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Abstract: This study aims to provide a robust trajectory tracking controller which guarantees the
prescribed performance of a robot manipulator, both in transient and steady-state modes, experiencing
parametric uncertainties. The main core of the controller is designed based on the adaptive finite-time
sliding mode control (SMC) and extreme learning machine (ELM) methods to collectively estimate
the parametric model uncertainties and enhance the quality of tracking performance. Accordingly,
the global estimation with a fast convergence rate is achieved while the tracking error and the impact
of chattering on the control input are mitigated significantly. Following the control design, the
stability of the overall control system along with the finite-time convergence rate is proved, and the
effectiveness of the proposed method is investigated via extensive simulation studies. The results of
simulations confirm that the prescribed transient and steady-state performances are obtained with
enough accuracy, fast convergence rate, robustness, and smooth control input which are all required
for practical implementation and applications.

Keywords: robot manipulators; finite-time sliding mode control; model uncertainty; extreme learning
machine; prescribed performance

1. Introduction

Robotic manipulators are extensively being used in different areas such as the manu-
facturing industry, process and mining, automatic surgery, as well as smart agriculture [1,2].
These robots considerably reduce human effort in complex task operations by adopting
different controllers [3–5]. Despite the available control technologies in the state-of-the-art,
there are still some gaps and unaddressed challenges in this domain. From the system
modeling perspective, the Lagrange method is commonly used to model rigid-link ma-
nipulators [6]. However, these multivariable systems are highly coupled and nonlinear,
meaning that an accurate model representation is hardly obtained for such systems [7,8].
These issues can accommodate by designing a reliable controller that satisfies precision, fast-
response rate, robustness, and adaptiveness properties by which the uncertain dynamics
and disturbances are handled properly.

In the state-of the-art, the conventional SMC and its developments have been investi-
gated for robotics and nonlinear systems control for several decades. To achieve acceptable
systems performance, in [9], a disturbance-observer-based SMC controller is developed
for space manipulators with prescribed performance. Generally, the prescribed perfor-
mance control (PPC) is an approach for ensuring the desired transient and steady-state
system responses. This approach is associated with many challenges such as the time
response and the initial error dependency, which can be developed in various ways [10].
Furthermore, additional solutions are required for unpredictable perturbations [10]. These
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challenging issues are well-handled with the stability proof in [9]. In addition to PPC,
the Barrier Lyapunov Function (BLF) method with the commonly Logarithm structure is
used to satisfy a constrained control problem. Both BLF and PPC can be used to address
time-variant constraints, while PPC is more convenient in mathematical differentiating
operations. Moreover, PPC is less sensitive to the initial output error [11]. Using these
approaches, the system model is usually required in the control design. As an effective
solution, neural network (NN)-based techniques are combined with BLF and PPC to esti-
mate dynamical equations and model uncertainties [12]. Regarding NN approaches, the
inputs are required to be located on proper compacts set to lead to an effective estima-
tion [12]. Thus, the combination of an NN method with BLF and PPC is regarded as a
promising strategy in the control domain. Generally, the neural networks-radial basis
function (NNRBF) method is established by minimizing a quadratic cost function, however,
it provides local optimization with a relatively slow convergence rate for obtaining the
adaptive NN weights [13]. In [12], NNRBF is used as a neural estimator, applying the
persistent excitation condition to improve the estimation. Different solutions are available
to promote a learning-based estimation, and the ELM could be an alternative approach
which is not extensively investigated [14,15].

As a recent neural technique, ELM is adopted in various control design frameworks
including the SMC controllers [14–16]. Regarding the basic principles of ELM, NN weights
are updated through single-hidden layer feedforward networks, and are more likely to
converge with the global solution [17]. The weights between the input and hidden layers
are frozen by random values, which in part, increase the operation speed. Moreover, this
type of value assignments, or in other words, random initialization, results in the universal
approximation capability. This is the main rational behind the superior convergence
capability of ELM over the NNRBF [13]. Although, the output weights in ELM are generally
computed by the least square optimization approach, in several studies, these parameters
are obtained based on establishing the global stability [18,19]. Regarding the advantages of
ELM, this method has been applied in different applications successfully, being proved as a
promising approach in robotics and control [20–22].

Similar to PP, the SMC control usually requires proper model description of a sys-
tem. To address this problem, in [23,24], system uncertainties are estimated by NNRBF
through the SMC approach. Regarding the prominent features of SMC, the combination
of this method with PPC has been recently developed for different systems [25–27] which
drives the control system towards a robust performance with desired transient and the
steady-state responses. In addition, fast system response is highly demanding in various
robotics applications. This property is attained via the finite-time stability that should be
mathematically proven in the design phase. This criterion is investigated for the neural
sliding mode control approaches in [28,29].

Motivated by the above gaps and challenges, this paper proposes a finite-time tra-
jectory tracking controller for a robotic manipulator system subject to parametric system
uncertainties which ensures several performance criteria such as robustness, precision in
tracking, and finite-time responses. The main contributions of this paper are as follows:

(1) Transient response of the system including overshoot/undershoot as well as the
steady-state response including the fast convergence of the steady-state error is set in
the design procedure. Moreover, the finite-time stability proof of the designed sliding
surface and the error transformation is provided.

(2) ELM is used to overcome the difficulties in obtaining the precise model of the robot
stemming from dynamic coupling effects, time-varying parameters, and nonlinear
frictions. Although, SMC is robust against uncertainties, such effects could result in
chattering phenomenon and the higher magnitude of the input torques. Thus, the
ELM estimation is used to tackle this problem.

