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Abstract: Particle swarm optimisation (PSO) is a swarm intelligence algorithm used for controlling
robotic swarms in applications such as source localisation. However, conventional PSO algorithms
consider only the intensity of the received signal. Wavefield signals, such as propagating underwater
acoustic waves, permit the measurement of higher order statistics that can be used to provide
additional information about the location of the source and thus improve overall swarm performance.
Wavefield correlation techniques that make use of such information are already used in multi-
element hydrophone array systems for the localisation of underwater marine sources. Additionally,
the simplest model of a multi-element array (a two-element array) is characterised by operational
simplicity and low-cost, which matches the ethos of robotic swarms. Thus, in this paper, three
novel approaches are introduced that enable PSO to consider the higher order statistics available in
wavefield measurements. In simulations, they are shown to outperform the standard intensity-based
PSO in terms of robustness to low signal-to-noise ratio (SNR) and convergence speed. The best
performing approach, cross-correlation bearing PSO (XB-PSO), is capable of converging to the source
from as low as −5 dB initial SNR. The original PSO algorithm only manages to converge at 10 dB and
at this SNR, XB-PSO converges 4 times faster.

Keywords: particle swarm optimisation; source localisation; marine swarm robotics; wavefield
correlation

1. Introduction

Swarm robotics is the discipline of cooperative robotics, concerned with developing
emergent collaborative behaviour in large numbers of robots. Robotic swarms are char-
acterised by flexibility, scalability and robustness [1], as well as simplicity and low-cost,
making them well suited for use in large, unexplored environments where semi-disposable
systems are needed. For this reason, they have been applied to marine robotic applications
including environmental monitoring [2], source detection of underwater oil spills [3] and
exploration [4].

Robotic swarms are typically controlled using swarm intelligence algorithms (SIAs) [5].
One of the most common SIAs is particle swarm optimisation (PSO), which was inspired
by the collective motion of birds and fish [6] and operates by assigning a fitness or cost
to different locations. The robots are then drawn towards those locations. There have
been numerous studies on the characteristics of PSO, leading to variants that address
different limitations, depending on the application. Other SIAs include glowworm swarm
optimisation (GSO) [7], which assigns a fitness value on each robot of the swarm, instead of
locations in space; ant colony optimisation (ACO) [8], which mimics the foraging strategies
employed by ants through the use of pheromones; and the firefly algorithm (FA), [9] which
is similar to GSO, but each robot is attracted to all other robots and the strength of the
attraction depends on the distance between robots.
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PSO converts local signal intensity collected by sensors on each robot into location
fitness (or cost). The robots communicate this information among the swarm and each then
changes its motion based on both the local and collective knowledge of intensity, in order
to converge to the source. PSO has been used in this way in applications such as olfaction
source localisation [10–12]. Additionally, a variety of PSO variants have been proposed
that enable PSO to control physical robotic swarms. Such techniques are not concerned
with the way that the location of the source is identified and instead focus on controlling
the motion of the robots of the swarm, by accommodating for underactuated motion, other
physical motion constraints like maximum velocity and acceleration, communication con-
straints, and collision and obstacle avoidance. Robotic PSO (RPSO) is one such variant that
incorporates obstacle avoidance into standard PSO [13]. Extended versions of RPSO also
consider additional physical constraints of the robots [14,15]. Distributed PSO (dPSO) is
another PSO variant that is instead concerned with minimising the information exchanged
between the robots of the swarm [16]. Extensions of this algorithm therefore primarily
focus on maintaining communication between the robots and possible ground stations
or other communication points [17,18]. Finally, Micro-PSO (µPSO) is a variant that was
designed to operate with a smaller number of robots and which has been adapted for use
in simultaneous localisation and mapping (SLAM) tasks [19]. All of the aforementioned
PSO variants have been implemented using intensity-based fitness assignment. Never-
theless, alternative ways of fitness assignment can be also employed to enhance source
localisation performance.

Acoustic sensing is the primary method for source localisation in marine applications
due to the efficient propagation of underwater sound waves. Sounds emitted by targets
(such as marine mammals or submersible vehicles) propagate through the water and may
be sensed by transducers such as hydrophones (e.g., passive SONAR). Akin to olfactory
sensing, the intensity of acoustic fields can be used directly in PSO to control robotic
swarms for the purpose of source localisation. However, acoustic fields contain rich
spatio-temporal information (and thus higher-order statistics) that can be extracted using
wavefield correlation techniques [20,21]. The measurement of field intensity as a function
of direction can be performed using a multi-sensor array; for example the cross-correlation
between two sensors provides directional information that can assist in the localisation of
acoustic sources [22]. Two sensors are the fewest needed to perform cross-correlation, and
whilst more sensors can improve the direction finding performance this is counter to the
ethos of swarm robotics.

