements as in Equation (1b) and implemented

as Kalman measurement updates as shown in Equation (4). y9,< is set as the desired
condition and its relationship to the state is encoded in h9 , which in the EKF is linearized
at < as C9,< . Similarly to [24], these fictitious measurements effectively fix the desired
conditions in the smoother by setting low measurement covariances R9,< . Disallowing
uncertainty in the measurement forces the smoother to manipulate states such that the
desired condition is met. If low covariances are also set on assumed conditions such as
known current states, then the remaining states, namely the augmented control states, are
optimized by the smoother to achieve the desired condition. This is the principal operation
of observed control.

Taking the case of a desired full state target condition as an example; if X is the number
of traditional states and U is the number of controls, then:

C9,< =
[
IX×X 0X×U

]
(6a)

P =

[
0X×X 0

0 P2>=CA>;B

]
(6b)

Due to their zero covariance, the desired traditional states cannot be affected in the Kalman
smoother. Thus, the control states must account for transitioning from the current state to
the desired state.

More generally, this framework allows for any constraint to be applied, not just desired
state conditions. Constraints need only relate to the states as described by independent
measurement models h9 for each constraint type, and observed control can implement any
number of that type of constraint at desired points in < as y9,< . This implies that conditions
can be applied to effectively change the cost function without requiring any changes to the
underlying optimization method.

Note that we choose a low covariance and not a zero covariance for assumed and
desired conditions implemented as measurements. Initial state covariances can be exactly
zero, but measurement covariances should not be to ensure the numerical stability of
the Kalman smoother algorithm. Zero measurement covariance allows the innovation
covariance matrix S to be poorly conditioned, and this matrix is inverted to calculate the
Kalman gain as shown in Equation (4c). Because singular matrices are not invertible, too
small of measurement covariances make this inversion numerically unstable. Thus, we
choose them to be appropriately small to minimize uncertainty in fixed conditions but not
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so small that the algorithm becomes unstable. We found two orders of magnitude below
the desired constraint accuracy to be a good choice generally.

3. Catheter Dynamic System

The magnetic catheter system consists of a flexible catheter embedded with permanent
magnets. Since the permanent magnets are far stiffer than the flexible catheters, we model
the catheter system as a series of flexible (non-magnetic) and (rigid) magnetic segments
as in [19]. The catheter model is designed to include any number of flexible and magnetic
segments, with each segment having its own specific material properties. Each segment
is described by the Cosserat rod states: position p, quaternion Q, force f, and torque �, as
shown in Equation (7). Distal properties of preceding segments are proximal properties of
following segments, ensuring continuity throughout the catheter.

x =
[
p Q f �

]>
(7)

Cosserat rod theory is used to model the flexible segments because it has been demon-
strated to be accurate in handling large deflections [19]. This is advantageous over less
robust methods such as Euler–Bernouli beam theory, which is only accurate for a limited
range of bending angles [13]. The catheter is assumed to be in static equilibrium, and the
only external forces and torques acting on the catheter are assumed to be from gravity,
magnetic interactions, and distal and proximal loadings.

3.1. Shape Equations

Cosserat rod shape equations are available elsewhere in the literature (e.g., [19]) but
are reproduced here for completeness. The pose transformation of magnetic segments with
respect to arc length B is given by rigid-body kinematics:

p(B) = pp + Bℛ(Qp)v∗

Q(B) = Qp
(8)

where subscript p stands for the proximal end, v∗ is the direction of the rod axis in its
body frame, and the rotation matrix ℛ(Qp) can be calculated using Rodrigues’ rotation
formula [38]. The magnetic segment wrench transform can be calculated using a static force
and torque balance:

f(B) = f? −
B

!
f4GC

�(B) = �? −
B

!
�4GC −

[
p(B) − p?

]
×f?

+ B

2!

[
p(B) − p?

]
×f4GC

(9)

where ! is segment length, f4GC is the total external force applied to the segment, including
gravity and magnetic force, �4GC is the total magnetic torque, and [·]× maps the vector
cross-product into the skew-symmetric matrix form. The external force is assumed to act as
a point force at the segment’s centroid.

