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Abstract: Object manipulation automation in logistic warehouses has recently been actively re-
searched. However, shelf replenishment is a challenge that requires the precise and careful handling
of densely piled objects. The irregular arrangement of objects on a shelf makes this task particularly
difficult. This paper presents an approach for generating a safe replenishment process from a single
depth image, which is provided as an input to two networks to identify arrangement patterns and
predict the occurrence of collapsing objects. The proposed inference-based strategy provides an ap-
propriate decision and course of action on whether to create an insertion space while considering the
safety of the shelf content. In particular, we exploit the bimanual dexterous manipulation capabilities
of the associated robot to resolve the task safely, without re-organizing the entire shelf. Experiments
with a real bimanual robot were performed in three typical scenarios: shelved, stacked, and random.
The objects were randomly placed in each scenario. The experimental results verify the performance
of our proposed method in randomized situations on a shelf with a real bimanual robot.

Keywords: shelf replenishment; bimanual manipulation; deep learning in grasping and manipulation

1. Introduction

Shelf replenishment in warehouses and retail stores is a particularly challenging
example of dexterous robotic tasks. Recently, the use of robots in retail has rapidly increased.
However, presently, most practical situations require humans to handle shelf-related tasks,
owing to their flexibility and reliability, despite the recent progress in vision processing,
manipulations, and the development of functional grippers [1–5].

The replenishment process is divided into two cases. In the first case, a space is found
in which the object to be inserted fits, and the object is placed there. In the second case, no
space is available, and objects already on the shelf must be moved to create space to place
the new object. In the latter case, the manipulation of the objects on the shelf to create an
insertion space must be performed carefully to avoid tipping over or damaging the objects
already on the shelf. Appropriate manipulation strategies are required in both cases.

Shelf manipulation has recently received increased attention, owing to the use of
various robots in the logistics and retail domains. For example, the Amazon Picking
Challenge (APC) and Amazon Robotic Challenge (ARC) are competitions that encourage
autonomous robotic manipulations in the cluttered environments of warehouses [6,7].
In practice, shelf scenes are densely concentrated and complex; therefore, all objects must
be considered, including the target object. Recent learning-based research has contributed
to the development of high-precision bin picking [8]. These methods compute the best
grasp pose from an RGB-D image. Additionally, the picking systems adopted in [9,10]
used a learning-based grasp detection and action decision model to handle the difficulty
involved in picking a specific target from a complex scene. Recent studies involving
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shelf replenishment tasks include Refs. [11,12]. The first proposed method for planning
manipulation tasks is executed using reactive control. The second proposed knowledge-
based autonomous object manipulation method uses implicit failure recovery. These
approaches have improved dexterity but do not solve the problem of manipulating objects
while avoiding neighboring objects from collapsing.

In randomized picking, densely stacked objects on a shelf are obstacles for success-
ful grasping. Domae et al. [13] computed the grasp configurations of robotic grippers
that did not collide with obstacles. Harada et al. [14] developed a method to prevent
contact with adjacent objects, using machine learning while picking the target object.
Dogar et al. [15] pushed obstacles to reach a target in cluttered environments. Lee et al. [16]
and Nam et al. [17] relocated obstacles to retrieve a target object from clutter. Nagata et al. [18]
defined the grasp patterns to be linked to the surfaces of target objects and proposed a
dexterous strategy for sliding a top object, or tilting an aligned object from a complex
environment to extract the target object. However, it is difficult to use these approaches to
effectively avoid a collapse that would damage the objects, despite accurately picking the
overlapping objects of the target.

Object detection is an integral component of shelf manipulation. Learning-based object
detection has been widely studied in robotics [19], and its accuracy tends to be related to
successful robotic manipulations. Goldman et al. [20] provided a network architecture
for identifying each object in a dense display. Asaoka et al. [21] proposed a method that
groups organized objects in an image and identifies the arrangement pattern of each group.
However, these methods assume that the objects are properly stored on a shelf. Considering
that objects on the shelf are cluttered, this study categorizes them into disorganized and
organized objects.