Thus, this paper introduces three novel PSO fitness-assignment approaches that use
the correlation of signal readings from two sensors fitted to each robot. The first approach
assigns fitness to a location based on only the correlation of the readings from each sensor,
whilst the second and third modifications estimate the direction towards the source, thus
exploiting the properties of acoustic wavefields to improve overall performance.

Section 2 of this paper demonstrates the original PSO algorithm as applied to source
localisation, wherein the source emits a continuous signal of constant average intensity. In
Section 3, three new PSO fitness-assignment approaches are introduced, detailing the theory
of operation and the expected advantages. Section 4 introduces a simulation environment
that is used to assess the performance of the algorithms, and Section 5 presents the results
of these simulations. Section 6 offers a discussion and proposes different scenarios in which
the new algorithms could be used alongside future avenues.

2. Amplitude-Particle Swarm Optimisation (A-PSO)
Particle Swarm Optimisation Theory

In PSO, each robot is capable of measuring the fitness of its current location and of
remembering the previous location with the highest fitness [6]. At each timestep k, each
robot i communicates its own personal best location yi[k] to the rest of the swarm, and the
best among them is selected as the global best location yg[k].
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The spatial behaviour of each robot can be controlled using any PSO variant dedicated
towards the control of physical robotic swarms [13–19]. For this paper, it is characterised
by the following position and velocity update equations [15], which introduce maximum
velocity limitation to the motion of the swarm,

xi[k + 1] = xi[k] + ∆t ui[k + 1], (1)

and
ui[k + 1] = ωui[k] + c1r1 ◦ sgn(yi[k]− xi[k]) + c2r2 ◦ sgn(yg[k]− xi[k]). (2)

The vectors xi[k] and ui[k] are the position and velocity of robot i at timestep k. The
operator ◦ is the Schur product. The parameter ω ∈ [0, 1) is called the inertia weight and it
is used to bound the velocity of the robot [23]. The parameters c1 > 0 and c2 > 0 are the
cognitive and social coefficients and control the tendency to move towards the personal
best location or the global best location [23]. Each element j of the vectors r1 and r2 is
drawn from the uniform distribution,

r1
j, r2

j ∼ U(0, 1) 1 ≤ j ≤ d,

where d is the number of dimensions of the environment. The parameter ∆t is the PSO
controller loop delay (i.e., the update rate is 1/∆t). Delays caused by inter-robot communi-
cation and processing of sensor inputs will lead to larger values of ∆t. The sgn function
in (2) introduces a maximum velocity limit into the PSO controller [15], given by

V =
ĉ
√

d
1−ω

. (3)

The parameter ĉ is the behaviour coefficient and is given by

ĉ = c1 + c2. (4)

In PSO robotic applications, the fitness of a location is typically calculated using the
average intensity of the observed signal. Let fA be the fitness function that needs to be
maximised, such that the fitness of location x at time tk = k ∆t is given by

fA(tk, x) =
1
T

∫ 0

−T
|s(tk + t, x)|2 dt, (5)

where s(tk + t, x) is the observed signal at position x and T is its duration. This type of PSO
will be referred to as amplitude-PSO (A-PSO), due to the use of signal intensity (relating to
signal amplitude) to assign fitness to a location.

Typically, in PSO algorithms, each robot remembers its personal best location until it
discovers a new location of higher fitness. This permanence precludes the use of dynamic
fitness functions (i.e., moving sources, mutable environments, noise, etc.) and is referred
to as the Outdated Memory Problem [24]. To address this, a forgetting property can be
introduced that forces the robots to select new personal best locations over time [25,26].
Fusing a typical forgetting function [27] with (5), the fitness f̂ i[k] of the personal best
location yi[k] of robot i at timestep k is given by

f̂ i[k] =
{

fA(tk, xi[k]), for fA(tk, xi[k]) > f̂ i[k− 1]
f̂ i[k− 1]× e−a, otherwise

}
(6)

where a is a positive scalar. This describes the case when a new personal best location
is found (i.e., fA(tk, xi[k]) > f̂ i[k− 1]), and when the old personal best location is main-
tained. The overall personal best and global best location selection process is described
by Algorithm A1, where yg and f̂g are the global best location and its associated fitness
(assumed to be communicated to all robots at each time step).
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It is possible to identify the following two major weaknesses of A-PSO.

1. As A-PSO relies on the intensity of the received signal, its performance is dependent
on the Signal-to-Noise Ratio (SNR). This in turn will limit the maximum range of the
algorithm and its ability to follow the gradient of the fitness function.

2. Each robot can only calculate the fitness of its current position and therefore, the
exploration capabilities of the swarm depend on its span—this is referred to as the
Diversity Loss Problem [24]. When the swarm is concentrated in a small area, far away
from the source, its exploration and convergence capabilities will be limited.

These weaknesses can be improved by including wavefield correlation into the A-PSO
algorithm, and it is this idea that will be explored in the rest of this paper.

