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Abstract: Robotic machining is a promising technology for post-processing large additively manu-
factured parts. However, the applicability and efficiency of robot-based machining processes are
restricted by dynamic instabilities (e.g., due to external excitation or regenerative chatter). To prevent
such instabilities, the pose-dependent structural dynamics of the robot must be accurately modeled.
To do so, a novel data-driven information fusion approach is proposed: the spatial behavior of the
robot’s modal parameters is modeled in a horizontal plane using probabilistic machine learning
techniques. A probabilistic formulation allows an estimation of the model uncertainties as well, which
increases the model reliability and robustness. To increase the predictive performance, an information
fusion scheme is leveraged: information from a rigid body model of the fundamental behavior of
the robot’s structural dynamics is fused with a limited number of estimated modal properties from
experimental modal analysis. The results indicate that such an approach enables a user-friendly and
efficient modeling method and provides reliable predictions of the directional robot dynamics within
a large modeling domain.

Keywords: robotic machining; machine learning; information fusion; structural dynamics

1. Introduction

To achieve the climate targets set by the European Commission, formulated in the
The European Green Deal in 2019 [1], modern production processes must continuously be-
come more energy and resource-efficient. In the aerospace industry especially, where the
production of large structural components is resource-intensive, additive manufacturing
processes promise high resource efficiency [2]. Nevertheless, post-processing of the work-
pieces, for example by milling, is still required to achieve high geometrical accuracy [3].

In such scenarios, machining robots are the ideal platforms to follow the additive
manufacturing processes in the process chain, because they offer a large workspace and at
the same time low investment costs compared to conventional machine tools [4,5]. However,
their low dynamic stiffness continues to limit their industrial application [6–8]. On the
one hand, forced vibrations (e.g., when a tooth passing frequency coincides with a robot’s
natural frequency) can cause significant damage to the tool and spindle components. On
the other hand, self-excited regenerative chatter can limit the depth of cut and therefore
reduce the robot’s efficiency because of a limited material removal rate. Additionally,
unstable machining processes result in poor surface quality of the workpiece.

Hence, modeling the (pose-dependent) vibrational properties of machining robots is of
high interest. In this work, a novel data-driven approach for modeling the pose-dependent
dynamics of milling robots is presented.

1.1. Related Work

In recent years, various methods for modeling the pose-dependent vibrational proper-
ties of machining robots have been proposed. Roughly, the proposed approaches can be
divided into classical physics-based methods and data-driven algorithms:
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Physics-based methods
Physics-based models are based on classical mechanistic modeling techniques, such as

• conventional rigid-body models [9],
• rigid-body models with additional virtual joints [10] or
• finite element models [11].

Mostly, these models can be formulated in the following form:

M(q)q̈ + Cq̇ + Kq = τ. (1)

The model’s generalized coordinates q represent the rotational degrees of freedom of
the robot joints. The pose-dependent mass matrix M consists of the robot bodies’ mass and
inertia properties, while the system’s damping and stiffness matrices C and K are usually
considered to be pose-independent. Lastly, τ are the resulting torques around the model’s
degrees of freedom.

As presented by Huynh et al. [9], the modeling accuracy of the vibrational behavior
can be significantly improved, if q not only includes the actuated degrees of freedom
around the actuated axes, but also tilting rotations (resulting in three rotational degrees
of freedom for each physical robot joint). However, the parameter identification process
for the model parameters in M(q), K and C remains an open issue, because conventional
parameter identification procedures often result in physically infeasible parameters and,
thus, should only be treated as fitting parameters [9]. Based on the popular approach of
Dumas et al. [12], Busch et al. [13] presented a methodology to infer physically feasible
compliance parameters using a Bayesian regression approach. Additionally, Huynh et al. [9]
proposed a methodology to estimate the model’s mass and inertia properties.

However, all physics-based approaches rely on complex experimental designs, cost-
intensive measurement technology (such as dynamometers and laser trackers), and math-
ematically advanced identification schemes to estimate the pose-dependent dynamics
accurately, which prevent industrial applications.

Data-driven algorithms
In contrast to physics-based methods, recent works aimed at deriving the pose-

dependent dynamics of machining robots solely from data. The use of modern machine
learning algorithms promises a simpler and more efficient system modeling approach [14].
Furthermore, when probabilistic algorithms such as Gaussian process regression tech-
niques are used, the resulting data-driven models can take reliable uncertainty measures
into account. For example, Nguyen et al. [14] proposed a data-driven approach using
Gaussian process regression to model the robot’s position-dependent modal properties
(natural frequency, damping ratio and dynamic stiffness). Based on such a model, an active
vibration suppression controller was developed [15].

However, conventional data-driven modeling techniques usually require expert knowl-
edge during the algorithm setup. Typically for conventional Gaussian process models,
the underlying covariance function and the noise model must be carefully chosen and
designed based on domain knowledge. If the algorithm’s hyperparameters (such as the
covariance function) are not well designed, the data-driven models cannot predict the
robot’s dynamics accurately.

1.2. Motivation

Summarizing, a precise and yet efficient modeling technique for the pose-dependent
vibrational dynamics remains an open issue, even though multiple approaches provide
methods to model the dynamics with different levels of fidelity and model efficiency.