Scene-understanding approaches have been proposed in robotics to understand qual-
itative structures and spatial relationships [22]. Panda et al. [23] estimated the support
relationship using only simple interactions of stacked objects in tabletop scenarios. Mojta-
hedzadeh et al. [24] estimated the physical interactions between objects using 3D visual
perception and machine learning. In picking approaches that consider support relations,
Grotz et al. [25] extracted physically plausible support relations between objects from point
clouds to predict the action effects. Nevertheless, these methods are needed to estimate the
three-dimensional shape of objects in uncertain environments. Another similar approach is
to use an RGB-based deep neural network to predict the stacking order of objects, as in [26];
however, it detected the stacking order of objects on a desk from the top view only. There-
fore, we focus on the shelf containing the pile of the cluttered object in accordance with the
situation, such as warehouses and retail stores.

Humans understand the reactions when an action is forced on an object and therefore
manipulate objects based on these predictions. Similarly, previous approaches in robotics
have evaluated each desired action with scene understanding to ensure safe and reliable
results [27,28]. In learning-based predictions, CNN-based networks infer the next state
in the targeted scene [29]. Magassouba et al. [30] predicted the risk of collision from an
RGB-D image before the placement of an object. Janner et al. [31] presented a framework
for learning object-oriented representations for physical scene understanding from image
observations to predict the object state transition per time lapse. In our previous work [32],
we proposed the learning-based evaluator to predict the risk of collapse of a shelf, based on
both the desired object extraction and object evaluation supporting the successful extraction.
The neural network explicitly learns the relationship between objects (extract/support) and
evaluates whether a collapse would occur. The extracting action with the minimum risk
of collapse was selected; however, manipulations necessary for shelf replenishment were
not suggested. The present study automates replenishment by improving our previous
collapse prediction network and proposes a new action plan while minimizing changes to
the state of objects on the shelf. Moreover, our method supports the use of bimanual arms
to create an insertion space while considering the safety of the shelf content.
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In this study, a novel approach for automating the replenishment of disorganized
shelves with a bimanual robot is presented (Figure 1). First, we classified the objects in
organized/disorganized displays using a general object detection method. This allowed us
to treat these categorized objects explicitly. Our deep neural network infers the neighboring
object’s behavior from a depth image when removing a specified manipulation target; that
is, the network can predict which objects fall from a shelf. The deep neural network was
trained on a dataset generated using a simulator. The proposed inference-based strategy
provides an appropriate decision and course of action on whether to create an insertion
space while considering the safety of the shelf content. Compared to our previous work,
we improved our collapse prediction estimator to be applied to a shelf replenishment task,
allowing the robot to estimate the risk of single-arm manipulation without supporting
the other objects. We considered the replenishment task through single-arm/bimanual
manipulation to cover various practical cases.

Depth Sensor

Right Arm

Le� Arm

Gripper

Shelf

Figure 1. Bimanual robotic shelf replenishment. We present a robotic shelf replenisher with bimanual
manipulation, which fills the shelf with an object. Our method allows for the slight rearrangement of
the shelf to create space for replenishment without damaging the shelf or the other objects. Given the
state of the shelf, bimanual or single-arm operation is appropriately selected to plan the action.

The main contributions of this study can be summarized as follows.

• We classify objects in organized/disorganized displays to understand the shelf display
as a whole, which reduces the complexity of inter-object relationship analysis and
allows the manipulation of a group of objects as a unit instead of single objects.

• Our method enables novel action planning with a bimanual robot for shelf replen-
ishment by predicting the occurrence of an object collapsing via a neural network.
In particular, our method can consider any state of the shelf, and select the best action
for each state, including single-arm or bimanual manipulation.

The remainder of this paper is organized as follows. Section 2 explains the proposed
shelf-replenishment algorithm. Section 3 describes the experiments and network bench-
mark used to evaluate our architecture. Section 4 provides a discussion. Finally, Section 5
concludes the paper.
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2. Materials and Methods

Figure 2 illustrates the flow of our architecture. We present an approach for automating
replenishment using vision-based detection and bimanual manipulation. First, the scene
is analyzed to classify objects into object arrangement patterns, i.e., stacked, shelved,
and disorganized. Second, a collapse prediction network is used to predict the safety of
different actions. Third, the proposed strategy selects a bimanual action plan from a list of
potential safe actions to organize the shelf, if necessary, and place the object on the shelf.