The rest of this paper is organized as follows. The mathematical model of robotic
manipulators and some technical preliminaries are given in Section 2. The design control
procedure is presented in Section 3. The stability of the proposed controller as well as
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the finite-time convergence rates is demonstrated in Section 4. The performance of the
controller is illustrated and analyzed by bringing the simulation results in Section 5. Finally,
conclusion and future work statements are pointed out in Section 6.

2. Model Description and Technical Preliminaries
2.1. Model Description

In the joint space, the mathematical representation of n-link robotic manipulators can
be obtained by the Lagrange method as:

..
q = f

(
q,

.
q
)
+ g
(
q,

.
q
)
τ + ∆m(t) (1)

where the position, speed and acceleration vectors are represented by q,
.
q,

..
q ∈ Rn, and the in-

put torque vector is indicated by τ ∈ Rn. Furthermore, f
(
q,

.
q
)
= M−1(q)

(
−C
(
q,

.
q
) .
q− G(q)

)
,

g(q) = M−1(q), in which M(q) ∈ Rn×n, C
(
q,

.
q
)
∈ Rn×n, and G(q) ∈ Rn represent the mass/

inertial matrix, the Coriolis and centripetal matrix, and the gravitational force matrix, respectively.
Model uncertainties including coupling and friction effects are lumped in
∆m ∈ Rn as ∆m(t) = M−1(q)

(
−∆M(q)− ∆C

(
q,

.
q
)
− ∆G(q)

)
.

Property 1. M(q) is a positive-definite and symmetric matrix satisfied at the inequality mmin ≤ ‖M(q)‖ ≤
mmax, ∀q ∈ Rn, in which mmin, mmax are positive constants as 0 < mmin < mmax.

Assume all states, ∆M, ∆C, and ∆G and their derivatives are bounded. Thus, this assumption
along with Property 1 implies that ∆m(t) and

.
∆m are bounded.

According to property 1, there exists positive constants g1, g2 satisfying the inequality
g1 I ≤ g(q) = M−1(q) ≤ g2 I (I ∈ Rn×n: the identity matrix).

In the following sections, the simplified forms of matrixes are used as g, f , ∆m.

2.2. Technical Preliminaries

Lemma [30]. Consider the system
.
x = f (x, u) with the state vector x and the control input u. Let V(x) be a

smooth positive definite function, satisfying,

.
V(x) ≤ −aV(x)− bVr(x), (2)

along the solution x(t), where a, b > 0, 0 < r < 1 are constants. Then, the system response converges in
finite-time, and it is exponentially stable. The settling time, which is dependent on the initial state x(0) = x0,
is as

Tx(x0) ≤ Tmax :=
1

a(1− r)
ln

aV1−r(x0) + b
b

, ∀x0 ∈ Rn. (3)

The ELM algorithm: Consider the training set χ = {(xk, tk)|xk = (xk1, . . . , xkn)
T ∈ Rn,

tk = (tk1, . . . , tkn)
T ∈ Rm}, in which xk and tk are the input and target for each sample, respectively.

To estimate the output oj, the regression ELM-based model of the process is given by (4):

L

∑
k=1

βkg
(

Wkxj + bk

)
= oj, j = 1, 2, . . . , N. (4)

where L is the hidden nodes, and the indices k, j are used for the training samples and the output
nodes, respectively. Wk represents the weight elements between the input layer and the kth hidden
node, and bk is the bias for each node. βk represents the weight elements between the kth hidden
node and the output layer. The activation function of the hidden layer is indicated by g. The Sigmoid

function g(x, Wk, bk) = 1/
(

1 + e−(Wk x+bk)
)

is a common choice for the activation function. In this
method, Wk and bk are assigned with random values:

Hβ = T, (5)

where,
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H(W1, . . . , WL, b1, . . . , bL, x1, . . . , xN)=

 g(W1x1 + b1) . . . g(WLx1 + bL)
...

. . .
...

g(W1xN + b1) . . . g(WLxN + bL)


N×L

, β =

βT
1
...

βT
L


L×m

,

T =

 tT
1
...

tT
N


N×m

.

Generally, βk is obtained such that the objective function MSE = ∑N
k=1

(
tkj − okj

)2
j = 1, 2, . . . , m

is minimized, and ∑N
k=1 ‖oj − tj‖ = 0 if N reaches the infinity by using the least-square method.

In other approaches, these weights are computed in a way that the closed-loop system stability is
satisfied, globally.

The conventional ELM topology with three layers is shown in Figure 1.
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3. Control Design
The control design is divided into two parts. First, a robust finite-time PPC controller is designed

to drive the end effector towards the desired trajectory. Then, in the second part, the model uncertainty
is estimated by ELM.

3.1. Finite-Time SMC Control with Prescribed Performance
3.1.1. Prescribed Performance

Consider the desired signal as qid assigned to the ith joint, and the output error as ei = qi − qid.
The aim is to keep the error constraint as −εiµi < ei < εiµi, where µi(t) is a smooth function
being positive and monotonically decreasing for all t ≥ 0, and it is defined by
µi(t) = (µi0 − µi∞) exp(−ηt), µi∞, ( µi0, µi∞, η : constant). The term εi is a positive constant
0 < εi ≤ 1, and it depends on the initial states of the system (q0). Furthermore, µi0 and µi∞
are set as µi0 = lim

t→0
µi(t), µi∞ = lim

t→∞
µi(t) (µi0 > µi∞ > 0). According to this definition, η restricts

the convergence rate. The error transformation is performed as [9]