The Cosserat rod equations for the flexible segments are expressed in differential form:

3p
3B

= ℛ(Q)(K−1
B4 ℛ

(
Q)>f+ v∗

)
3Q
3B

=
1
2

[
−q>

@AI+ [q]×

] (
K−1
1C
ℛ(Q)>� + u∗

)
3f
3B

= −f̄4GC(x, B)

3�
3B

= [f]×
3p
3B
− �̄4GC(x, B)

(10)
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where v∗ is the direction of the centerline tangent in the rod’s reference frame, u∗ is the
intrinsic curvature of the rod in the reference frame, f̄4GC is the external force per unit length
applied to the segment, �̄4GC is the external torque per unit length applied to the segment,
and KB4 and K1C are the shear-extension and bending-torsion stiffness matrices, respectively.
These 13 coupled nonlinear differential equations describe how an initial pose and wrench
evolve over the length of a flexible rod segment to a final pose and wrench.

3.2. Model Control Inputs

Catheter controls include an electric current vector I and a proximal segment length !
for insertion control. I contains a scalar current corresponding to each electromagnet in the
field emitter, which combines to induce a magnetic field. Rigid magnetic segments respond
to the applied magnetic field via a wrenching force and torque in accordance with [39]:[

f<
�<

]
=

[
0 ℱ (m)
[m]× 0

] [
ℬ(p)
G(p)

]
I (11)

where m is the intrinsic dipole moment of the embedded magnet, ℬ(p) describes how the
field at a point varies with the control currents, G(p) describes how a vector packing of
the field-gradient varies with the control currents, and ℱ (m) is a matrix packing of the
permanent magnet’s dipole moment [19].

Both ℬ(p) and G(p) vary across the workspace and can be obtained from a calibrated
model of the magnetic system. Our system is calibrated per [40] as a uniform field model
since the emitter is set up in a Helmholtz configuration. This restricts our magnetic
manipulation of the catheter to only torque control and not gradient, but there is no
disadvantage, as there are still sufficient degrees of freedom for full control of the tip
position of a single-magnet catheter.

To incorporate this magnetic wrench in the Cosserat rod model, we include it in f4GC
and �4GC in Equation (9):

f4GC = f< + f6A0E8CH
�4GC = �<

(12)

Flexible segments are not affected by the magnetic wrench, but f6A0E8CH still applies to f̄4GC
in Equation (10) to account for the weight of the rod.

For catheter insertion control, our implementation drives the catheter in the system
via a feeder, which occurs at the proximal end of the first segment. This is realized in
the model as a linear scaling of that segment length ! using a change in the variable.
Let arc length B = !�, where � ∈ (0, 1). Substituting for B in the Cosserat equations
(Equation (10)) is shown in Equation (13) using the general form and integrating B over !
to find the distal states:

x38BC0; =
∫ !

0
5 (x)3B =

∫ 1

0
5 (x) 3B

3�
3� (13)

Always integrating � from 0 to 1 ensures capturing the full segment regardless of its current
length. The 3B

3� term linearly scales the differential equations so that the rod behavior
progresses appropriately given its current length. Initiating 3B

3� with a value of one describes
the current segment length as a proportion of its initial length: != = 3B

3�!0. This segment
length parameter ! can be estimated, which is necessary for observed control. Additionally,
this implementation allows any flexible segment to be extensible in the model, which can
apply to more complex catheter designs such as concentric tube robots.

3.3. Catheter Observed Control

When used with observed control, the catheter controls are augmented to the states,
resulting in the state vector in Equation (14).
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x =
[
p Q f � ! I

]>
(14)

The catheter used in this application includes two segments: a proximal flexible segment
followed by a distal magnetic segment. It is diagrammed in Figure 2 in the observed control
configuration. In our system, proximal pose and distal wrench boundary conditions are
known. The proximal pose is an initial condition where the catheter exits the feeder. The
distal wrench is assumed zero, as the rod is operating in free space. Distal wrench will be
inserted as an assumed condition with low covariance. Inserted at the distal end of the
catheter is a fictitious desired position condition with low covariance to convey its certainty.
Using this setup, controls can be found for the catheter to achieve the desired distal position
using observed control.

From a robotics dynamic system perspective, a unique aspect of the catheter equations
is that they are functions of arc length along the length of the catheter, not functions of time.
So when applied to this system, the smoother is also used spatially instead of temporally,
as is traditional. Thus, these measurement insertions occur at distance locations along
the arc length, not at instances in time. Nevertheless, the smoother and observed control
framework are robust to this change in a variable, so this conceptual paradigm shift does
not actually require any implementation changes.