Classify arrangement of objects

YOLOv3

Depth image

Stacked 

Shelved 

Disorganized 

Disorganized

1) Simple
replenishment

The candidate is 
obstructed by other 

objects? No

2)  Bimanual 
replenishment

3) Bimanual
rearrangement

No

No

Yes

List up candidates

Collapse 
predic�on

No solu�on

Collapse 
predic�on

Yes

Yes

List support ac�ons

List support ac�ons

(for the target object)

(for obstacles)
Collapse maps

+

+
Depth imageTarget object

(mask image) 1.00.0

Collapse Probability

0.5

Collapse predic�on

No collapse
( 0.5)

Collapse 
( . )

Collapse Predic�on
Network

… … …

Figure 2. Overview of our bimanual robotic replenishment pipeline, which consists of (1) shelf scene
classification into organized/disorganized arrangement using YOLOv3 [33], and (2) action planning
based on a collapse prediction network that predicts the probabilities of collapse from a shelf in the
form of a heatmap. The depth image is captured from the 3D vision sensor and then fed to YOLOv3
to classify the shelf scene into organized/disorganized arrangements (top left). The flowchart on the
right shows the action planning to replenish an object based on the classification results. Each action
is evaluated with the collapse prediction network (bottom-left) to avoid the objects from collapsing
during bimanual manipulation.

2.1. Objects Arrangement Classification

The first step of our framework regards classifying the object arrangement. We used
YOLOv3 (You Only Look Once, version 3) [33], a real-time object detection algorithm that
identifies specific objects in a picture, to classify clusters of objects into object arrange-
ment patterns.

As shown in Figure 3, the arrangements of objects are defined as one of the following
four classes: stacked Ch, shelved Cv, disorganized right Cr, and disorganized left Cl . Ch

and Cv denote horizontally and vertically arranged patterns, respectively, and Cr and Cl

are disorganized patterns that lean to the right and left, respectively. In the case of a single
object, it will be classified as Cv. YOLOv3 also generates a bounding box of the cluster. We
define bounding box Bi (i = 1, . . . , N) as follows (N is the number of the generated Bi):

Bi = (xi, yi, wi, hi) (1)

where (xi, yi) denotes a center position, and wi, hi denotes width and height, respectively.
To apply YOLOv3 for our object arrangement pattern classification, we used the weighted
model pretrained on ImageNet [34] and pretrained the model with real depth images.
A depth sensor acquired the depth image with 256-step grayscale, which showed 5–10
rectangular objects on a shelf. Here, we do not use RGB images but depth images with the
assumption that the object’s textures are unnecessary for classifying the object arrangement
patterns. To distinguish the disorganized pattern as either Cr or Cl , our training process
does not use data augmentation by randomly flipping the images. We used 500 images
to train the model, and annotations were performed manually. The confidence score was
empirically set to 0.30, and the threshold of the intersection over union (IoU), which is the
accuracy of the individual identification of the bounding box, was set to 0.45. The training
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at 100 epochs took 1 h on a system running Ubuntu 16.04 with an Intel Core i7-9700F CPU
clocked at 3.00 GHz and a single NVIDIA GeForce RTX 2060 SUPER graphics card with
CUDA 10. The results are presented in Figure 3.

Shelved Stacked Disorganized Disorganized 

Figure 3. Detection results of object arrangement category using YOLOv3 classification. As shown
in these images, each object arrangement is categorized into four classes: stacked Ch, shelved Cv,
disorganized right Cr, and disorganized left Cl .

2.2. Collapse Map

We propose a collapse prediction network that can manipulate an object without the
collapse of neighboring objects. The network outputs a heatmap that shows the pixel-
wise collapse probabilities, that is, the collapse map. In this section, we first describe the
architecture of our network model and then introduce the data collection and training
settings applied to generate our model.

2.2.1. Network Architecture

In our previous study [32], we proposed an approach for shelf picking to assess
whether extracting an object is possible based on a collapse prediction network. However,
the use of the network is limited to a specific bimanual action to extract a target object
while supporting an adjacent object; thus, we can only hold the adjacent object so as not to
move based on the result of the collapse prediction. In the present study, we improve the
collapse prediction network to directly determine the potential of an object falling from
a shelf when removing the specified object with a single arm. This enables us to plan a
sequential approach for replenishment based on the collapse probability.