As shown in previous works, the problem at hand motivates the application of so-
called multi-fidelity information fusion schemes [16]. Such algorithms are especially appealing,
when multiple information sources with different levels of information quality are avail-
able [17,18]. Typically for general dynamical systems, there are multiple approaches for
modeling a system’s dynamic behavior, each with a different level of fidelity. Information
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fusion schemes can take advantage of the linear or even nonlinear relationship between
the two or more information sources. Hence, these algorithms can reduce the burden of
evaluating the high fidelity model for all system states of interest, by exploiting the fact
that the low-fidelity model already contains a rough estimate.

Regarding the given issue, analytical structural models of an industrial machining
robot can provide essential information on the underlying system dynamics (even though
their accuracy in respect of the positional vibration properties might be limited), while
a limited number of experimental data samples will provide precise information on the
actual system behavior. An information fusion scheme allows to model the spatial system
dynamics by fusing both information sources [16]. However, the previously proposed
method is based on frequency domain data. As Gaussian process regression algorithms
scale poorly with the number of data points, the proposed methodology was limited by the
number of data samples.

The idea of fusing this kind of information was recently adopted by Liu and Altin-
tas [19], who proposed a transfer learning scheme using artificial neural networks to model
the pose-dependent dynamics of conventional machine tools.

1.3. Scope and Approach

Based on the works of Nguyen et al. [14] and Busch et al. [16], a novel methodology
for modeling the position-dependent modal properties of a machining robot is proposed
in the following sections: based on a multi-fidelity scheme, a precise model of the robot’s
vibrational properties is developed. An existing, but imprecise analytical robot model
provides low-fidelity information, whereas experimental modal analysis (EMA) experiments
provide accurate high-fidelity data.

As the spatial (i.e., position-dependent) model of the robot’s natural frequencies is the
key component for predicting whether a machining process will be stable or to suppress
vibrations using active vibration control, the natural frequencies are the key focus of this
paper and are therefore considered as a primary feature.

To evaluate the vibrational behavior at any location in the workspace, the damping
ratios and mode shape vectors (if physically scaled, these are also called residues) are also of
interest, for example to reconstruct the position-based frequency response function. Hence,
those two features are considered to be secondary features.

The paper at hand is structured as follows: the methodology is described in detail
in Section 2. The results are presented in Section 3. Following that, the results and their
implications are discussed in Section 4, while conclusions of this study are presented in
Section 5.

2. Methods

The presented methodology aims at generating probabilistic models of the vibrational
properties of machining robots. For this purpose, the spatial vibrational behavior of such a
machining robot is represented by the following three modal properties of the robot’s struc-
ture, depending on the workspace position in a horizontal plane (x := [x, y, z = const.]T):

• the natural frequencies ωi(x) for each vibration mode i = 1, . . . , M of the robot structure,
• the damping ratios ξi(x) for each vibration mode i = 1, . . . , M of the robot

structure and
• the residuesRi,d(x) for each vibration mode i = 1, . . . , M and in each mode direction

d ∈ {xx, xy, xz, yx, yy, yz, zx, zy, zz}.
To model the spatial behavior of the robot’s natural frequencies accurately, two proba-

bilistic information fusion schemes are presented and benchmarked against a conventional
approach.

Therefore, the outline of the methodology is as follows:

1. Data generation: first, the modal parameters are derived from the analytical model
and gathered experimentally at the robot (see Section 2.1).
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2. Data preparation: the data sets are divided into training and testing data sets (see
Section 2.2).

3. Model setup and training: the spatial behavior of the vibrational features is modeled
as follows (see Section 2.3):

(a) The primary features (natural frequencies) are modeled using multi-fidelity
information fusion approaches (see Section 2.3.1).

(b) The secondary features (damping ratios and residues) are modeled using conven-
tional Gaussian process regression techniques (see Sections 2.3.2 and 2.3.3).

The methodology is illustrated in Figure 1.

Step 1:
Data generation

Information fusion

Probabilistic ModellingSampling Strategy

A
na

ly
ti

c
Ex

pe
ri

m
en

ta
l

conventional GP

Step 2:
Data preparation

Step 3:
Model training

Figure 1. Methodology of the approach.

2.1. Data Generation: Spatial Modal Parameter Identification

All of the following investigations and experiments were conducted using a KUKA

KR240 R2500 PRIME robot. The robot is equipped with a high-speed milling spindle
from Helmuth Diebold GmbH & Co. (type HSG-E 198.18-38 AK1). All the following
coordinates are referenced to the robot’s base coordinate system.

To obtain experimental training and testing data, impact hammer tests were conducted
for 35 robot configurations in the x-y-plane at a constant height z of 1.24 m with a constant
TCP orientation, followed by the estimation of the modal properties using the LEAST-
SQUARES COMPLEX FREQUENCY DOMAIN (LSCF) algorithm [20]. The measurement
locations are illustrated in Figure 2. The coordinates are given in the Appendix A (see
Table A1).

x

z

y

measurement
positions

Figure 2. Measurement positions in the workspace of the robot and the base coordinate system.