3. Wavefield Correlation PSO

Instead of measuring only the signal intensity with a single sensor it is possible to
correlate the signals from a pair of sensors. In the presence of noise, the correlation of
two signals can offer ways to address the negative effects of noise, theoretically achieving
faster and over-time more consistent convergence towards the source. Additionally, the
information collected from two sensors can be combined to estimate the direction to
the source.

Cross-correlation is the mathematical process used to describe the similarity between
two signals. Let s1(t) and s2(t) represent two different signals (i.e., hydrophone signals),
given by

s1(t) = s(t) + n1(t),

s2(t) = s(t + τlag) + n2(t),
(7)

where s(t) is the received signal, n1(t) and n2(t) represent uncorrelated noise and τlag is the
time difference between the signal being received by each sensor, as illustrated by Figure 1a.
The cross-correlation of the two signals is described by

R(τ) =
∫ ∞

−∞
s1(t)s2(t + τ) dt, (8)

where τ is the lag. In a robotic scenario, cross-correlation can be used to calculate the angle
of arrival [28] of a signal at a pair of wavefield sensors (e.g., hydrophones). The value of τ
that maximises R can be associated to τlag using

τlag = argmax
τ
{R(τ)}, (9)

thereby enabling identification of the delay between the time of arrivals of the two signals.
When the separation of the two sensors D and the propagation speed of the received

signal c are known, τlag can be used to calculate the angle of arrival α of the signal and
therefore the direction towards the source. Assuming that the sensors are placed at the
front and back of the robot, the angle of arrival α is given by

α = cos−1
(

τlag c
D

)
. (10)

The angle of arrival of the signal is calculated with respect to the orientation of the
robot. There always exist two candidate directions of arrival (directional rays) as shown in
Figure 1b given by

r+[k] =
[

cos(α + o[k])
sin(α + o[k])

]
r−[k] =

[
cos(−α + o[k])
sin(−α + o[k])

]
, (11)
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respectively, where o[k] is the orientation of the robot at timestep k. In this way, when
the robot is facing the source, r+[k] ≈ r−[k] and both directional rays point towards the
same direction.

ambiguous direction

(ambiguous ray)

true direction towards

the source

(source ray)

P
h
a
s
e

Distance

(a) Signal reception (b) Directional ambiguity (c) Phase ambiguity

Figure 1. Two sensors (black circles) on a single robot receive an incoming signal emitted by an
external source (ship), at an angle α. In (a), the signal is first received by the right-most sensor and
then by the left-most one after a delay of τlag, which can be used to estimate the angle α in (b). Phase
ambiguities are related to the sensor separation, as shown in (c) where the phase lines show how all
three signals can result in the same phase difference for the two sensors.

Additional ambiguities can be introduced due to the sensor separation D. This is
because τlag depends on the phase difference of the signals from the two sensors. When the
received signals are narrowband, it is possible that they will have the same phase difference
when arriving at the robot from different angles, as shown in Figure 1c. To avoid this,
the sensor separation is limited to D ≤ λc/2, where λc is the wavelength corresponding
to the central frequency of the signal [28]. Furthermore, as the bandwidth of the signal
increases, these types of ambiguities are generally reduced. This is because the signal
consists of additional lower frequencies (higher wavelengths) that can be used in place of
λc to resolve ambiguities.

The non-normalised correlation coefficient ρ is another metric provided by cross-
correlation that shows the similarity between the two signals, given by

ρ = R(τlag) = maxτ{R(τ)}. (12)

ρ can be used to enhance the SNR of a received signal [29,30]. The value of ρ depends on
the intensity of s(t) (as the intensity of s(t) drops, e.g., due to attenuation, the value of ρ
drops as well).

3.1. Cross-Correlation Particle Swarm Optimisation (X-PSO)

Since the non-normalised correlation coefficient ρ scales with the intensity of the
received signal, it can be used in the same way that signal intensity is used in A-PSO. This
can be achieved by replacing fA with fX given by,

fX(tk, x) = max
τ

{∫ 0

−T
s1(tk + t, x)s2(tk + t + τ, x) dt

}
, (13)

Therefore, the fitness f̂ i[k] of the personal best location yi[k] of robot i at timestep
k is given by (6) using fX(tk, xi[k]) instead of fA(tk, xi[k]). This approach is called cross-
correlation PSO (X-PSO). The overall personal and global best selection process is described
by Algorithm A2.
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The advantage of X-PSO is that making use of the non-normalised correlation coeffi-
cient ρ of two different signals can reduce the effects of noise, boosting SNR.

3.2. Bearing Particle Swarm Optimisation (B-PSO)

It is possible to use the directional rays to estimate the location of the source in an
approach called bearing-PSO (B-PSO). In A-PSO and X-PSO, fitness is assigned to the
current location of the robot. However, in B-PSO, fitness is assigned to locations elsewhere
indicated by directional ray intersections.