The network is comprised of an encoder and decoder. The input data were a depth
image of the shelf scene and a target mask image (binary image) of the specified object,
in which the region representing the target object was set to 1 and the other regions were
set to 0. The encoder network has two pipelines, as shown in Figure 4. One network
extracts features from a depth image based on the convolutional layer of VGG-16 [35].
The other has five convolutional layers to compress the binary mask image. The outputs of
the two pipelines are concatenated and fed into the decoder network. Finally, the computed
collapse map is upsampled to match the size of the input depth image. The first branch has
a skip architecture to improve the semantic segmentation performance. The input image
was 256× 256 grayscale and normalized in advance. Similarly, the mask image size was
256× 256.
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Figure 4. Network architecture. The collapse map network receives both a depth scene and a binary
mask of a target object as the input. The output of the collapse map network is a heatmap, which
shows the probability of position changes, e.g., an object turning over or falling down.

2.2.2. Dataset

For dataset generation, we used a maximum of 10 rectangular objects of various sizes
in PhysX [36]. As shown in Figure 5, five to nine objects were first randomly sampled, which
were initially positioned in an organized arrangement pattern as either Ch and Cv. Half of
these objects were then assigned random poses to generate a disorganized arrangement.
Subsequently, a target object was randomly selected and removed from the shelf. We
then checked the positions of all objects, except for the target object, after the target object
was removed from the shelf and the other objects reached a stable state. The objects that
move during this operation constitute a collapse mask (binary image), in which the regions
representing those objects were set to 1 and the other regions were set to 0 as shown in
Figure 5. If the change of the objects’ center position exceeds the threshold, we judge the
objects to be moved. Note that we empirically set the threshold to 6.4 mm. To train our
network on a pixel basis, we collected a depth image, target mask, and collapse mask,
where the images were rendered from the recorded results. The depth image shows the
initial arrangement before the selected target object is removed. The target mask shows the
selected target object, and the collapse mask shows the objects that moved after the selected
target object was removed. Finally, we empirically set the simulation parameters according
to their actual movements as follows: we set the coefficient of static to 0.9, dynamic friction
to 0.8, the coefficient of restitution to 0.1, and the density to 1.0 kg/m3.

Select a target randomly
(Green: target object)Depth

Depth Target mask 
(Binary image)

Collapse mask
(Binary image)

Record collapsed objects
(Red: collapse)

Object Model

Drop objects
randomly

Physics Simulator

Generated
Ground Truth

Remove
the target

Figure 5. Dataset generation procedure. In our method, nine novel objects are used from five types of
objects. First, the initial objects are stacked randomly in vertical or horizontal status. Next, the target
object is removed, and the simulator monitors the movement of the other objects. Finally, the moving
objects are marked as the collapse region, and one dataset is generated through a single simulation
(bottom of the figure: depth scene image, target mask, and collapse mask).
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2.2.3. Implementation Details

We built a dataset of 22,400 training images generated from the simulator described
in Section 2.2.2 and trained the collapse map network. To eliminate the discrepancies
between the real and synthetic depth images, noise was randomly added to the generated
depth images.

We used a batch size of 32 (700 iterations) and the Adam optimizer [37] with a learning
rate of 1.0× 10−4. The other Adam hyperparameters were set as the default values of
β1 = 0.9 and β2 = 0.999. The training at 50 epochs took 8 h on a system running Ubuntu
16.04 with an Intel Core i7-9700F CPU clocked at 3.00 GHz, and a single NVIDIA GeForce
RTX 2060 SUPER graphics card with CUDA 10. The network achieved a processing time of
0.02 s or less to generate one collapse map.

2.3. Shelf Replenishment

Shelf replenishment requires action planning to place an object along the arrangement.
However, moving an object in a densely stacked scene, i.e., a shelf, involves the risk of
dropping the other object because safe manipulation on a shelf is complicated, especially
considering the dynamics. To solve the problem, we formulate the robotic action as the
manipulation within the limit of the bounding box based on the arrangement classification.
Here, the collapse map can detect the risk of handling the object inside the bounding box.
If there is no risk, we can provide the replenishment strategy without considering the
strict dynamics.