A KISTLER impact hammer (type 9728A20000, force range up to 20 kN) and a KISTLER

3D-accelerometer (type 8762A50) were used. The accelerometer was placed on the spindle.
The excitations created by the impact hammer were made in each spatial direction (x-, y- and
z-direction) and performed 10 times each to reduce the measurement noise and nonlinear
effects. As described by Puzik [21] and Huynh et al. [9], the effect of the active motor
controller is negligible. Therefore, the measurements were performed with brakes engaged.
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The measured directional frequency response functions (FRFs) at the point
xT = [1.175 m, 1.0 m, 1.24 m]T and the corresponding synthesized FRFs based on the esti-
mated modal parameters of the LSCF algorithm are displayed in Figure 3.
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Figure 3. Measured directional frequency response functions and the synthesized estimation by
the LSCF algorithm.
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Figure 3. Measured directional frequency response functions and synthesized estimation by Least-
Squares Complex Frequency Domain (LSCF) algorithm.

To visualize the spatial behavior of the robot’s vibrational properties, the modal
parameters of the first vibration mode are illustrated in Figure 4. For simplicity, only
the spatial behavior of the direct residues in the x- and y-directions, Rxx and Ryy, are
shown. Illustrations of the cross residualsR1,xy andR1,yx are given in the Appendix B (see
Figure A1).

As illustrated, the natural frequency ω1 changes continuously depending on the tool
center point’s position: ω1 decreases, as the tool center point (TCP) moves away from the
robot’s base.

Roughly, the damping ratio ξ1 increases with increasing distance of the TCP to the
robot’s base, even though clear spatial behavior is not apparent in the data.

The imaginary part ofR1,xx decreases approximately linearly in the y-direction and is
approximately constant in the x-direction, while the imaginary part ofR1,yy decreases with
increasing x-direction but increases with increasing y-direction. The real parts ofR1,xx and
R1,yy are significantly smaller than their respective imaginary parts (indicating a rather
lightly damped structure), but also significantly noisier.
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Figure 4. Spatial behavior of the modal parameters of the first vibration mode.

As illustrated, the natural frequency ω1 changes continuously depending on the185

tool center point’s position: ω1 decreases, as the tool center point (TCP) moves away186

from the robot’s base.187

Roughly, the damping ratio ξ1 increases with increasing distance of the TCP to the188

robot’s base, even though clear spatial behavior is not apparent in the data.189

The imaginary part ofR1,xx decreases approximately linearly in the y-direction and190

is approximately constant in the x-direction, while the imaginary part ofR1,yy decreases191

with increasing x-direction but increases with increasing y-direction. The real parts of192

R1,xx andR1,yy are significantly smaller than their respective imaginary parts (indicating193

a rather lightly damped structure), but also significantly noisier.194

2.2. Data preparation: sampling methodology195

To train and test the probabilistic models, the split into training and testing data196

must be carefully chosen: the training data must include as much information on the197

spatial behavior as possible and enough testing data points must be included to ensure198

the validity of the predicted model behavior.199

200

The sampling methodology applied in this study involves two steps:201

In a first step, the general validity of the approach is demonstrated using 15 training202

data points Ntrain (and 20 testing data points Ntest, respectively). In the following section,203

this training and testing split is referred to as sampling strategy A.204

Figure 4. Spatial behavior of modal parameters of first vibration mode.

2.2. Data Preparation: Sampling Methodology

To train and test the probabilistic models, the split into training and testing data must
be carefully chosen: the training data must include as much information on the spatial
behavior as possible and enough testing data points must be included to ensure the validity
of the predicted model behavior.

The sampling methodology applied in this study involves two steps:
In a first step, the general validity of the approach is demonstrated using 15 training

data points Ntrain (and 20 testing data points Ntest, respectively). In the following section,
this training and testing split is referred to as sampling strategy A.

To do so, conventional sampling techniques, such as Latin-Hypercube-Sampling (LHS)
or Sobol-Sampling, can be used. In the following, the application of an LHS approach
is described: first, the division into Dtrain and Dtest is performed using an adapted LHS
technique in the robot’s workspace (i.e., an LHS approach and maximizing the minimum
distance between all points).

In a second step, the sensitivity of the model accuracy to the number of training data
points is investigated. Hence, this will investigate how an increasing number of training
data points improves the modeling accuracy. The following sampling approach is referred
to as sampling strategy BNtrain .
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Depending on the desired number of data points in the actual training data set,
random samples are taken iteratively from Dtrain. Hence, the actually used training data
set is sampled in each iteration into Dtrain, used and Dtrain, unused, conditional upon

Dtrain, used ∪Dtrain, unused = Dtrain. (2)

To ensure the comparability between the results, the following principles are taken
into account for sampling the training data set in each iteration:

• The testing data set Dtest remains the same for all investigations.
• The actually used training data points Dtrain, used are subsampled from the original

training data set Dtrain.

Figure 5 illustrates the training and testing locations for the sampling strategy A and for
3, 5, 7, and 10 training data points in the sampling strategy B. It is worth noting, that for
15 training data points, the sampling strategy B15 equals the sampling strategy A.
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2.3. Model Setup and Training: Data Driven Modeling of the Modal Properties

The following three sections present new approaches to model the spatial behavior of
the robot’s

• natural frequencies (Section 2.3.1),
• damping ratios (Section 2.3.2) and
• residues (Section 2.3.3).