In theory, at each timestep each robot could consider all intersections with all other
robots of the swarm to maximise information gain, but this would require communication
with all other robots, greatly increasing communication delays. Instead, at each timestep,
each robot i receives the directional rays of only one other random robot j and combines it
with its own to calculate ray intersections [31]. Combining each ray of robot i with each ray
of robot j, can result from zero to four intersections at any timestep. The aim of robot i is to
select the intersection that more closely approximates the location of the source.

Assuming that the SNR is significantly greater than 0 dB then on average at least one
directional ray from each robot will point towards the source. Consider a single robot
rotating about its central axis; one ray will remain pointing towards the source whilst the
other (the ambiguous −α ray in Figure 1b) will rotate throughout 360 degrees. Extending
to a swarm of robots, the ambiguous (rotating) rays will likely lead to ray intersections that
are close to the robots (distributed around the swarm), whilst the stable source rays are
likely to lead to intersections that are distant (i.e., distributed around the source). Therefore,
to increase the probability that an intersection of two unambiguous rays (i.e., those that
point towards the source) is identified, robot i selects the furthest of its intersections from its
current position.

A drawback of this process is that there is a risk that the selected intersections may be
beyond the source or behind the swarm (especially for low SNR). Therefore, the most distal
intersection (once selected) ps

i is assigned a fitness fB based on its distance from robot i
given by

fB(xi, ps
i) =

1
|xi − ps i|

. (14)

where xi is the location of robot i. Thus, locations that are far away are progressively
down weighted.

As with A-PSO and X-PSO, the selected intersection replaces the personal best location
of robot i if its fitness is higher than the previous personal best location. Note that max-
imising the fitness function fB does not necessarily imply convergence to the source. Thus,
a forgetting function is used to ensure that the personal best location is updated as robot
i moves towards the source. In contrast to A-PSO and X-PSO, the forgetting function is
fundamental for the correct operation of B-PSO. Therefore, the fitness f̂ i[k] of the personal
best location yi[k] of robot i at timestep k is given by (6) using fB(xi[k], ps

i[k]) instead of
fA(tk, xi[k]).

Finally, to locate the source the centroid of the personal best locations (i.e., the centroid
of the selected and weighted intersections) may be computed and used as the global best
location yg,

yg[k] =
∑M

i=1 yi[k]
M

, (15)

where M is the total number of robots. The overall process is described by Algorithm A3.
B-PSO selects personal best locations that are distant from the swarm, thus fostering

an exploration behaviour that addresses Weakness 2 (i.e., its exploration capabilities are
not limited by the span of the swarm). However, B-PSO may still be susceptible to distal
intersections caused by ambiguous rays (especially if they are located behind the swarm),
since they may not be immediately replaceable due to low fitness. Therefore, a more direct
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way of excluding such intersections using correlation measurements is considered in the
next approach.

3.3. Cross-Correlation-Bearing Particle Swarm Optimisation (XB-PSO)

In order to identify intersections caused by ambiguous rays, X-PSO and B-PSO are
now combined to form a cross-correlation-bearing PSO (XB-PSO) approach.

In XB-PSO both correlation coefficient ρ and directional ray information of robot j
are known by robot i, and it is assumed that ρ is large close to the source. Thus, each
intersection pij formed by directional rays of robots i and j can be validated (as pointing
towards the source) using either of the following conditions

|xi[k]− pij[k]| < |xj[k]− pij[k]| and ρi[k] > ρj[k] (16a)

|xi[k]− pij[k]| > |xj[k]− pij[k]| and ρi[k] < ρj[k], (16b)

where ρi[k] and ρj[k] are the non-normalised correlation coefficients of robots i and j,
respectively at timestep k. Intersections that do not satisfy either of these conditions are
likely intersections of ambiguous rays and are therefore ignored.

From here, the process is identical to B-PSO, where the selected intersection ps
i is

assigned a fitness using (14). This fitness is compared to the fitness f̂ i of the personal best
location and if it is higher, ps

i becomes the new personal best location. Furthermore, the
selection of the global best location is performed in the same manner as B-PSO, as described
by (15). The overall personal and global best location selection process for XB-PSO is
described by Algorithm A4.

4. Simulated Environment

In order to evaluate the efficacy of the proposed fitness assignment methods a series
of simulations were performed using MATLAB. The simulations were framed in a marine
defense application in which the goal is to detect and localise uncrewed underwater vehicles
(UUV) [32–35]. The simulations consist of a single static UUV (the source of an acoustic
signal) that is being localised by a swarm of uncrewed surface vehicles (USV) in a moderate
sea state. Defining this scenario enables the selection of several key parameters given in
Table 1, and are chosen primarily for the purposes of illustration by example. Whilst this
scenario constrains the motion of the USVs to 2D there is nothing that precludes the use of
higher dimensions.