Insert Desired 
Target Position

Insert Assumed 
Wrench ConditionInsert Proximal Pose

Initial Condition

Figure 2. Flexible segment (black) followed by magnetic segment (blue and red) labeled with assumed
and desired conditions for observed control.

3.4. Solving the Cosserat BVP

It is possible to calculate rod shape with forward or backward integration if all bound-
ary conditions at a given end are known. However, because the known conditions are split
between distal and proximal ends, a BVP solver is needed. Previous approaches have used
implicit solvers such as collocation [19]. We propose implementing a Kalman smoother as
an explicit shooting method to find rod shape given both information of these boundary
conditions and control inputs.

Hitherto, the smoother optimization framework has been explained from the perspec-
tive of observed control for finding controls given the current and desired states. However,
this framework can also be used for the inverse problem: finding distal states given current
states and controls. This is done by changing the conditions of the BVP and using the
covariances to identify which values are fixed and which are variable. By changing the
initial state covariance to zero on the augmented controls and removing the measurements
of desired conditions, the smoother will perform the same optimization approach, but now
the uncertainty will be resolved by manipulating the distal state to its best estimate given
the initial conditions. Table 1 visually outlined the specific conditions of states and controls
for both this shape solver method and observed control.

By implementing this states-from-controls setup of the smoother framework, the
Cosserat rod model can be solved for shape-given control inputs without building a com-
plex control Jacobian and relying on its linear approximation. This can all be accomplished
using the same Kalman smoother that performs observed control, thus, achieving state
estimation and control within a single unified framework. Note that this shape solver
approach is presented solely for comparison against previous solving methods. It is not
explicitly used for planning control optimization because observed control is specifically
formulated for the task.

This concept of using low covariance to indicate boundary conditions is generalizable
to any conditions. It then follows that this approach can be used to solve for any combi-
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nation of states and controls given sufficient known terms. Simply set low covariance for
known values so they stay fixed (be it a fictitious measurement or initial condition), and the
remaining output variables will converge to their optimal values given the other conditions.
This allows the system to solve for any subset of states and controls all within the same
smoother framework. This versatility is exploited by our closed-loop controller to observe
model disturbances using sensor feedback, as described in Section 4. The state and control
conditions for this disturbance observer are shown in the last row of Table 1.

Table 1. Solve mode condition types.

Condition Type

Shape Controls

Proximal Pose Proximal Wrench Distal Pose Distal Wrench

Currents Proximal
LengthProximal

Position
Proximal

Quaternion
Proximal

Force
Proximal
Torque

Distal
Position

Distal
Quaternion

Distal
Force

Distal
Torque

Method Solving For

Shape Solver rod shape

Assumed Found

Found

Found

Assumed Assumed

Observed
Control controls Desired Assumed Found

Disturbance
Observer

wrench,
length Sensed Assumed Found Assumed Found

4. Closed-Loop Control

In the open loop, the observed control solves for the control current and proximal
length to achieve a target distal position given a perfect model. To close the control loop,
distal tip position information is used for feedback. However, because the catheter model
is solved in the spatial dimension, the traditional forward-time progression feedback
approach of using the sensed position as the new initial condition for the next control cycle
is not applicable. Instead, we apply an observed disturbance approach. For closed-loop
distal position control, a separate observer uses the distal position measurement to calculate
distal wrench and length disturbances that explain positional error from the target. This
process is shown in Figure 3.

Observed 

Control
Current

Disturbance 

Observer

Catheter Feeder

+

Length

-

Observed 

Length

Camera

Hardware

Electromagnet 

Coils

Distal Position

Measurement

Observed

Distal Wrench

Net Length 

Disturbance

Target 

Position

+

Figure 3. Closed-loop control diagram.
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First, the observed control calculates the open-loop current and proximal segment
length to achieve a target distal position, and these controls are applied to the system. Then,
visual feedback provides a distal position measurement from the system. This is passed to
the observer as a desired position condition. The observer takes advantage of the versatility
of the smoother framework to also set the applied current control as a boundary condition
and then find an effective distal wrench and proximal length to explain the sensed position
deviation from the model’s expectation. The observed wrench is passed back into the
observed control algorithm. Whereas initially, the distal wrench is set to zero because the
catheter is in free space, now a fictitious wrench disturbance is used to explain position
error. We replace the zero wrench with the wrench disturbance as a boundary condition in
the observed control and continue the control loop.