2.3.1. Primary Feature: Natural Frequencies

As presented in Section 1, the concept of multi-fidelity information fusion shall be
transferred to modeling of the spatial behavior of the robot’s natural frequencies: the low-
fidelity information is provided by the rigid body model of the robot. Based on the model’s
mass and stiffness matrices M(q) and K, the position-dependent natural frequencies ω̂i are
the eigenvalues of the system’s eigenvalue problem [22]:

det(K − ω̂M(q)) = 0. (3)

Instead of a computer model with higher fidelity, the high-fidelity information is
represented by the experimentally estimated natural frequencies of the robot’s structure at
different workspace positions (see Section 2.1).

In this respect, Figure 6 illustrates the spatial behavior of the measured natural fre-
quencies in comparison to the estimated natural frequencies by a rigid body simulation.

For simplicity, the rigid body model is equivalent to the model published in [16]. The
definition of the rigid body model and its parameters are given in the Appendix C (see
Figure A2). The mass and inertia properties of the bodies were estimated using the CAD
model of robot, similar to the approach of Reinl et al. [23]. The joint stiffness values were
taken from the previous works by Rösch [7]. Additionally, illustrations of the first four
mode shapes are given in the Appendix D as well (see Figure A3).
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by the simulation (column b)). There is a linear dependency between the simulation results and
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Figure 6. Spatial behavior of first natural frequency as measured (column a)) and predicted by
simulation (column b)). There is a linear dependency between simulation results and measurements
(column c)).

As shown, a rather linear relationship exists between the rigid body simulation (ω̂1)
and the experimentally estimated natural frequency (ω1). However, depending on the
accuracy of the rigid body model, this relationship is not necessarily linear.
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In the following, two approaches to inferring the relationship between the low fidelity
simulation and the high fidelity measurement data are used and compared: the LINEAR

AUTO-REGRESSIVE SCHEME (AR1), which was proposed by Kennedy and O’Hagan [24]
can estimate a linear relationship, whereas the NONLINEAR AUTO-REGRESSIVE MULTI-
FIDELITY GP (NARGP) by Perdikaris et al. [25] is even able to model nonlinear relationships.
Both approaches rely on Gaussian process regression techniques, which incorporate prior
beliefs about the underlying system dynamics by choosing appropriate kernel functions.
Furthermore, since Gaussian processes are Bayesian machine learning techniques, they
provide reliable uncertainty estimates of their predictions.

To illustrate the strengths of the proposed approach, the two multi-fidelity algorithms
are benchmarked against regular Gaussian process techniques using only the high fidelity
measurement data (abbreviated below as HFGP). Following the kernel definitions of
Rasmussen and Williams [26], different kernel design choices for a regular Gaussian process
setup are evaluated:

• a linear kernel: a linear kernel makes it possible to incorporate a linear spatial model
using the variance σ:

Klinear(x, x′) = σ2 · x · x′. (4)

• a quadratic kernel: a quadratic kernel allows more flexibility than a simple linear
kernel and is represented by

Kquadratic(x, x′) = Klinear · Klinear. (5)

• a cubic kernel: similar to the generation of a quadratic kernel, the idea of a polynomial
kernel can be extended to a cubic kernel, given by

Kcubic(x, x′) = Klinear · Klinear · Klinear. (6)

• a radial basis function (RBF) kernel: the conventional RBF kernel is a very popular
kernel, as no assumption on the data’s structure is incorporated. However, an RBF
kernel may be prone to overfitting. The kernel is defined as

KRBF(x, x′) = σ2 · exp
(
−‖x− x′‖2

2l2

)
, (7)

where σ is the variance and l is the lengthscale of the RBF kernel.

Furthermore, the data are normalized before the training procedure. The hyperparam-
eters of each model are optimized during training using five optimization runs.

The three approaches (HFGP, AR1 and NARGP) are validated and benchmarked
against each other in Section 3.1.

2.3.2. Secondary Feature: Damping Ratios

Numerous research publications relating to modeling of the spatial dynamic behavior
of machining systems indicate that modeling the damping effects of robots and machine
tools is inherently difficult: as shown by Nguyen et al., the damping ratios exhibit the least
“correlation with position compared to natural frequencies and stiffness” [14]. Furthermore,
a clear spatial behavior is not evident from the measurements as illustrated in Section 2.1.
Hence, in the context of Gaussian process regression techniques, assuming no spatial
behavior, the data distribution can simply be modeled by a constant bias kernel. Such a
kernel is given by

Kbias(x, x′) = 1. (8)



Robotics 2022, 11, 17 10 of 22

In the event that a spatial behavior of the damping ratios is to be modeled, the
previously mentioned kernels Klinear, Kquadratic, Kcubic and KRBF can be chosen. Therefore,
the performance of a constant bias kernel and of the spatial modelling kernels Klinear,
Kquadratic, Kcubic and KRBF will be evaluated and discussed in Section 3.2.

The hyperparameters are derived during training. Analogously to the natural frequencies,
the data are normalized before training and the training consists of five optimization runs.