αi =
1
2

ln

( ei
µi
+ εi

εi − ei
µi

)
(6)

where the error and the transformed error vectors are defined by e =
[
e1, e2, . . . , enp

]T and

α =
[
α1, α2, . . . , αnp

]T , respectively, where the term np introduces the number of robot joints. Con-

sider µ = diag
(
µ1, µ2, . . . , µnp

)
, ∅i =

ε i
(µiε i−ei)(µiε i+ei)

= ε i

(µiε i)
2−e2

i
,

.
∅i =

−2ε2
i µi

.
µi+2ε iei

.
ei

((µiε i)
2−e2

i )
2 , ∅ = diag(∅i),

.
∅ = diag

( .
∅i

)
; define δ and ∆ as δ = g−1µ−1∅−1 and ∆ = ∅µM−1∆m = δ−1∆m, repectively. The es-
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timation of ∆ is indicated by ∆̂. Then, it is readily shown that
.
α = ∅

(
µ

.
e− .

µe
)

and
..
α = ∅µ( f + gτ + ∆̂− ..

qd) +
.
∅
(
µ

.
e− .

µe
)
−∅ ..

µe.

Remark 1. By establishing the error transformation αi in the control design, and leading it towards
zero as αi → 0 , the maximum overshoot and the steady-stated error get restricted within the boundary
of [−εiµi0, εiµi0] and [−εiµi∞, εiµi∞], respectively. Moreover, the convergence rate of ei would be faster than
the exponential function exp(−ηt). Thus, the desired transient and steady-state responses can be achieved by
predefining the performance function (µi(t)).

3.1.2. Finite-Time SMC Control Design
The sliding surface is designed as

s =
.
α + kα + |α|v1 sign(α) (7)

where k is a diagonal positive-definite matrix, and 1 < v1 < 2 [30]. By taking the time-derivative of s,
one can obtain:

.
s = k

.
α + v1E

.
α +∅µ( f + gτ + ∆̂− ..

qd) +
.
∅
(
µ

.
e− .

µe
)
−∅ ..

µe, (8)

where E = diag
{
|α1|v1−1, |α2|v1−1, . . . ,

∣∣αnp
∣∣v1−1

}
. Now set

.
s = 0, the input torque is designed as

τ = g−1
(
− f − ∆̂ +

..
qd − (∅µ)−1(k

.
α + v1E

.
α +

.
∅
(
µ

.
e− .

µe
)
−∅ ..

µe)
)

−δkssign(s)− δKbs.
(9)

where Kb, ks > 0 are design control parameters. The schematic of the control framework is shown in
Figure 2.
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3.2. Adaptive Neural Approximation of Uncertainties
In this study, the ELM algorithm is used to approximate ∆ by (10). In this regard, the output

weights are computed through a learning-based algorithm aiming to satisfy the global Lyapunov-
based stability:

∆̂ = H(x, W, b)β̂, (10)
.
β̂ =

.
β̃ = γsH. (11)

where, x =
[
q,

.
q
]T is the input vector to the ELM estimator, and γ is positive scalar. β̂ ∈ RL×m is the

estimation of β satisfying β̂ = β∗ + β̃, ‖β̃‖ ≤ εβ < ∞. β∗ is the ideal output weight vector and β̃ is
the approximation weight error.

4. Stability Analysis

Theorem 1. Consider a robotic manipulator described by (1). Design the control input (9) and the estimator
(10). Then, the following objectives are achieved:

1. The closed-loop system is stable and all signals are bounded. Furthermore, model uncertainty
is estimated with a stable learning process.

2. The sliding surface converges to zero within a finite time. The convergence speed towards
the sliding surface can be regulated by the proper selection of the initial states and the design control
parameter Kb.
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3. The prescribed performance is achieved with a rapid convergence rate. The error tracking
converges to zero within a finite time. The convergence speed towards the prescribed performance,
i.e., the settling time, can be regulated by the initial states and the design parameter k.

Proof: The Lyapunov principle is used to prove Theorem 1. First, the sliding mode controller
using the ELM-based estimation is proven to be asymptotically stable. Second, it is proven that
the sliding surface reaches zero in finite time. The third part proves the rapid convergence of the
error transformation.

1. A positive definite Lyapunov function is defined as (12).

V1 =
1
2

sTs +
1
2

β̃Tγ−1 β̃ (12)

By taking the time-derivative of (12), and using (8)–(11), it is easy to show that

.
V1 = s∆− s∆̂− ks|s| − Kbs2 + β̃Tγ−1

.
β̃, (13)

.
V1 = −s∆̃− ks|s| − Kbs2 + β̃TsH, (14)

.
V1 = −sHβ̃− ks|s| − Kbs2 + β̃TsH . (15)

Thus, one can obtain .
V1 = −ks|s| − Kbs2. (16)

Therefore, (
.

V1 ≤ 0), all signals are bounded, and the closed-loop system is asymptotically stable.

2. Next, V2 is defined as follows:

V2 =
1
2

sTs (17)

According to Property 1, ‖∆‖ ≤ ∆, and take the time-derivative of (17), and replace (8) and (9)
into it, gives:

.
V2 = s∆− s∆̂− ks|s| − Kbs2, (18)
.

V2 ≤ −|s|
∣∣∣Hβ̃

∣∣∣− ks|s| − Kbs2, (19)
.

V2 ≤ −|s|
(

εβ‖H‖+ ks

)
− Kbs2. (20)

Thus, the inequality
.

V2 ≤ 0 is deduced (H is a matrix with activation function elements, thus, it
can be selected with bounded functions upper-bounded as ‖H‖< h, h >0).