Insertion control is not well encapsulated in a pure wrench disturbance due to its
second-order relationship, so we handle it as a separate length disturbance. While this
disturbance will handle all causes of model length inaccuracy, one illustrative example is
that it can estimate slip in the feeder system. To calculate length disturbance, the observed
length is subtracted from the observed control length, as shown in Equation (15). This
disturbance is included in a net length disturbance, which prevents length control from
oscillating between open-loop length and observed length. This net length disturbance is
then added to the observed control length and applied as the control input to the system.

!38BC ⇐ !$� − !>1B (15a)

!=4C
38BC
⇐ !=4C

38BC
+ !38BC (15b)

!2>=CA>; ⇐ !$� + !=4C38BC
(15c)

Because we only measure distal tip position and not full pose, we only have three
degrees of freedom constrained. To maintain sufficient constraints for the BVP, we must also
constrain three degrees of freedom of the distal wrench. This can be done by setting either
distal force or distal torque to zero and solving for the other. In our presented experiments,
we arbitrarily chose to solve for torque, as in testing, we observed both give an equivalent
performance. The full distal pose could be measured to find a full distal wrench, but we
found that just position measurement was sufficient for effective control.

5. Experimental Setup
5.1. Trajectory Execution

The trajectory used in this paper outlines the edges of a cube, which provides a
recognizable trajectory that executes in all three spatial dimensions. The cube is scaled to
40 mm side lengths to maximize the use of the cameras’ field of view in the workspace.
The proximal end at the feeder is located at the GI center and at the +H boundary of the
workspace with the catheter inserted in the −H direction. The resolution of the target is 500
points for the full trajectory.

The trajectory is executed quasi-statically, meaning each point is treated as an inde-
pendent target, and dynamics at each point, as well as between points, are ignored as
the catheter moves from one equilibrium state to another. This results in the shape of
the trajectory having no effect on tip position control. This is useful when the final tip
position is critical, such as for an ablation procedure. This approach can also approximate
a continuous trajectory target given sufficiently close sequential target points, as this will
reduce convergence time and motion for each target. Thus, to execute a position trajectory,
once the catheter reaches a target, the process repeats for the next target along the trajectory.
Before each new solve step, the initial state covariance is reset. Additionally, for better
initial conditions and continuity of the dynamic trajectory, both the wrench and length
disturbances are carried over between target points.

To ignore the settling effects of each control update, the algorithm waits for the tip
position measurements to settle within 0.5 mm before executing the next control. The
quasi-static approach also allows for error tolerance control of final trajectory positions.
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The feedback control loop iterates at each target until converging below the desired 0.5 mm
error tolerance.

5.2. Solve Mode Covariances

As explained in Section 3.4, the BVP can be solved to find any condition given sufficient
known conditions. In this catheter application, we use the observed control mode to find
controls and the disturbance observer to find the distal wrench and proximal length. The
specifics of each state’s condition for each mode were previously outlined in Table 1. Similarly,
the covariances used in practice for each condition in each mode are shown in Table 2.

Table 2. Solve mode covariances.

Covariance Scale 1

Shape Controls

Proximal Pose Proximal Wrench Distal Pose Distal Wrench
Currents

(T2)

Proximal
Length

(m2)

Proximal
Position

(m2)

Proximal
Quaternion

Proximal
Force
(N2)

Proximal
Torque
(Nm)2

Distal
Position

(m2)

Distal
Quaternion

Distal
Force
(N2)

Distal
Torque
(Nm)2

Method Solving For

Observed
Control controls 0 0 0.01 0.01 1.0× 10−9 NA 1.0× 10−8 1.0× 10−8 NA NA

Disturbance
Observer

wrench,
length 0 0 0.01 0.01 4.0× 10−8 NA 1.0× 10−8 NA 0 NA

1 All covariances are appropriately sized identity matrices scaled by the values in this table.

5.3. Hardware System

The catheter manipulation system used in this paper includes a nested Helmholtz coil
system that generates a homogeneous 3D magnetic field and a feeder device that moves
the catheter through tensioned rollers for linear insertion and retraction, as seen in Figure 4.
The Helmholtz coil produces a field in any direction up to 43 mT in the 140 × 140 × 50 mm
workspace, and the feeder inserts the catheter up to 5 mm/s. For a detailed description
of this system, see [41]. Note that the visual position feedback and catheter design differ
from [41] and are described below.