As shown in Figure 3, the shelf scene is represented by bounding boxes Bi and classes.
To find sufficient space to replenish an object, we define three placement candidates as
rectangles on the top, left, and right of each target bounding box Bi in case the class is a
stacked Ch or shelved Cv. Here, let Btop

i , Ble f t
i , and Bright

i denote the bounding box of the
placement candidates to be placed on the shelf. Btop

i denotes the area where an object can
be stacked on Ch, which we describe as

Btop
i = (xi −

wi
2

+
w′

2
, yi − hi

2
− h′

2
− g, w′ + 2g, h′) (2)

Bright
i and Bi

le f t denote the areas where an object can be placed on the right and left sides
of Cv, respectively, which we describe as

Bright
i = (xi −

wi
2
− w′

2
− g, yi +

hi
2
− h′

2
, w′ + 2g, h′) (3)

Ble f t
i = (xi +

wi
2

+
w′

2
+ g, yi +

hi
2
− h′

2
, w′ + 2g, h′) (4)

where w′ and h′ are the height and width of the area to secure space, respectively, and g
is the thickness of the fingers of the gripper. Each arrangement has the potential to place
an object on Btop

i , Ble f t
i , and Bright

i unless the bounding box is outside the shelf. Note that
the object is known, which fits in the secure area (the size of w′ × h′), and each candidate is
excluded when it exceeds the limit of the working space. In the present study, the size of
the inside of the working space (the shelf) is W330 × D280 × H330 mm.

As shown in Figure 2, based on the predicted collapse map for a target object and the
prediction for each action, we assume three manipulations for replenishment.

2.3.1. Simple Replenishment

Firstly, we check that there is sufficient space in the candidate area (Btop
i , Ble f t

i , or Bright
i )

to place an object on the shelf. Note that the size of the object placed on the shelf is known.
When this condition is satisfied (i.e., there is no object inside the candidate area), the robot
places the object at the center position of the candidate area.
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2.3.2. Bimanual Replenishment

Secondly, when objects occupy all candidates, the objects must first be removed from
the candidates. In the present study, we define this action as the supporting action in this
study. Let Bs denote the arrangement overlapping the candidate (Btop

i , Ble f t
i , or Bright

i ). On
the collapse map targeted at the bounding box Bs, an area with a probability equal to or
higher than the predefined probability threshold is defined as the collapse region Rs. If
IoU(Bj, Rs) < th (j 6= s, i), the objects in Bj should be stable after moving Bs; that is, Bs is
movable. IoU(·) denotes a function that outputs the IoU, and th is a threshold value. The
supporting action is defined as moving Bs horizontally to create space in a cluttered scene.
The starting point pstart and goal point pgoal are defined as follows:

pstart = (xs, ys) (5)

where (xs, ys) is the center position, and xs and ys denote the coordinates. Then, we then
define the goal point subject to the target position as follows:

pgoal =


(xs +

w′
2 + ws

2 + g, ys) if Bs on Bright
i

(xs − w′
2 −

ws
2 − g, ys) if Bs on Ble f t

i
(xs, ys − h′

2 −
hs
2 − g) if Bs on Btop

i

(6)

where g denotes the margin of the gripper fingers in the experiment. Figure 6 shows the
bimanual replenishment process. When the class of Bs is either Cr or Cl , the objects in Bs
are rotated, aligned with the organized arrangement, and moved to the goal point with
one robotic arm. While holding them for safety, the object is then placed in the placement
candidate with the other robotic arm.

ℎ′

(a.1) (a.2) )4.a()3.a(

x

y

ℎ′

(b.1) )3.b()2.b( (b.4)

x

y

Figure 6. Example executions of bimanual replenishment: (a.1–a.4) Replenishment for a shelved
scene. The robot moves the disorganized object to the right or left to place an object aligned with the
shelved objects. (b.1–b.4) Replenishment for a stacked scene. The robot lifts the disorganized object
to place an object on the stacked objects.