Considering (20),
.

V2 ≤ −2KbV2 − 2kp
√

V2 ≤ 0 is obtained, in which kp = ks + εβ‖H‖ > 0.

Hence, the sliding surface moves toward zero within a finite time (T1 ≤ 1
2Kb(1−0.5) ln 2KbV1−0.5

2 (q0)+2kp
2kp

,

∀q0 ∈ Rn) as
.

V2 complies with (2). This indicates that T1 depends on Kb, ks and V2(q0).

3. Considering (16) and (20), the sliding surface reaches zero as s =
.
α + kα + |α|v1 sign(α) = 0.

Thus, the following equation is obtained.

.
α = −kα− |α|v1 sign(α) (21)

Finally, V3 is defined as follows:

V3 =
1
2

αTα. (22)

Taking the time-derivative of (22) and replacing (21), yields:

.
V3 = −kα2 − |α|1+v1 ≤ 0, (23)

According to (23),
.

V3 = −2kV3 − 2Vr
3 ≤ 0 is deduced, considering (2),the prescribed per-

formance is obtained and the error transformation converges to zero less than a determined time

(T2 ≤ 1
2k(1−r) ln 2kV1−r

3 (q0)+2
2 , ∀q0 ∈ Rn) as given in (3).

Regarding
.

V1,
.

V2 and
.

V3, it is concluded that the proposed controller is exponentially stable
within a finite time, while the PPC objective is satisfied. �
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Remark 2. In this study, ELM is used to estimate model uncertainty based on the Lyapunov (the closed-loop
stability) approach. Since this estimator consists of nonlinear activation functions in hidden layers, it is a
proper choice to estimate uncertainties which are naturally nonlinear. In addition, the estimation of the upper
bound of uncertainties is a challenging issue, and the improper selection of this parameter imposes negative
impacts on the chattering phenomenon and, accordingly, system stability. Thus, this application of ELM is
effective to alleviate this problem. Moreover, since ELM provides global estimation with a fast convergence rate,
the combination of this technique with the proposed finite-time controller is realizable and applicable in practice.

Remark 3. Equation (21) is differentiable with a discontinuous right-hand side. Knowing that the classical
sign function is not necessarily equal to zero when x = 0. Especially, when differential inclusions are involved.
Under the Filippov principle, this challenging issue will be handled, and the classical sign function can be
treated as a set-valued function [31]. Therefore, a modified sign function is required.

Remark 4. According to (23), the error transformation αi reaches zero and the intended prescribed
performance (−εiµi < ei < εiµi) is achieved exponentially with the convergence rate faster than
exp(−ηt). According to this deduction, T2 is dependent on k and V3(q0), indicating that the settling
time can be adjusted by the appropriate selection of the gain k. This statement is valid as long as the
initial conditions are correctly set within the prescribed boundary.

Remark 5. Regarding the system with the dynamic representation (1), and the assumption ‖∆‖ ≤ ∆, if the
sliding surface is chosen as s = kα +

.
α, the control input is obtained as τ = g−1(− f (x)− ∆̂ +

..
qd

−(∅µ)−1(k
.
α +

.
∅
(
µ

.
e− .

µe
)
−∅ ..

µe))− δkssign(s)− δKbs when the mentioned method is employed.
This control design results in a finite-time stable control system with bounded signals. Also, the
respective Lyapunov function leads to

.
V2 ≤ −kp|s| − Kbs2 as it does have the form of (2). How-

ever, it does not verify that the PPC condition is achieved within a finite time because it results in
s = kα +

.
α = 0,

.
α ≤ −kα . Regarding the proposed sliding surface s =

.
α + kα + |α|v1 sign(α), not

only the sliding surface converges to zero within a finite time, but also it guarantees that the PPC
objective is satisfied.

5. Simulation Results
In this section, the performance of the proposed controller is investigated via extensive simula-

tion studies and under different operating conditions. The robot manipulator system is selected as a
2 degree-of-freedom (DOF) planar robot manipulator with the standard representation as given in (1).
The following matrixes are used in this study [32]:

M(q) = [
p1 + 2p2 cos(q2) p3 + p2 cos(q2)
p3 + p2 cos(q2) p3

],

G(q) = [
p4 cos(q1) + p5 cos(q1 + q2)

p5 cos(q1 + q2)
],

C
(
q,

.
q
)
= [
−p2 sin(q2)

.
q2 −p2 sin(q2)

( .
q1 +

.
q2
)

p2 sin(q2)
.
q1 0

].

(24)

where p1, . . . , p5 are constant parameters dependent on the robot’s physical structure. The gravitation
constant is defined as g = 9.8m/s2, and the other elements are p1 = 5, p2 = 1, p3 = 1, p4 = 1.2g,
p5 = g [32]. According to Figure 3, this robot consists of two links a1, a2, and two joints with angular
outputs q1, q2. In which, each joint has 1-DOF, and the input torques are given to these joints.

As for a comprehensive evaluation, the performance of proposed controller is investigated under
normal and uncertain operating conditions as well as a comparative study. In addition, the perfor-
mance indices of integral absolute error as IAE = ∑

t f
t=0|e(t)|, integral time absolute error as ITAE =

∑
t f
t=0 t|e(t)|, and the root-mean-square value of input torques as RMSV =

√
∑

t f
t=0| τ(t)|

2ts/t f (ts :
the step time, t f : the total run time) are used for the numerical performance analysis. The simulations
of this study were performed with MATLAB®2020a operated on a PC with an Intel i7 3.20 GHz
quad-core processor.
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Scenario 1. Performance assessment under normal condition
In this scenario, the reference tracking of the manipulator (24) is investigated via PPC-SMC

and PPC-ASMC controllers, under normal operating condition (without model uncertainties). The
reference signal for each joint is given as qd = [3 sin(t) 3 cos(t)]T . The prescribed function is set
as µi(t) = exp(−0.5t), (µi0 − µi∞ = 1.5), εi = 0.8. The SMC parameters are selected as Kb = 0.1,
ks = 0.1, k = diag(5, 5), γ = 0.03, v1 = 1.2. The initial state for each joint is set as q0 = [0 3]T , which is
located in an acceptable region.