The simulated environment is a 2D infinite plane representing the water surface, and
there is assumed to be no friction and no body inertia. Acoustic signals are modelled with
constant propagation at 1500 m/s, consistent with acoustic propagation close to the water
surface, below any significant thermocline and in non-polar regions [36]. Multipath effects,
such as between the water surface and the ocean floor are neglected.

4.1. Robots

The simulated robots (USVs) are equipped with two hydrophones located at the bow
and stern. The swarm is initialised at random positions inside a circular area of radius d0
around the origin, which represents deployment from a stationary ship. The velocity of
each robot is directly controlled by the PSO controller defined in (2). The robots are not
forced to maintain a minimum separation from each other and collisions are ignored.

4.2. Source

A single source (a static UUV) is positioned at a distance ds from the origin. Conver-
gence to the source is achieved when the centre of mass of the swarm (CoM) reaches a
distance dc from the source at time tc. The source emits a continuous acoustic signal of
constant power spectral density (PSDs in units of dB re 1 µPa2/Hz at 1 m) over a bandwidth
B. This relates to the noise generated by a UUV motor considering a narrow bandwidth B
around the peak frequency fc of the power spectral density of the motor signal. For elec-
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trically propelled UUVs the typical power spectral density peaks at 120 dB re 1 µPa2/Hz,
in the range fc from several hundred Hz to a few kHz [37–39]. The simulated signal is
therefore modelled using a filtered Gaussian process with central frequency fc, bandwidth
B and Q-factor given by Q = fc/B. The source level intensity Is (with units of Pa2 at 1 m)
of the simulated signal is given by

Is = 10
PSDs

10 × 10−12 × B, (17)

representing the area under the constant power spectral density curve between fc − B/2
and fc + B/2. Equation (17) can be found by first converting dB to a ratio, normalising for
1 µPa2 and integrating over B, assuming constant power spectral density over this range.
Only the Q-factor will be provided in the results to allow the generalisation of the results.

The source signal attenuates depending on the distance travelled, such that the inten-
sity of the signal at distance r is given by

I =
Is

r2 . (18)

Filtered additive white Gaussian noise (AWGN) is added to the signals with constant
power spectral density over bandwidth B (PSDn in units of dB re 1 µPa2/Hz) and average
intensity N, approximating a moderate sea state [40]. The intensity N with units of Pa2 is
related to PSDn in the same way as Is is related to PSDs using (17). Therefore, the SNR at
distance r from the source is given by

SNR = 10log10

(
Is

N

)
− 10log10(r

2) (19)

The SNR of the signals at the origin (i.e., the location of the initial deployment of the
swarm) SNR0 is found by setting r = ds in (19). Varying the value of ds thus varies SNR0
and provides a mechanism for readily assessing convergence with different initial SNR.

4.3. Normalised Units

Normalised units are used to enable the generalisation of the results to multiple
scenarios. Normalised time is described in timesteps, such that each timestep has size ∆t
seconds as defined in Section 2. Normalised distance is relative to a reference distance R,
defined as the distance in metres at which I = N (i.e., at r = R m, SNR = 0 dB). Therefore,
R is given by

R =

√
Is

N
(20)

Varying ∆t varies the controller loop delays (i.e., different communication rate be-
tween robots), while varying R enables the consideration of different signal intensities and
noise levels.

Table 1. Parameter values to approximate a marine source localisation scenario.

Parameter Value Justification

Timestep (∆t) 1 s A typical controller timestep
size for robotic applications.

Noise PSD (PSDn) 60 dB re 1 µPa2/Hz
Equivalent to a moderate sea

state [40].

Source PSD (PSDs) 120 dB re 1 µPa2/Hz at 1 m
Equivalent to a typical
uncrewed underwater

vehicle [37,38].
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Table 1. Cont.

Parameter Value Justification

Reference distance (R) 1000 m Calculated using (20).

Source centre frequency ( fc) 1 kHz
The central frequency of a

typical uncrewed underwater
vehicle [37].

Maximum velocity (V) 2 m/s
Typical uncrewed surface

vehicle maximum speed range
is 1.5 m/s to 5 m/s [41]).

Signal propagation speed (c) 1500 m/s Speed of sound in water [36].

No. Robots (M) 10 Common swarm size in
marine robotics [4].

Starting radius (d0) and
convergence radius (dc) 50 m Sufficient to accommodate

10 robots.

Forgetting function scaling
parameter (a) 1 Frequent updating of personal

best locations.

5. Results

Simulations were run to validate the proposed algorithms and to evaluate their per-
formance (convergence capability) in a range of different scenarios. In all simulations
the parameters given in Table 1 were used and each scenario was repeated for (Nr = 100)
repeats (selected as the nearest multiple of 10 above which the statistical significance of the
results did not change), to account for the effects of the random noise processes and the
random vectors in (2).