2.3.3. Bimanual Rearrangement

Finally, in case there is no candidate that satisfies the requirements, we repeatedly
consider the rearrangement. If IoU(Bi, Rs) ≥ th (i 6= s) for all candidates, then supporting
the objects in Bi increases the collapse risk. We select the arrangement Bi{i = 1, . . . , N})
that has the highest overlapping rate to the collapse region Rs.

k = arg min
i∈1,...,N

|IoU(Bi, Rs)| (7)
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Here, we generate the collapse map targeted at the bounding box Bk and calculate
the collapse region Rk. As mentioned above, If IoU(Bj, Rk) < th (j 6= s, i, k), Bk is
movable. The supporting action is defined as moving Bk horizontally to avoid object
collapse. The starting point pstart,† and goal point pgoal,† are defined as follows:

pstart,† = (xk, yk) (8)

pgoal,† =

{
(xs − ws

2 −
wk
2 − g, yk) if xk < xs

(xs +
ws
2 + wk

2 + g, yk) if xk ≥ xs
(9)

When the obstacle for the supporting action is moved, it is possible to safely move
Bs (Figure 7). If Bk is not movable, supporting it is also required. However, the bimanual
robot cannot place the object while holding two or more objects. In the present study, we
excluded such cases from consideration.

(a.1) (a.2) (a.3) (a.4) (a.5)

,

x

y

ℎ′

,

Figure 7. Bimanual arrangement example: (a.1–a.5) When more than two objects obstruct the
replenishment, we need to move them with multi-step actions. The robot moves the objects one by
one to make space to place an object.

3. Experiments and Results

In this section, we report the implementation details, experimental results, and the
benchmark of the collapse network for evaluating the performance of our proposed method.

3.1. Predicting the Collapse Map

Figure 8 shows the collapse maps results with the validation data. We report the pixel
accuracy to quantify the classifications and calculate these metrics as follows:

Pixel Accuracy =
TP + TN

TP + TN + FP + FN
, (10)

IoU =
TP

TP + FP + FN
. (11)

where TP, TN, FP, and FN denote the numbers of true positives, true negatives, false
positives, and false negatives, respectively, counted on a pixel basis. In our evaluations, we
assume that a pixel is classified as a collapse region when the probability is higher than 0.5.

We validated our prediction model using 1000 simulated images created from the
simulator. Compared to our previous baseline model (based on FCN-8s [38]), we achieved
a pixel accuracy and IoU score of 0.982 and 0.668, respectively, as shown in Table 1. A
comparison between the other parameters and these results shows that the batch size
parameter was chosen appropriately (Table 1). Based on this result, we set the batch size to
32 and used the transfer learning of VGG-16, which was pretrained with ImageNet. We
further note that our model infers that the object moves under physical dynamics; however,
it achieves similar or better IoU scores than those of related studies [39,40].
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Figure 8. Collapse maps results: (a) Depth image showing the depth from a viewpoint in grayscale.
(b) Target mask that shows a targeted object (white). (c) Collapse map generated from the col-
lapse prediction network. (d) Ground truth, which consists of collapse regions (red) and target
object (green).

Table 1. Performance comparison between collapse predictions for each setting.

Method PA * IoU **

FCN-8s-based 0.941 0.461
Ours (Batch size = 32) 0.982 0.668

Ours (Batch size = 16) 0.981 0.662
Ours (fine-tuned, Batch size = 16) 0.980 0.640
Ours (fine-tuned, Batch size = 32) 0.957 0.545

* Pixel Accuracy. ** Intersection Over Union.

3.2. Robotic Experiments

The efficiency of the proposed method was validated using real robotic experiments.
We used MOTOMAN-SDA5F from Yaskawa Electric Corp. for our experiments [41].
The SDA5F has 15 degrees of freedom (DoFs): 7 DoFs per arm and one DoF for the waist.
The robot was programmed using Choreonoid [42] and graspPlugin [43]. Two Robotiq
gripper 2F-140 adaptive grippers [44] were used, which were installed at the arms of the
SDA5F. The 2F-140 adaptive gripper is an underactuated parallel gripper. We used a
YCAM3D-10L from YOODS Co. Ltd., Yamaguchi, Japan [45], which is a depth camera
based on the phase shift method. We obtained a depth image from YCAM3D-10L. We
used a median filter to smooth the image for noise removal from the real data. Each
original image was resized to 256 × 256 pixels. We used 4–6 different rectangular objects.
The objects were presented to the robot on the shelf, and a similar scene was maintained in
the simulator.