2.3.3. Secondary Feature: Residues

To predict the dynamic response of the robot structure accurately, information on the
response amplitudes, represented by the structure’s mode shapes or residues, is also of
interest. Both mode shapes and residues represent the same physical property of a dynamic
vibration system. Their relationship can best be explained by considering the reconstruc-
tion of a frequency response function Hd(jω) in direction d using the system’s natural
frequencies ωi and their corresponding damping decay rates si and mode shapes Ψi,d:

Hd(jω) = ∑M
i=1

(
Qi,dΨi,dΨT

i,d
(jω−λi)

+
Q∗i,dΨ∗i,dΨ∗Ti,d

(jω−λ∗i )

)
, (9)

with

λi = si ± jωi. (10)

λi are the complex poles of the system. The scaling of the mode shapes using the scaling
factor Qi,d yields the residuesRi,d:

Ri,d = Qi,dΨi,dΨT
i,d. (11)

Hence, the residues represent the scaled vibration modes and can be derived di-
rectly from the LSCF algorithm during the modal parameter identification process (see
Section 2.1).

Similar to the damping ratios, the spatial behavior of the robot’s modal residues can
also be modeled using conventional Gaussian process regression. However, since residues
are generally complex-valued, each residue is modeled using two independent Gaussian
processes. Again, the performance of the presented kernels Kbias, Klinear, Kquadratic, Kcubic
and KRBF is compared in Section 3.3. Analogously to the natural frequencies and damping
ratios, the hyperparameters are derived during training. The data are normalized before
training and the training consists of five optimization runs.

3. Results

In the following three Sections 3.1–3.3, the modeling approaches for three modal
parameters are individually validated. Then in Section 3.4, the performance of the presented
spatial modeling approach is highlighted using the reconstruction capabilities of position-
based frequency response functions. Implementation details are given in Section 3.5 for
future reproducibility of the methodology.

3.1. Primary Feature: Natural Frequencies

As presented in Section 2.2, the approach to validating the spatial modeling of the
natural frequencies proceeds in two steps: first, the different algorithms are benchmarked
against each other in Section 3.1.1. Second, the accuracies of the three best-performing
algorithms are assessed in Section 3.1.2, based on a varying number of training data points.

3.1.1. Validity of the Approach

To benchmark the three presented algorithms against each other, the 35 measurements
are split into 15 training data points and 20 testing data points using the optimized LHS
algorithm (see Section 2.2).
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The performance of the four kernels for the Gaussian process regression and the two
multi-fidelity algorithms (see Section 2.3.1) are rated according to the achieved coefficient
of determination (R2) and the root-mean-square error (RMSE), based on each model’s
prediction of the testing data set. The results are illustrated separately in Figure 7 for each
modeled natural frequency.
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It is apparent that the spatial behavior of the natural frequencies cannot be modeled
adequately using only the high-fidelity data in combination with a linear, quadratic, or
cubic kernel: only low coefficients of determination are obtained, and the root-mean-square
errors are large. In contrast, the conventional RBF kernel and the two multi-fidelity schemes
yield comparably good results: the achieved coefficient of determination is mostly higher
than 0.9, and their root-mean-square errors are significantly lower in comparison to that of
the linear, quadratic, or cubic kernels.

Hence, all three modeling approaches (HFGP-RBF, AR1 and NARGP) can adequately
capture the spatial behavior of the natural frequencies, provided enough training data are
available throughout the workspace of interest.

3.1.2. Accuracy Using an Increasing Number of Training Data Points

The performance of the conventional Gaussian process with an RBF kernel, the linear
AR1 model and the nonlinear NARGP model can be further benchmarked regarding the
prediction accuracy with an iteratively increasing number of measurements. As described
in Section 2.2, an LHS-based sampling strategy was used for 3 to 15 measurements.

Again, the model performance is evaluated using the achieved coefficient of determi-
nation R2 and the resulting root-mean-square error RMSE. The results are illustrated in
Figure 8. For a better comparison, a dashed horizontal line indicates the threshold R2 = 0.9.

It appears that both multi-fidelity information fusion algorithms perform notably
better than the conventional Gaussian process with the RBF kernel, when only a small
number of measurements is available.

However, the performance of the NARGP model is fluctuating, whereas the AR1
approaches R2 = 1 and RMSE = 0 Hz more quickly than the NARGP model with an
increasing number of training points Ntrain. This finding is supported by the assumption
of a rather linear relationship between the rigid body model and the experimental data
as indicated in Section 2.3.1. Hence, the linear multi-fidelity scheme AR1 enables a more
efficient estimation of the spatial behavior of the robot’s eigenfrequencies, even when only
a small number of training data points is available.
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Figure 8. Benchmark of conventional Gaussian process regression with an RBF kernel and the two
multi-fidelity schemes AR1 and NARGP using iterative sampling of training data points.