This section will describe the convergence speed of the algorithms, their maximum
range and their spatial behaviour.

5.1. Initial Signal-to-Noise Ratio

In order to characterise the convergence capabilities of the proposed algorithms the
initial SNR (SNR0) was varied from 10 to −5 dB. The ability of the swarms to achieve
convergence more rapidly, and at lower SNR0, implies that they are more robust to low
SNR and have a larger effective range. The Q-factor of the received signal was fixed at
Q = 1.5 (i.e., one-octave bandwidth), the sensor separation for each robot was D = λc/2
and the time-bandwidth product of the cross-correlated signals was TBP = 100.

Figure 2 shows the median and 90% percentile ranges of the distance from the source to
the CoM of the swarm as function of time for SNR0 = 10, 4, 0, −3 and −5 dB. These results
show that A-PSO and X-PSO can only converge when SNR0 ≥ 10 dB, with tc = 4500 and
tc = 3400, respectively. The performance of A-PSO and X-PSO are comparable, although
the slightly faster convergence of X-PSO does indicate a resilience to low SNR that improves
Weakness 1 of A-PSO.

B-PSO and XB-PSO both show convergence at all SNR0 values, with similar conver-
gence behaviours. B-PSO has an average tc = of 1200, 2700 and 4400 and XB-PSO an
average tc = 1100, 2600 and 4400 for SNR0 = 10, 4 and 0 dB, respectively. This result
demonstrates that these algorithms are more robust to low SNR compared to both A-PSO
and X-PSO, and thus have superior maximum range.
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Figure 2. Distances of CoM to source at different initial SNR values (SNR0). The solid lines represent
the median distance from source over (Nr = 100 simulations) and the transparent areas the 90%
percentile range.

Spatial Analysis

Since both B-PSO and XB-PSO employ personal best locations that distant from the
swarm, it is expected that they will exhibit unique spatial motions compared to A-PSO and
X-PSO that may explain their enhanced performance. In order to understand this behaviour
the spatial routes followed by the swarms were analysed for an SNR0 = 10 dB, as at this
SNR0 all algorithms achieved convergence. A graphical representation of the spatial routes
is shown in Figure 3, where the contours show the probability that the CoM of a swarm will
pass through that location. The routes of three randomly selected swarms are also shown
by the red, green and blue solid lines, while the corresponding dashed lines represent the
projections of these routes on the vertical plane (i.e., Timesteps vs. Normalised distance X).

The results show that the different ways of selecting personal best locations (i.e., at the
current location of a robot versus at a point defined by the intersection of directional rays)
lead to very different spatial behaviour. A-PSO and X-PSO follow direct but zig-zagging
routes, whereas B-PSO and XB-PSO move in an almost straight line towards the source.

The contours on the spatial axes of Figure 3 show similar results. The robots controlled
by A-PSO and X-PSO are spread out until they get close to the source (occupancy probabili-
ties (>50%) only appear at 0.25 normalised distance). On the other hand, B-PSO and XB-PSO
exhibit less spreading and high occupancy probabilities appear at 0.1 normalised distance.
These results provide some insight into the convergence performance seen in Figure 2. At
10 dB SNR0, B-PSO and XB-PSO are more resilient to noise than A-PSO and X-PSO and so
address Weakness 2 of A-PSO (i.e., they exhibit superior exploration capabilities that are
not limited by the span of the swarm).
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Figure 3. Graphical representation of the routes followed by the CoM of (Nr = 100) swarms for each
method. The image at the bottom plane of each graph shows contours of the number of swarms
(CoM) that passed through that location. The red, green and blue lines represent the routes followed
by three randomly selected swarms with respect to time. The corresponding dashed lines represent
the 2D projections of these routes on the vertical plane (Timesteps vs. Normalised distance X).

5.2. Q and Sensor Separation

The results of Section 5.1 are presented in normalised time and distance to enable
their generalisation to different scenarios. Adjusting ∆t allows the adaptation for different
controller loop delays, while adjusting R enables adaptation for different values of PSDn
and PSDs, (see (20)). Furthermore, the maximum velocity V of the robots can be expressed
in normalised distance per timestep and is inversely proportional to convergence time tc
(i.e., V ∝ 1/tc). Therefore, as V varies for different scenarios the convergence time tc will
also vary inversely.

However, normalised time and distance cannot account for changes in Q (e.g., super-
tankers have much lower fc than UUVs [42]) or the sensor separation D which can affect
the convergence performance. Therefore, a sensitivity analysis was performed in which Q
and sensor separation D were varied for SNR0 = 10 dB.