Figures 4–6 show the results of trajectory tracking obtained via PPC-SMC controller. According
to Figures 4–6, the control law (9) performs well in reference tracking. Inferred from Figures 4 and 5,
the error tracking is small enough and it is drawn within the prescribed region, indicating that
the overshoot and the steady-state error are obtained within the predetermined bounds. Thus, the
convergence rate is faster than the prescribed function. It is inferred that all these conclusions are

obtained within a finite time as follows: T1 ≤ 1
0.1 ln 2(0.1)V0.5

2 (0)+2
2 , T2 ≤ 1

10(1−r) ln 2(5)Vr
3 (0)+2
2 (kp = 1).

Figure 6 indicates that the input torque for each joint is obtained with an acceptable amplitude, and it
does not have the chattering problem.
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Now, the PPC-SMC controller is replaced with PPC-Adaptive Sliding mode control (PPC-ASMC)
counterpart to further investigate the reference tracking of the manipulator system under the normal
operating condition. Figures 7–9 indicate that this controller performs almost similar to the PPC-SMC
controller in the normal condition and the tracking performance and the input torque quality are
obtained properly.
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Scenario 2. Performance assessment under the uncertain condition
In this scenario, the PPC-SMC controller is utilized for the trajectory tracking of the manipulator

system in the presence of model uncertainty. To this end, the nominal values of the parameters are
changed by 20%, and an additive variable term as ∆m,2 = [sin(t)0.79 cos(t)]T is included into the
system at t = 5 s. Figures 10–12 demonstrate the results of this scenario. From Figures 10 and 11,
it is inferred that tracking errors, especially the second tracking error, is diverged from the stable
condition at t = 5 s, and this behavior is better observed at t = 8–10 s. The steady-state error increases
in this condition. In Figure 12, the input torque is noticeably disrupted at the final times of the
simulation, by which the system cannot continue its normal operation. Moreover, this impact can
result in physical damage to the system. Thus, the negative effects of uncertainties must be removed.
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Figure 12. Input Torque by applying PPC−SMC under the uncertain condition.

To compensate the effects of parameter uncertainties, the lumped uncertain term is estimated
and eliminated through the online operation with the PPC-ASMC controller. The tracking and the
input torque for each joint are illustrated in Figures 13–15. According to Figures 13 and 14, the effect
of uncertainties is well compensated, and the steady-state response is improved by adopting the
ELM estimation. The input torques depicted in Figure 15 are smooth enough and thus practically
implementable. Consequently, the proposed controller is robust against model uncertainties regard-
less of the physical limits of the actuators. Moreover, tracking errors, as well as input torques, are
obtained according to the PPC objective. Besides, the theoretical equations prove that this achieve-
ment is obtained within a finite time and the convergence rate criterion is satisfied. Inferred from
Figure 14, the tracking error is compensated in less than one second. To quantify the performance of
the controller, the numerical performance metrics are used and the results are reported in Table 1. In
this table, IAEi, ITAEi are performance indexes used to evaluate tracking precision based on ei, and
RMSVi is the performance index used to evaluate the input torque τi (i = 1, 2).
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Table 1. Comparing the PPC-SMC and PPC-ASMC controllers based on numerical performance
metrics.

PPC-SMC Normal Condition PPC-SMC Uncertain Condition PPC-ASMC Normal Condition PPC-ASMC Uncertain Condition

IAE1, IAE2 1.0, 0.01 1.01, 0.5 1.0, 0.01 0.9, 0.2

ITAE1, ITAE2 1.7, 0.03 2.1, 4.1 1.7, 1.03 1.9, 1.8

RMSV1, RMSV2 4.1, 1.8 4.2, 3.1 4.1, 1.8 4.1, 1.8

Table 1 confirms that by applying PPC-SMC and PPC-ASMC to each joint of the manipulator in
normal condition, acceptable tracking precision and input torque levels are achieved. However, this
result is not maintained for PPC-SMC in the presence of uncertainties as all performance indices are
changed towards a lower quality of operation, especially for the second joint of the robot. In Figure 11,
the decrease in tracking precision (evaluated by IAEi and ITAEi) occurs from t = 5 s. Moreover, by
considering Figure 12, it is inferred that the higher amount of RMSV2 for PPC-SMC is directly related
to the input torque recorded at the last times of the simulation, in which the controller is unable to
compensate for uncertainties leading the system to reach the unstable condition. According to the
numerical performance of PPC-ASMC in the uncertain condition, performance indices of the tracking
precision and the input torque level are noticeably improved in comparison with PPC-SMC in the
same operational condition. This fact reflects that ELM effectively improves the system performance
in the presence of uncertainties. Thus, without extra control effort, PPC-ASMC reconstructs the
robot’s performance.

Scenario 3. Comparative study
To further investigate the effectiveness of the controller, PPC-SMC and PPC-ASMC controllers

are compared with the conventional SMC by analyzing tracking errors and input torques of both
controllers in the normal condition.