We report the results of the experiments with a real robot in three typical scenarios:
shelved, stacked, and random. The objects were randomly placed in each scenario. Success
was defined as the case in which the replenishment of an object was completed. In a
sequence of 100 experiments, 68 trials succeeded in obtaining the entire result (68.0%).
From the viewpoint of each arrangement, the success rates were 57.5%, 84.0%, and 30.0%
in the stacked, shelved, and random scenes, respectively. Moreover, we evaluated the per-
formance of our collapse prediction. Our method without the collapse prediction showed
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comparatively lower success rates. In particular, it performed poorly on rearrangements,
which required moving objects inside the shelf, compared to the case when using the
collapse prediction. In a sequence of 25 experiments, only 11 trials achieved the entire
result (44.0%), and the success rates were 50.0%, 60.0%, and 0.0% in the stacked, shelved,
and random scenes, respectively. Table 2 presents the corresponding statistics.

Table 2. Robotic experiment results.

Stacked Shelved Random Total

Success
w/ Collapse Prediction

23/40
(57.5%)

42/50
(84.0%)

3/10
(30.0%) 68/100 (68.0%)

Success
w/o Collapse Prediction

5/10
(50.0%)

6/10
(60.0%)

0/5
(0.0%) 11/25 (44.0%)

Figure 9 shows snapshots of the experiment, where the object was initially placed
vertically on the shelf. Figure 9(a.1,b.1) show two scenes within the experiment. The depth
images shown in Figure 9(a.2,b.2) were classified by our fine-tuned YOLOv3. The steps of
these experiments are depicted in Figure 9(a.3–a.8,b.3–b.8), where the candidate placement
can be derived by placing the objects on the left or right according to the display identified
as shelved. An object leaning to the left (Figure 9a) or to the right (Figure 9b) is located at
the planned placement point. The object was grasped by the right-hand gripper, rotated to
align it, and moved to the right. We assumed the diagonal direction of the bounding box
to be the angle of inclination of the object under the prior positional information (Cl/Cr).
Additionally, snapshots of the experiment in which the object was placed horizontally on
the shelf are shown in Figure 9c,d. Figure 9c shows how the obstructing object was grasped
with one hand, lifted, and placed on top of the other hand. In Figure 9d, the object was
placed on top of the objects on the shelf without the need to use the right hand, as no other
object was detected.

(a.1) (a.2) (a.3) (a.4) (a.5) (a.6)

(b.1) (b.2) (b.3) (b.4) (b.5) (b.6)

(a.7)

(b.7)

(a.8)

(b.8)

(c.1) (c.2) (c.3) (c.4) (c.5) (c.6)

(d.1) (d.2) (d.3) (d.4) (d.5) (d.6)

(c.7)

(d.7)

(c.8)

(d.8)

Figure 9. Snapshots of the experiments: To align an object with the vertical arrangement in
(a.1,a.2,b.1,b.2), the robot horizontally moves the other objects that occupy the space of the shelf,
using the other arm, see (a.3–a.8,b.3–b.8) . To align an object with the horizontal arrangement in
(c.1,c.2,d.1,d.2), the robot lifts the other objects that occupy the space on the shelf using the other arm,
see (c.3–c.8,d.3–d.8).

If the obstacle cannot be moved off the shelf with one hand, we can select the multi-
step motions to organize the objects with dual arms, as shown in Figure 10(a.1–a.8, b.1–b.8).
Using the collapse maps for each object, we selected the supported and moved objects that
could be securely manipulated and well organized.



Robotics 2022, 11, 104 12 of 15

(a.1) (a.2) (a.3) (a.4) (a.5) (a.6) (a.7) (a.8)

(b.1) (b.2) (b.3) (b.4) (b.5) (b.6) (b.7) (b.8)

Figure 10. Snapshots of the specific scenarios in (a.1,a.2,b.1,b.2), which require multi-step actions to
replace an object and to make space for replenishment in (a.3–a.8,b.3–b.8).

4. Discussion

This study analyzed an unknown shelf display to predict the risk of collapse during
a replenishment operation. This enables the robot to replenish a shelf with an object by
selecting a strategy based on the situation. Experiments on two typical and complex
arrangements confirmed that the bimanual action plan replenished the object while dealing
with disorganized arrangements.