Lastly, since all models are based on Gaussian process regression techniques, they
provide methods to evaluate the prediction uncertainty. To highlight the strength of the
proposed multi-fidelity modeling scheme AR1, Figure 9 illustrates the model prediction and
the 95 % confidence interval for the second natural frequency ω2 for only Ntrain = 3 mea-
surements used for training (i.e., the sampling strategy B3). The AR1 algorithm models the
spatial behavior of ω2 accurately and provides reliable uncertainty boundaries, whereas the
predictions of the conventional Gaussian process using the RBF kernel are inaccurate and
do not even provide reliable prediction intervals (the model predictions are overconfident).
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3.2. Secondary Feature: Damping Ratios

As explained in Section 2.3.2, regular Gaussian process models were set up to model
the damping ratios with different kernel choices, namely Kbias, Klinear, Kquadratic, Kcubic
and KRBF.

Analogously to the analysis described in Section 3.1.1, the accuracy of the model
prediction at the 20 testing data points using the 15 training data points is illustrated in
Figure 10 using the coefficient of determination R2 and the root-mean-square error RMSE.
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It is apparent that the spatial modeling approach of the damping ratios performs
significantly worse than the spatial modeling of the natural frequencies: the coefficient of
determination indicates that none of the kernels can model the spatial behavior accurately,
even though the model using the RBF kernel seems to capture the underlying spatial
behavior best.

However, it is crucial to remember that the measured damping ratios themselves do
not indicate a clear spatial behavior due to the inherent nonlinear damping dynamics, so
every modeling approach will perform poorly with such noisy training data. Due to this
fact, use of the RBF kernel is not advised, because the modeling performance can depend
strongly on the measurement positions and the modeled modes. For example, the RBF
kernel seems to model the spatial behavior of ξ1 and ξ2 significantly better than the other
kernels, whereas the RMSE for ξ3 and ξ4 is similar for all five kernels. Therefore, use of the
cubic kernel is recommended for modeling of the spatial behavior of the damping ratios
to prevent overfitting and is better suited for uncertainty quantification than for precise
spatial modeling.

3.3. Secondary Feature: Residues

Analogously to the kernel selection process for the damping ratios, the five kernels
(Kbias, Klinear, Kquadratic, Kcubic and KRBF) are benchmarked against each other to evaluate
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their performance in modeling the spatial behavior of the residues Ri,d. As described
in Section 2.3.3, each complex residue Ri,d is modeled using two independent Gaussian
processes, one for the real and one for the imaginary part. The resulting RMSEs for the real
and imaginary parts ofRi,xx andRi,yy are depicted in Figure 11. The resulting R2 values
forRi,xx andRi,yy are given in the Appendix E (see Figure A4).

The spatial behavior of the residues is best modeled using the RBF kernel, especially for
the imaginary parts of the residues. It is assumed that the RBF kernel outperforms the other
kernels, since its properties allow a more flexible approximation of the underlying system
behavior and do not restrict the model behavior (unlike a linear kernel, for example).
Hence, it is recommended to use an RBF kernel to model the spatial properties of the
mode’s residues.

Version January 17, 2022 submitted to Robotics 14 of 24

of determination indicates that none of the kernels can model the spatial behavior368

accurately, even though the model using the RBF kernel seems to capture the underlying369

spatial behavior best.370

However, it is crucial to remember that the measured damping ratios themselves do371

not indicate a clear, spatial behavior due to the inherent nonlinear damping dynamics, so372

every modeling approach will perform poorly with such noisy training data. Due to this373

fact, use of the RBF kernel is not advised, because the modeling performance can depend374

strongly on the measurement positions and the modeled modes. For example, the RBF375

kernel seems to model the spatial behavior of ξ1 and ξ2 significantly better than the other376

kernels, whereas the RMSE for ξ3 and ξ4 is similar for all five kernels. Therefore, use of377

the cubic kernel is recommended for modeling of the spatial behavior of the damping378

ratios to prevent overfitting and is better suited for uncertainty quantification than for379

precise spatial modeling.380

381

3.3. Secondary feature: residues382

Analogously to the kernel selection process for the damping ratios, the five kernels383

(Kbias, Klinear, Kquadratic, Kcubic and KRBF) are benchmarked against each other to evaluate384

their performance in modeling the spatial behavior of the residuesRi,d. As described in385

section 2.3.3, each complex residue Ri,d is modeled using two independent Gaussian386

processes, one for the real and one for the imaginary part. The resulting RMSEs for the387

real and imaginary parts ofRi,xx andRi,yy are depicted in Figure 11. The resulting R2
388

values forRi,xx andRi,yy are given in the appendix (see Figure A4).389

It can be seen that the spatial behavior of the residues is best modeled using the390

RBF kernel, especially for the imaginary parts of the residues. It is assumed that the391

RBF kernel outperforms the other kernels, since its properties allow a more flexible392

approximation of the underlying system behavior and do not restrict the model behavior393

(unlike a linear kernel, for example). Hence, it is recommended to use an RBF kernel to394

model the spatial properties of the mode’s residues.395

H
FG

P-
Bi

as

H
FG

P-
Li

ne
ar

H
FG

P-
Q

ua
dr

.

H
FG

P-
C

ub
ic

H
FG

P-
R

BF

0

1

2

3

R
M

SE
in

10
−

6
·m
·H

z
N
→

RMSE of Re(Ri,xx)

H
FG

P-
Bi

as

H
FG

P-
Li

ne
ar

H
FG

P-
Q

ua
dr

.