Figures 16 and 17 shows the results of simulation for this scenario. These figures indicate
that the conventional SMC is not as accurate as the proposed PPC-ASMC controller because the
respective tracking error of the first joint (indicated by the green color) is outside the prescribed
region. Furthermore, the quality of the input torque, depicted in Figure 18, is better for the proposed
controller. While the input torque of the conventional SMC, especially the second SMC input torque
(indicated by the red color), is obtained with chattering effects. Consequently, it is perceived that
there is no regulation between the input torques and the tracking errors of SMC. If the error tracking
is desirable, the respective input torque degrades with chattering signals. Similarly, a high-standard
input torque cannot drive the robot end-effector towards the desired reference with enough precision.
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Figure 18. Input torque by applying PPC-SMC, PPC-ASMC, and SMC under normal condition.

Next, the performance comparison is investigated in the uncertain condition for PPC-SMC,
PPC-ASMC, and SMC controllers. Figures 19–21 summarize the results for this scenario. From
Figures 19 and 20, it is observed that the PPC-ASMC controller is able to compensate for uncertainties,
and the steady-state error of each joint reaches zero with enough accuracy as confirmed in Scenario 2.
It should be mentioned that since the ELM approximation is performed with random inputs, there is
some discrepancy between each pair of estimations and results. As shown in Figures 19 and 20, the
conventional SMC is not effective in dealing with uncertainties, and the tracking error diverges from
the stable condition in the steady-state case. Thus, this method is not proposed in any condition since
the uncertain term is indispensable in real applications, and this controller is prone to result in failures.
Although a compromise between precision and the input torque quality could be fairly obtained by
proper selections of the SMC gains, this adjustment would be costly, time-consuming, and not reliable.
Similarly, the PPC-SMC controller does not provide acceptable results since it eventually becomes
unstable in the uncertain condition. Consequently, among the three controllers, only PPC-ASMC
provides the desired results in the uncertain condition.
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Figure 21. Input torque by applying PPC−SMC, PPC−ASMC, and SMC under uncertain condition.

To further elaborate the comparative study, the transient performance of the controllers in both
normal and uncertain conditions is investigated with respect to the step response. In this scenario, the
prescribed function is set as µi(t) = exp(−0.5t), (µi0 − µi∞ = 1), εi = 0.8. The SMC parameters are
selected as Kb = 0.2, ks = 0.2, k = diag(0.05, 4.5), γ = 0.03, v1 = 1.2. The initial state for each joint is
set as q0 = [0.1 0.5]T . Figures 22–24 show the results of this scenario. According to Figures 22 and 23,
both PPC-SMC and PPC-ASMC performs well in normal condition. The respective tracking errors
are within the prescribed region, reaching the desired position before t = 6 s. Furthermore, the input
torques for PPC-SMC and PPC-ASMC are obtained considerably smoother than SMC, however, with
a higher initial value. The step response of SMC is not desirable as the output error of the first actuator
(depicted by the blue color) is not inside the prescribed region in the initial operation. Furthermore,
the convergence rate of this response is considerably slow. This is in addition to the undesirable SMC
input torques with chattering effects, which are highly destructive. Thus, SMC cannot perform well
in normal condition, while the counterparts satisfy the control objectives in this condition.
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into the system at=5s. The results are illustrated in Figures 25–27. 

Figures 25 and 26 confirm the superiority of the PPC-ASMC controller over the PPC-

SMC and SMC controllers. Adding the uncertain term into the system, the PPC-ASMC 

controller ensures accuracy with smoother torques, similarly to the normal condition. 

Considering the PPC-SMC controller, although the step response for the first joint can 

meet the desired response, the step response of the second joint diverges from the stable 

steady-state mode. This highlights the fact that regardless of the initial high amplitude, 

this controller is not reliable in uncertain conditions. Regarding the SMC step response in 

the uncertain condition, not only the transient response is not desirable, but also the 

steady-stated response is not achieved. Inferred from Figures 25 and 26, the first robot 
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Figure 24. Input torque by applying PPC−SMC, PPC−ASMC, and SMC under normal condition.

Finally, the step responses of the mentioned controllers are compared with each other under the
uncertain condition. In this case, the nominal values of the parameters are changed by 20%, and an
additive variable term as ∆m,2 = [0.6 sin(t)0.6 cos(t)]T is inserted into the system at =5 s. The results
are illustrated in Figures 25–27.
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joint is not located in the desired region in the transient mode. Moreover, the second robot 

joint diverges from the steady-state point. This is in addition to the undesired SMC inputs, 

which are obtained with considerable chattering effects, which are clearly seen in Figure 

27. Consequently, the proposed PPC-ASMC controller satisfies both the transient and 

steady-states desired responses under both normal and uncertain conditions. This result 

is aligned with a fast convergence rate, which is achievable and regulatable by a designer. 
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The last section of the simulation works is dedicated to investigating the effectiveness 

of the proposed controller on PUMA 560, which has been widely used in different research 

and practical applications. The details of its model are given in [33], and for the sake of 

simplicity, only the three joints of this robot are analyzed in simulations. In this regard, 

Figure 25. Reference tracking by applying PPC−SMC, PPC−ASMC, and SMC under uncertain
condition.
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Figures 25 and 26 confirm the superiority of the PPC-ASMC controller over the PPC-SMC and
SMC controllers. Adding the uncertain term into the system, the PPC-ASMC controller ensures
accuracy with smoother torques, similarly to the normal condition. Considering the PPC-SMC
controller, although the step response for the first joint can meet the desired response, the step
response of the second joint diverges from the stable steady-state mode. This highlights the fact
that regardless of the initial high amplitude, this controller is not reliable in uncertain conditions.
Regarding the SMC step response in the uncertain condition, not only the transient response is not
desirable, but also the steady-stated response is not achieved. Inferred from Figures 25 and 26, the
first robot joint is not located in the desired region in the transient mode. Moreover, the second robot
joint diverges from the steady-state point. This is in addition to the undesired SMC inputs, which are
obtained with considerable chattering effects, which are clearly seen in Figure 27. Consequently, the
proposed PPC-ASMC controller satisfies both the transient and steady-states desired responses under
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both normal and uncertain conditions. This result is aligned with a fast convergence rate, which is
achievable and regulatable by a designer.