Our proposed method has practical relevance when considering the difficulty of
maintaining organized arrangements in retail and warehouses. When objects were not
organized, Lee et al. [16] and Nam et al. [17] conducted rearrangement actions similar to
ours and approached the target object, assuming that all objects were on the same plane.
By contrast, our proposed method can move objects without collapse, even if the objects
overlap with each other. In terms of safety, Zhang et al. [4] and Panda et al. [23] acquired
knowledge about the geometrical structure of a scene to individually detect the support
relation. However, they refer only to the safety of operations on an object with no support,
that is, an object placed on the top. In contrast, our method quantitatively assesses all
objects on the shelf.

It should be noted that the success rate of our method for random scenes is low (ap-
proximately 30%), as shown in Table 2. However, we conducted the experiments under
strict conditions without the object collapsing, as opposed to [7,11,18,21]. The previous stud-
ies, in fact, required the system on a case-by-case basis for the object collapse. Compared
with motion planning without collapse predictions, our proposed method can perform
successfully on a complex scene using a bimanual robot. Despite its many advantages,
there are some limitations associated with the present study. First, we only evaluated the
risk of collapse in an instantaneous and static scene to determine the sequential action
for replenishment. Therefore, because it cannot handle the collisions and the dynamics
that may occur during object movement, the present study assumes that the target object
for manipulation is limited to within the bounding box in order to avoid contact between
the objects. In other words, this study had minimum space requirements, which makes it
difficult to achieve the necessary conditions in narrow and dense shelf environments. In
future, handling items requiring high dexterity will need the integration of reactive grasp-
ing control and motion planning to perform such tasks, even with grippers with limited
dexterity, as shown in [11]. Second, our planner assumes that the robot has two arms and
that when one arm moves an object, the other arm supports an obstacle. However, if there
are too many disorganized objects, the support action with only one arm is insufficient,
and collapse cannot be avoided. Our framework was limited to using only one support
action. Accordingly, the mutual support relations among the objects should be analyzed,
and an action planner developed based on a search algorithm to deal with many objects.
Third, it is difficult to avoid interference between arms in a confined environment. Both
arms tend to be close to each other, which makes the computation of inverse kinematics
difficult. Particularly, in this method, we do not consider the dynamics and physical contact
when considering the stability of learning the network to predict the collapse. Therefore,
to increase the success rate, we should use a simulation to consider the robot arm and train
the collapse prediction network by considering external interference and self-interference.
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We assume that replenishment is to place an object on a shelf so that it is aligned with
the typical arrangement in the warehouse or retail store. However, the display becomes
disorganized as the objects move in or out of the shelf. The collapse prediction network
makes it possible to evaluate the risk of any manipulation to replenish an object without
collapse. Additionally, we solved the difficulty of organizing the shelf using a simple
algorithm based on collapse predictions. However, because we must handle various objects
in different environments, further verification of our proposed method is necessary. We
should also examine whether it can be applied to other research fields. Thus, we intend to
develop a sequential prediction network that considers the dynamical transition of objects
in order to apply our approach to other tasks with different objects, for example, a policy to
consider objects in an unstable pose or entangled objects. Similarly, considering the other
damage source of items is also necessary for safe shelf manipulation, such as breaking an
item with the robot hand’s clamping force. Therefore, another interesting future study
would be to use the property of the gripper to learn the collapse and the graspability of
objects for further adaptability in realistic scenes [46–48].

5. Conclusions

We presented a shelf replenishment system that selects the safest action based on a
collapse prediction estimator. Our collapse prediction network generates a probabilistic
map from scene images and actions, making safe manipulation possible. In addition, our
proposed method plans the best action based on single-arm or bimanual manipulation,
making it possible to deal with complicated arrangements. In experiments using a real
robot, we demonstrated the efficiency of our method for shelf replenishment.

In future work, we plan to extend our implementation of both the network and the
data collection processes: (1) to further deal with any object shape and more disorganized
arrangements, such as in retail stores and kitchens; (2) to use the robot properties in the
simulations to estimate the physical contacts; and (3) to develop a prediction network to
help analyze the state of stacked objects.
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