Helmholtz Coil 
B-Field Emitter

Catheter Feeder

Catheter

Z

Y

XStereo 
Tracking 
Cameras

Figure 4. Hardware used for experiments.



Robotics 2023, 12, 11 13 of 20

Two BFS-U3-51S5C cameras (Point Grey, Richmond, BC, Canada) provide stereo visual
feedback for 3D catheter tracking at 30 Hz. The world frame distal position of the catheter
is identified using color tracking from the OpenCV library [42] on the green-painted
magnetic tip. Camera calibration is performed before testing to generate the transform
from image frame pixels to world frame meters. The 480 × 402 pixel images correspond to
a 100 × 84 mm overhead field of view at the bottom of the workspace, resulting in a pixel
resolution accuracy of about 0.2 mm.

Shown in Figure 5, the catheter is a 1.5 mm I.D. 2.1 mm O.D. silicone rubber sheath
(McMaster-Carr, Elmhurst, IL, USA). A 0.25 mm diameter nitinol wire core (McMaster-Carr,
USA) inside the silicone provides additional stiffness. The catheter tip is a 1.6 mm diameter
by 9.6 mm length axially-magnetized NdFeB cylindrical permanent magnet (HKCM En-
gineering, Eckernförde, Germany). A yellow heat-shrink coupling is molded around the
nitinol-to-magnet joint to ensure a continuous transition. The magnetic tip is pained green
for color-tracking localization.

Figure 5. Images of the catheter from stereo vision tracking system. Catheter components starting
at the distal end include a green tip for color tracking preceded by the gray cylindrical permanent
magnet. A yellow heat-shrink coupling joins the magnetic segment to the translucent flexible segment,
which protrudes from the white circular catheter feeder.

5.4. Catheter Parameters

Catheter parameters are reported in Table 3. Various methods are used to find these
values, including measuring (diameter and length), calculating (flexible segment density,
magnetic density), and estimating from material properties (remanence and Young’s mod-
ulus). Magnetic material density is not an accurate parameter for the magnetic segment
because the magnet is not the sole source of mass at the tip of the catheter. Additional
factors include the heat-shrink coupling, the silicone sheath encasing the magnet, and the
green tracking paint. Thus, effective magnetic segment density is an inflated value that
accounts for these contributing masses.

Table 3. Catheter Parameters.

Segment Type Flexible Magnetic

Young’s Modulus (Pa) 2.4× 107 N/A

Diameter (mm) 2.1 1.6

(Initial) Length (mm) 40.4 9.6

Remanence (T) N/A 1.3

Effective Density (kg/m3) 1043 32,000
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6. Evaluation
6.1. Open-Loop Simulation Results

An open-loop simulation is run to demonstrate the accuracy of the observed control al-
gorithm. The trajectory position results are shown in Figure 6, with average and maximum
error listed in Table 4. The open-loop simulation is accurate to a negligible 2× 10−6 mm on
average as shown in Table 4. This accuracy is a function of the number of EKS iterations
and the measurement covariances used for assumed and desired conditions. An appropri-
ate convergence tolerance was chosen to robustly provide more than sufficient accuracy
necessary for this application while limiting excessive iterations for efficiency. Typically
less than 10 iterations are performed to achieve the chosen convergence tolerance, with a
median near 4. The measurement covariances implemented are shown in Table 2. These
values were tuned in simulation to be sufficiently low so as to not allow for significant error
but not so low as to introduce numerical instability.

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1
10 -5

(b)

0 20 40 60 80 100 120 140 160 180
20

40

60

80

(c)

Figure 6. Cont.
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Figure 6. (a) Target and resulting position for open-loop observed control simulation. (b) RMS
position error from the target. (c) Inserted length control input. (d) Applied magnetic field.

Table 4. Position error results summary.