The last section of the simulation works is dedicated to investigating the effectiveness of the
proposed controller on PUMA 560, which has been widely used in different research and practical
applications. The details of its model are given in [33], and for the sake of simplicity, only the three
joints of this robot are analyzed in simulations. In this regard, the proposed PPC-ASMC controller is
compared with PPC-SMC, SMC, and the Fuzzy-PID controller for PUMA 560. The reference signal
is given to the manipulator’s joints as

[
cos
( t

5π

)
− 1, cos

( t
5π + π

2
)
, 0.5 sin

( t
5π + π

2
)
− 1
]T . Regarding

PPC-SMC and PPC-ASMC, k = diag(5, 5, 5), v1 = 1.1, ks = 0.08, Kb = 0.08, γ = 0.95. The PID-based
SMC (PID-SMC) controller designed in [34] is used in the following comparisons. The input torque

of this method is as τPID−SMC = ueq − us, ueq = M
(
− ki

kd
e− kp

kd

.
e− f +

..
qd

)
, us = M

(
∆ + ξ

)
sign

(
S
)
,

computed by using the sliding surface S = kpe + kd
.
e + ki

∫ t
0 edt, kp = 1.5, kd = 1, ki = 1.5, ξ is a small

positive constant and ∆ is a known constant for the upper bound of uncertainties (‖∆‖ ≤ ∆). The
Fuzzy-PID controller is adopted according to the method presented in [35]. The simulation results of
the normal conditions are illustrated in Figures 28–31.
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Figure 28. Applying PPC-SMC to 3-DOF PUMA 560 under normal condition (a) Reference Tracking, 

(b) Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors. 
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Figure 28. Applying PPC-SMC to 3-DOF PUMA 560 under normal condition (a) Reference Tracking,
(b) Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors.
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Figure 29. Applying PPC-ASMC to 3-DOF PUMA 560 under normal condition (a) Reference Track-

ing, (b) Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors. 
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Figure 29. Applying PPC-ASMC to 3-DOF PUMA 560 under normal condition (a) Reference Tracking,
(b) Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors.
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Figure 30. Applying SMC to 3-DOF PUMA 560 under normal condition (a) Reference Tracking, (b) 

Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors. 
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Figure 30. Applying SMC to 3-DOF PUMA 560 under normal condition (a) Reference Tracking, (b)
Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors.
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Figure 30. Applying SMC to 3-DOF PUMA 560 under normal condition (a) Reference Tracking, (b) 

Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors. 
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Figure 31. Applying Fuzzy-PID to 3-DOF PUMA 560 under normal condition (a) Reference Track-

ing, (b) Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors. 
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evaluation of the controllers in normal condition is presented in Table 1. Since the re-
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Figure 31. Applying Fuzzy-PID to 3-DOF PUMA 560 under normal condition (a) Reference Tracking,
(b) Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors.

Figures 28–31 show that all the controllers perform well in normal condition. Both PPC-SMC and
PPC-ASMC have similar responses in terms of precision and input torque features. The parameters of
the SMC are tuned to provide a trade-off between accuracy and the chattering effects. Thus, although
it does not have high accuracy, it performs with negligible chattering effects. Regarding the Fuzzy-
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PID controller, the tracking response of this method is obtained with desirable precision and input
torque quality. The numeric evaluation of the controllers in normal condition is presented in Table 1.
Since the response speed of the controller is important for practical applications, this performance
index is used in evaluations along with the precision and control effort criteria. The performance of
each controller is analyzed by drawing the phase plane of the tracking errors. Regarding the figures
indicated by (d) in normal conditions, it can be seen that all controllers result in a stable steady-state
response as all the tracking errors reach zero within a finite time.

According to Table 1, SMC requires the least amount of time (0.6 s) to fulfill its task in normal
condition. The speed comparison is followed by PPC-ASMC and PPC-SMC, which require a moderate
amount of time (1.4 s) to complete their tasks. By far, Fuzzy-PID controller requires considerable long
time to finish the tracking performance.

Now, the overall control performances can be better evaluated in normal condition. All the
mentioned controllers require almost the same control effort. Although Fuzzy-PID controller provides
high accuracy, this method is not suitable for practice considering the computational expenses. The
SMC provides the best performance in terms of accuracy and speed response in this condition. Both
PPC-SMC and PPC-ASMC are in the second-best place in normal condition.

Next, the previous comparison is repeated for PUMA 560 in uncertain condition. The lumped

uncertainty is added to the system at t = 10 s as

 3.5 sin
(
2

.
q1
)
+ 3.5

.
q1 + 0.2

1.5 cos
(
2

.
q2
)
+ 3.5 cos(q2) + 3.5

.
q2 + 0.5

2 sin
( .
q3
)
+ 2 sin(q3)− 2.5q3

 and the

inertia matrix of the system is increased by 40% (1.4 M, for example, payload changes at this time).
Figures 32–35 and Table 2 provide detailed performance evaluation of the mentioned approaches
qualitatively and numerically, respectively.