Figure 4 shows the normalised median time to convergence for different values of Q
and D

λc
computed over (Nr = 100) repeats. Figure 4 shows that the performance of B-PSO

and XB-PSO decreases as Q increases and the signal approaches a sinusoid (narrowband),
resulting in ambiguities in the lag output of the cross-correlation function, as discussed in
Section 3, whereas A-PSO and X-PSO are insensitive. Despite the decrease in performance,
XB-PSO still converges faster than B-PSO for all Q values.
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Figure 4. Normalised time needed for the CoM of a swarm to reach convergence (distance dc from
the source). Each point represents the median performance over (Nr = 100) swarms. The purple
horizontal lines represent the locations where Q is 1 and 10. The vertical blue solid line represents
the simulations of Figure 2. The vertical black dashed and cyan dashed-dotted lines represent the
Q-factors of the sound generated by two electrically-propelled UUVs, REMUS-100 and Odyssey IIb
respectively [37–39]. Note that although a D/λc axis is included for A-PSO, it does not affect the
position of the sensor, since only one is used for that algorithm, located in the middle of the robot.

A-PSO and X-PSO are also insensitive to D/λc, whereas the performance of B-PSO
and XB-PSO degrades as D/λc approaches 1 for large values of Q. This is because phase
ambiguities are introduced as the sensor separation increases beyond λ/2. However, as
the separation approaches 10λ, the performance of B-PSO and XB-PSO improves again
because, even though more ambiguities are introduced, they are more evenly distributed
around the robot. Therefore, as the robots change orientation the ambiguities are averaged
out by the correct predictions of others.

6. Discussion

This paper has introduced three novel methods for location fitness assignment in PSO
for the control of robotic swarms that extend and adapt intensity-based fitness (A-PSO)
for applications of source localisation in scenarios that include wavefields. The results
presented in Section 5 demonstrate that the novel algorithms (X-PSO, B-PSO and XB-PSO)
address or improve the weaknesses of A-PSO. B-PSO and XB-PSO select personal best
locations that are distant from the swarm, which enables them to converge with initial SNR
as low as−5 dB. The convergence speed of the algorithms is affected by narrowband signals
and sensor separations close to the wavelength of the received signal. XB-PSO converges
faster than B-PSO, likely due to directional ray intersections that occur in the opposite
direction from the source which cannot be effectively screened without also considering
the signal intensity. However, the difference between the performance of the two methods
is small.
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For most applications, B-PSO and XB-PSO both offer a good choice of fitness assign-
ment methods, especially when the sensor separation can be selected or broadband source
signals are available. On the other hand, for specific applications where narrowband signals
are used and the sensor separation is limited, X-PSO provides a more robust alternative.
As examples, the results include the use cases of the REMUS-100 and Odyssey IIb, two
common electrically-propelled UUVs. It can be seen that the fast convergence and low SNR
requirements of B-PSO and XB-PSO make them ideal choices for the detection of relatively
silent vehicles that emit low Q-factor signals.

The results make several key assumptions: that the emitted signal is continuous and of
constant power spectral density over all frequencies, the robots operate in 2D environment
with no friction and that the robots have unbounded rotational speed. Further studies are
required to fully understand the implications of these assumptions.

Possible applications of the methods include any form of wavefield source localisation
problem, including acoustic source localisation and radar localisation. Additionally, B-
PSO and XB-PSO produce global best locations that are approximations of the source
location, so can be used for source interaction (e.g., target entrapment and tracking). This
capability is a major advancement to A-PSO that will enable its use in a wider range of
source localisation scenarios.

7. Conclusions

This paper has presented three novel methods for location fitness assignment in
PSO for the control of robotic swarms that consider the higher order statistics available
in wavefield measurements. In simulations, they have been shown to outperform the
original intensity-based PSO in terms of robustness to low signal-to-noise ratio (SNR) and
convergence speed. The best performing method, cross-correlation bearing PSO (XB-PSO),
is capable of converging to the source from as low as −5 dB initial SNR. The standard
intensity-based PSO only manages to converge at 10 dB and at this SNR, XB-PSO converges
4 times faster

Additionally, B-PSO and XB-PSO may allow distant interaction with the source, a
capability that is not offered by A-PSO or other standard fitness assignment methods. The
algorithms have been demonstrated in simulation with an example scenario of a uncrewed
underwater vehicle localisation. These novel algorithms significantly improve on the
performance of A-PSO, and they may serve as inspiration for a new family of swarm
robotic control algorithms that sense coherent wavefields.
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Appendix A. Algorithms

Algorithm A1: Personal and global best location selection for A-PSO.

1 foreach robot do
2 robot.x← robot.GetCurrentPosition();
3 s[]← robot.ReadSignal(); // Get sensor reading
4 fA ← mean(abs(s[])2); // Assign fitness
5 robot.UpdatePersonalBestLocation( fA);
6 end
7 // Calculate global best location
8 f̂g ← 0; // Reset global best location fitness
9 foreach robot do

10 if robot. f̂ > f̂g then // Update global best location
11 f̂g ← robot. f̂ ;
12 yg ← robot.y;
13 end
14 end

15 Function UpdatePersonalBestLocation(self, fitness) :
16 if fitness > self. f̂ then // Update personal best location
17 self. f̂ ← fitness;
18 self.y← self.x;
19 else // Apply forgetting function
20 self. f̂ = self. f̂ × e−a;
21 end
22 end

Algorithm A2: Personal and global best location selection for X-PSO.