RMS p Error (mm)

Avg. Error Max Error

Open-Loop Simulation 2× 10−6 6× 10−6

Open-Loop Experiment 4.6 10.5

OL Exp. with optimal IC offset 3.3 8.8

Closed-Loop Experiment: All 0.39 1.60

Closed-Loop Experiment: Final 0.33 0.50

6.2. Experimental Results

The cube trajectory is executed in open-loop to examine how accurately the model reflects
reality. The trajectory is then executed in closed-loop to evaluate the accuracy achievable
given positional feedback. Videos corresponding to each experiment are available in the
Supplementary Materials. The open-loop trajectory is shown in Figure 7. The catheter
followed the trajectory with an average RMS position error of 4.6 mm, and a maximum error
of 10.5 mm (Table 4). In the closed-loop trajectory, all final positions achieved the desired
0.5 mm error tolerance, as shown in blue in Figure 8a,b, with an average error of 0.33 mm.
Figure 8 also shows the converging closed-loop trajectory points in green, with an average
error throughout the trajectory of 0.39 mm, and a maximum error of 1.60 mm.

(a)

Figure 7. Cont.
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Figure 7. (a) Target and estimated position for open-loop observed control. (b) RMS position error
from the target. (c) Inserted length control input. (d) Applied magnetic field.
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Figure 8. (a) Target and estimated position for closed-loop control converging at each target (green),
and final closed-loop control result at each target (blue). (b) Corresponding RMS position error.
(c) Inserted length control input. (d) Applied magnetic field.

7. Discussion

Experimentally, open-loop observed control was less accurate than in simulation.
A calculable error is the initial position offset at the proximal end. The feeder is manually
positioned, and the position error between the target and actual initial conditions will be
present at each point along the entire trajectory. This error can be removed by minimizing
trajectory error using a least-squares offset, which reduces the average error to 3.3 mm, as
shown in the third row of Table 4. The remaining sources of experimental error include
inaccuracies in model parameters, inhomogeneity in the physical catheter, as well as the
accuracy of the control hardware. While parameters could likely be refined with a more
complex characterization approach to improve open-loop accuracy, the accuracy of the
closed-loop experiment demonstrates this to be unnecessary.

Positional error significantly improves when using sensor feedback for closed-loop
control. Even with an accurate model, feedback is important to compensate for external
disturbances. Due to the quasi-static nature of this experiment, given sufficient time at a
target, the accuracy approaches that of the positional measurements. The initial error at
each new target is a function of the trajectory step size between targets. To ensure continuity
between targets, our algorithm carries over the wrench and length disturbances between
points. Thus, the initial error at each new point will converge with smaller trajectory step
sizes. We chose a resolution of 500 points to balance execution time with average accuracy.
In future studies, we plan to increase the control speed to explore the limits of this control
approach and if it can be used to control dynamic trajectories. Observed control has the
capacity to be used over a receding time horizon for dynamic systems similar to MPC,
which should assist in dynamic control.

Observed control also has the flexibility to be applied to more complex systems. The
smoother framework can easily incorporate more than one embedded magnet per device
and more than one continuum device into the system. The states of the subsequent catheters
can be appended to the first state vector and found using the same observed control
method [43]. We demonstrated the base case of one flexible and one magnetic segment due
to the limits of our field emitter. A more complex device with more electromagnets would
be needed to control the increased degrees of freedom of additional magnetic segments, and
especially multiple catheters. This capability will enable magnetically controlled flexible
continuum device application to other procedures which often require two or more surgical
instruments [44].
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8. Conclusions

We developed the observed control algorithm that simultaneously calculates states and
controls using a Kalman smoother framework. We demonstrate it experimentally with
a Cosserat rod model performing closed-loop control of a magnetic catheter. Observed
control steered the catheter along the cube trajectory with 3.3 mm average error in open-
loop and 0.33 mm error with camera sensor feedback. Observed control improves on
previous work by avoiding derivation and implementation of complex control Jacobians
by using the Kalman smoother framework. Furthermore, we incorporate position feedback
using a predictive model-based approach, which does not require tuning any control
gains. Observed control is adoptable in any model, including systems with multiple
catheter devices. These systems can enable more minimally invasive robotically controlled
procedures, with the potential to increase surgical accuracy and improve patient outcomes.
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