Table 2. Numerical evaluation of controllers in normal condition.

PUMA 560 PPC-SMC PPC-ASMC SMC Fuzzy-PID

The execution time 1.4 s 1.4 s 0.6 s 40 s

IAE1, IAE2, IAE3 0.7, 0.8, 0.03 0.7, 0.7, 0.03 1.1, 1.3, 0.05 0.4, 0.6, 0.08

ITAE1, ITAE2, ITAE3 2.1, 2.3, 0.1 2.1, 2.3, 0.1 4.8, 8.6, 8.6 3.9, 5.03, 0.9

RMSV1, RMSV2, RMSV3 1.3, 2.3, 0.3 1.3, 2.3, 0.3 1.3, 2.3, 0.3 1.3, 2.5, 0.3
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Figure 32. Applying PPC-SMC to 3-DOF PUMA 560 under uncertain condition (a) Reference Track-

ing, (b) Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors. 
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Figure 32. Applying PPC-SMC to 3-DOF PUMA 560 under uncertain condition (a) Reference Tracking,
(b) Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors.
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Figure 32. Applying PPC-SMC to 3-DOF PUMA 560 under uncertain condition (a) Reference Track-

ing, (b) Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors. 

 
(a) 

Robotics 2022, 11, 111 25 of 30 
 

 

 
(b) 

 
(c) 

 
(d) 

Figure 33. Applying PPC-ASMC to 3-DOF PUMA 560 under uncertain condition (a) Reference 

Tracking, (b) Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors. 
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Figure 33. Applying PPC-ASMC to 3-DOF PUMA 560 under uncertain condition (a) Reference
Tracking, (b) Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors.
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Figure 34. Applying SMC to 3-DOF PUMA 560 under uncertain condition (a) Reference Tracking, 

(b) Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors. 
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Figure 34. Applying SMC to 3-DOF PUMA 560 under uncertain condition (a) Reference Tracking, (b)
Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors.
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Figure 34. Applying SMC to 3-DOF PUMA 560 under uncertain condition (a) Reference Tracking, 
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Figure 35. Applying Fuzzy-PID to 3-DOF PUMA 560 under uncertain condition (a) Reference Track-

ing, (b) Error Tracking (c), Input Torque, (d) Phase plane of the tracking errors. 
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The performance assessment of the system in the uncertain operating condition is reported in
Table 3.

Table 3. Numerical evaluation of controllers in the uncertain condition.

PUMA 560 PPC-SMC PPC-ASMC SMC Fuzzy-PID

The execution time 2.5 s 1.5 s 0.6 s 56.8 s

IAE1, IAE2, IAE3 1.4, 0.9, 0.7 0.7, 0.8, 0.7 5.7, 2.8, 3.6 0.4, 0.6, 0.1

ITAE1, ITAE2, ITAE3 13.3, 4.7, 9.9 2.9, 3.6, 6.2 73.4, 30.5, 30.3 3.9, 5.3, 1.5

RMSV1, RMSV2, RMSV3 3.3, 3.7, 2.7 1.3, 2.3, 0.3 1.3, 2.3, 0.25 1.3, 2.5, 0.3

According to the results, although SMC offers the best results in normal conditions, it cannot
lead to the same result in uncertain conditions. As illustrated in Figure 34, reference tracking is
disrupted after the insertion of uncertainties, and the tracking errors violate the predetermined
boundary. From Figure 35, well tracking of the Fuzzy-PID controller in the uncertain condition is
observed. However, this performance is overshadowed by the computational complexity of this
method. Regarding both qualitative and numerical assessment, the quality of PPC-SMC decreases as
uncertain terms are applied, and even with adopting more control efforts it is not able to compensate
the uncertain effects. Interestingly, PPC-ASMC keeps its well-tracking performance even when
uncertainties are inserted continuously from t = 10 s. Figure 33 represents the ability of PPC-ASMC in
the presence of uncertainties without requiring more control effort. Although this result is obtained
with minor chattering effects, all other criteria, including control effort, performance speed, precision,
and robustness, are desired for this controller. Following the analysis, the phase plane of each tracking
error is given. Regarding the phase plane of PPC-ASMC, it is clear that this controller leads to steady-
state stability in uncertain conditions. However, the phase plane for PPC-SMC and SMC in uncertain
conditions are not as desired as their respective phase plane in normal conditions. The phase plane of
Fuzzy-PID in uncertain conditions is the same as its phase plane in normal conditions. Consequently,
PPC-ASMC provides the best overall performance among all the investigated methods.

6. Conclusions
In this study, a robust trajectory tracking controller with prescribed performance was designed

for a robot manipulator system. To achieve the desired transient and steady-state responses, the error
transformation was defined and used in a sliding mode control framework by which the robot’s fast
operation was guaranteed. In this regard, the robot’s speed was adjusted by the proper selection of
the design control parameters. Since the main control framework depends on the manipulator model,
the ELM method was adopted to compensate the model uncertainties. In addition, the performance
of ELM was obtained with more reliability because the PPC technique ensures the acceptable compact
sets of the ELM inputs. Finally, the proposed controller was evaluated through simulation studies.
According to the simulation results, the prescribed performance of the system is achieved with
enough accuracy, robustness, and a smooth and realizable input torque. The future line of this study
includes investigation on the impact of external disturbances on the performance of the proposed
controller as well as conducting experimental implementation for performance evaluation in practice.
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