1 foreach robot do
2 robot.CalculateCorrelation();
3 fX ← robot.ρ; // Assign fitness to current location
4 robot.UpdatePersonalBestLocation( fX); // As in Algorithm A1
5 end
6 // Calculate global best location
7 f̂g ← 0; // Reset global best location fitness
8 foreach robot do
9 if robot. f̂ > f̂g then // Update global best location

10 f̂g ← robot. f̂ ;
11 yg ← robot.y;
12 end
13 end

14 Function CalculateCorrelation(self) :
15 self.x← self.GetCurrentPosition();
16 s1[], s2[]← self.ReadSignals(); // Get sensor readings
17 R[]← xcorr(s1[],s2[]); // Cross-correlate signals
18 Ilag ← argmax(R[]);
19 self.ρ← R[Ilag]; // Calculate correlation coefficient
20 end
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Algorithm A3: Personal and global best location selection for B-PSO.

1 foreach robot do
2 robot.CalculateCorrelation();
3 end
4 foreach robot do // Select personal best locations
5 other← robot.SelectRandomOtherRobot(); // Uniformly random selection
6 p[] = [];// Initialise empty arrays of intersections
7 // There can be up to 4 intersections
8 foreach ray ∈ robot.r do
9 foreach otherRay ∈ other.r do

10 p[].append(CalculateRayIntersections(robot.x, ray, other.x, otherRay));
11 end
12 end
13 d[] = |robot.x− p[]|; // Distances from robot to intersections
14 ps ← p[argmax(d[])]; // Select furthest intersection
15 fB ← 1/max(d[]); // Assign fitness to selected intersection
16 robot.UpdatePersonalBestLocation( fB, ps);
17 end
18 // Calculate global best location
19 yg ← [0, 0]; // Reset global best location
20 foreach robot do // Sum personal best locations
21 yg ← yg+robot.y;
22 end
23 yg ← yg/M; // Calculate centroid

24 Function CalculateCorrelation(self) :
25 self.x← self.GetCurrentPosition();
26 o ← self.GetCurrentOrientation();
27 s1[], s2[]← self.ReadSignals(); // Get sensor readings
28 [R[], τ[]]← xcorr(s1[],s2[]); // Cross-correlate signals
29 Ilag ← argmax(R[]);
30 self.ρ← R[Ilag]; // Calculate correlation coefficient
31 τlag ← τ[Ilag]; // Calculate lag
32 α← acos(τlag ∗ c/D);
33 self.r[1]← [cos(α + o); sin(α + o)]; // Calculate directional rays
34 self.r[2]← [cos(−α + o); sin(−α + o)];
35 end

36 Function UpdatePersonalBestLocation(self, fitness, ps) :
37 if fitness > self. f̂ then // Update personal best location
38 self. f̂ ← fitness;
39 self.y← ps;
40 else // Apply forgetting function
41 self. f̂ = self. f̂ × e−a;
42 end
43 end
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Algorithm A4: Personal and global best location selection for XB-PSO.

1 foreach robot do
2 robot.CalculateCorrelation(); // As in Algorithm A3
3 end
4 foreach robot do // Select personal best locations
5 other← robot.SelectRandomOtherRobot(); // Uniformly random selection
6 p[] = [];// Initialise empty arrays of intersections
7 // There can be up to 4 intersections
8 foreach ray ∈ robot.r do
9 foreach otherRay ∈ other.r do

10 p[].append(CalculateRayIntersections(robot.x, ray, other.x, otherRay));
11 end
12 end
13 d[] = |robot.x− p[]|; // Distances from robot to intersections
14 other_d[] = |other.x− p[]|; // Dist from other robot to intersections

15 for q← length(p[]) to 0 do // Remove non-valid intersections
16 if robot.ρ > other.ρ and d[q] > other_d[q] then p[].remove(q);
17 else if robot.ρ < other.ρ and d[q] < other_d[q] then p[].remove(q);
18 end

19 d[] = |robot.x− p[]|; // Distances from robot to intersections
20 ps ← p[argmax(d[])]; // Select furthest intersection
21 fB ← 1/max(d[]); // Assign fitness to selected intersection
22 robot.UpdatePersonalBestLocation( fB, ps); // As in Algorithm 3
23 end

24 // Calculate global best location
25 yg ← [0, 0]; // Reset global best location
26 foreach robot do // Sum personal best locations
27 yg ← yg+robot.y;
28 end
29 yg ← yg/M; // Calculate centroid
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