H
FG

P-
C

ub
ic

H
FG

P-
R

BF

0

2

4

6

8

R
M

SE
in

10
−

6
·m
·H

z
N
→

RMSE of Im(Ri,xx)

H
FG

P-
Bi

as

H
FG

P-
Li

ne
ar

H
FG

P-
Q

ua
dr

.

H
FG

P-
C

ub
ic

H
FG

P-
R

BF

0

2

4

R
M

SE
in

10
−

6
·m
·H

z
N
→

RMSE of Re(Ri,yy)

H
FG

P-
Bi

as

H
FG

P-
Li

ne
ar

H
FG

P-
Q

ua
dr

.

H
FG

P-
C

ub
ic

H
FG

P-
R

BF

0

2

4

6

8

R
M

SE
in

10
−

6
·m
·H

z
N
→
RMSE of Im(Ri,yy)

R1,d R2,d R3,d R4,d

Figure 11. Benchmarks of different kernel designs for modeling the spatial behavior ofRi,xx and
Ri,yy.
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3.4. Reconstruction of Frequency Response Functions

As presented in Section 2 and validated in Sections 3.1–3.3, the spatial properties of the
robot dynamics, namely its natural frequencies, its damping ratios and its mode shapes, are
modeled using probabilistic machine learning techniques. The strengths of the presented
methodology can be illustrated using the reconstruction of the probabilistic frequency
response function from the probabilistically modeled modal parameters (see Figure 12).

To do so, a conventional quasi-Monte Carlo (QMC) algorithm was utilized to estimate
the resulting uncertainty in the reconstructed frequency response functions based on the un-
certainty in the model predictions for the modal parameters at xT = [1.175 m, 1.0 m, 1.24 m]T .
This point was not part of the training data. Detailed information on Monte Carlo and
quasi-Monte Carlo techniques can be found in [27]. The random sampling during the QMC
computation follow the Saltelli scheme (see [28] for detailed information).

The sampling strategy B5 was chosen, so only five measurements in the workspace
were taken into account during training (see Figure 5). During the Monte Carlo simulation,
the directional frequency response functions were calculated 10, 000 times, based on random
samples from the predicted probability distributions of ωi, ξi and Ri,d. The modeling
approach is able to take asymmetric frequency response behavior into account (e.g. Hxy 6=
Hyx), as the directional residuals are trained independently of each other.
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Figure 12. Measured directional frequency response functions and model predictions at the testing
point xT = [1.175 m, 1.0 m, 1.24 m]T using the sampling strategy B5 (for simplicity, only 300 of
10000 Monte Carlo samples are illustrated)
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Figure 12. Measured directional frequency response functions and model predictions at testing point
xT = [1.175 m, 1.0 m, 1.24 m]T using sampling strategy B5 (for simplicity, only 300 of 10,000 Monte
Carlo samples are illustrated).

3.5. Implementation Details

All computations were performed in Matlab, Python, and C++. Table 1 summarizes the
key software packages used. The model training computations and the QMC simulations
were performed on a cloud server running with 10 cores (Intel(R) Xeon(R) Gold 6148 CPU
@ 2.40 GHz) and 45 GB RAM under Ubuntu 18.04.

Table 1. Used software packages.

Purpose Package Version Language

Data acquisition Data acquisition toolbox R2021a Matlab
Generation of frequency domain data Signal processing toolbox R2021a Matlab
Experimental modal analysis pyEMA [29] 0.23 Python
(MAXIMIN) LHS sampling scikit-optimize 0.8.1 Python
Rigid body model RBDL (ORB Version) [30] 3.0.0 C++/Python
HFGP models GPy [31] 1.9.9 Python
AR1 model emukit [32] 0.4.8 Python
NARGP model emukit [32] 0.4.8 Python
Monte Carlo simulation Uncertainpy [28] 1.2.3 Python

4. Discussion

The validation results show that the proposed modeling approach makes it possible
to model the spatial behavior of the robot dynamics in the form of its modal properties.
Since probabilistic machine learning techniques are used, the model prediction does not
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only provide the estimated prediction mean, but also a reliable prediction uncertainty. The
reconstructed frequency response functions are in good agreement with the measurements.

The performance evaluation indicates that the information fusion approach to mod-
eling the spatial properties of the robot’s natural frequencies can significantly improve
the model performance, in comparison with that of conventional Gaussian process re-
gression techniques when only few measurements in the workspace are available. It is
our intention to investigate optimal sampling techniques in the future: according to the
human-in-the-loop-principle (also called Active Learning), an iterative algorithm should
propose the optimal next measurement point within the workspace to reach satisfactory
model performance with as few measurements as possible.

Furthermore, the presented methodology provides the fundamental methods needed
to predict pose-dependant stability limits, for example by predicting pose-dependent stabil-
ity lobes based on the pose-dependent robot dynamics. Such an application is particularly
appealing if the model uncertainty is propagated to the stability prediction as well. Existing
methods for propagating the uncertainty that arises during the cutting force coefficient
identification can be extended by the presented modeling approach [33].

Hence, such a combined model can incorporate both the uncertainty of the robot’s
structural dynamics as well as the uncertainty of the cutting force models.

The model is based on the estimated modal properties and not directly on the mea-
sured frequency response functions. However, state-of-the-art EMA methods still require
domain expert knowledge (e.g., selecting an appropriate model order or selecting suitable
poles) [34]. Hence, inaccuracies during the manual modal parameter extraction will result
in inaccuracies in the trained models. It is advisable that further research is carried out
in the field of automated and robust modal parameter estimation to model the robot’s
dynamics as accurately as possible. This is especially important if the natural frequencies
overlap. In this case, the distinction between the modes must be carried out carefully under
consideration of the mode shapes. Such mode tracking algorithms can make use of the MAC
criterion to quantify similarities of the mode shapes to track the spatial behavior within the
workspace of the robot.

Additionally, the methodology was validated for measurement points in the horizontal
x-y-plane with a constant TCP orientation, which allows the application for 2.5D machining
operations in the horizontal plane. For more complex machining operations or applications
in different heights, the workspace must be extended using measurement locations in the
three-dimensional space or including data points which incorporate the robot’s kinematic
redundancy (i.e., a rotation of the TCP around the tool’s rotation axis).

5. Conclusions

This paper presented a methodology for modeling the position-dependent dynamics
of industrial robots. The methodology is based on data-driven methods for modeling the
spatial behavior of the robot’s modal parameters.

The findings of the presented study are as follows:

• First, an information fusion approach to model the robot’s position-dependent natural
frequencies improves the prediction accuracy significantly in comparison to that of
conventional Gaussian process regression techniques, especially in scenarios with only
a very small number of training data points. In those cases, the prediction uncertainty
of conventional Gaussian processes is unreliable, whereas the uncertainty estimation
of the linear information fusion scheme is reliable.

• Second, a detailed study was conducted to evaluate different kernel design choices for
modeling the robot’s damping ratios and mode residues using conventional Gaussian
process regression methods. The data analysis of the position-dependent damping
ratios motivates the use of cubic kernels, whereas an RBF kernel is best suited for
modeling the residues.
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• Third, the position-dependent models can be used to estimate the position-dependent
directional dynamics of the robot accurately and quantify the combined model uncer-
tainty using a Monte Carlo algorithm.
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Appendix A. Measurement Locations

Table A1. Measurement locations (given in the robot’s base coordinate system).

x in m y in m z in m

1.175 −0.250 1.240
1.175 −0.500 1.240
1.175 0.0 1.240
1.175 1.000 1.240
1.175 0.250 1.240
1.175 0.500 1.240
1.175 0.750 1.240
1.400 −0.250 1.240
1.400 −0.500 1.240
1.400 0.0 1.240
1.400 1.000 1.240
1.400 250 1.240
1.400 500 1.240
1.400 750 1.240
1.625 −250 1.240
1.625 −500 1.240
1.625 0.0 1.240
1.625 1.000 1.240
1.625 0.250 1.240
1.625 0.500 1.240
1.625 0.750 1.240
1.850 −0.250 1.240
1.850 −0.500 1.240
1.850 0.0 1.240
1.850 1.000 1.240
1.850 0.250 1.240
1.850 0.500 1.240
1.850 0.750 1.240
0.950 −0.250 1.240
0.950 −0.500 1.240
0.950 0.0 1.240
0.950 1.000 1.240
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Appendix B. Cross Residuals R1,xy and R1,yx
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Figure A1. Spatial behavior of the cross residuals of the first vibration mode.Figure A1. Spatial behavior of cross residuals of first vibration mode.
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Appendix C. Rigid Body Model of the Milling Robot

k1,x , k1,y, k1,z
c1,x , c1,y, c1,z

mb, Ib,xx . . . Ib,zz

m1, I1,xx . . . I1,zz k2,x , k2,y, k2,z
c2,x , c2,y, c2,z

k3,x , k3,y, k3,z
c3,x , c3,y, c3,z

k4,x , k4,y, k4,z
c4,x , c4,y, c4,z

k5,x , k5,y, k5,z
c5,x , c5,y, c5,z

k6,x , k6,y, k6,z
c6,x , c6,y, c6,z

m2, I2,xx . . . I2,zz

m3, I3,xx . . . I3,zz

m4, I4,xx . . . I4,zz

m5, I5,xx . . . I5,zz

m6, I6,xx . . . I6,zz

Figure A2. Rigid body model of the robot. The orientation of the six local body coordinate systems
are illustrated in colored lines ( = x, = y, = z.)

The mass, inertia and joint stiffness parameters (m, I and k, respectively) of the robot
model are as follows:

m in kg =
[
m1 m2 m3 m4 m5 m6

]T

=
[
110 239.748 164.006 39.746 28.51 78.622

]T

I in kg ·m2 =



I1,xx I1,xy I1,xz I1,yy I1,yz I1,zz
I2,xx I2,xy I2,xz I2,yy I2,yz I2,zz
I3,xx I3,xy I3,xz I3,yy I3,yz I3,zz
I4,xx I4,xy I4,xz I4,yy I4,yz I4,zz
I5,xx I5,xy I5,xz I5,yy I5,yz I5,zz
I6,xx I6,xy I6,xz I6,yy I6,yz I6,zz



=



3.236370867 0.644464939 0.468238095 6.714710678 0.257842574 5.649849463
4.30639745 0.165463221 4.341148242 40.01608253 0.022575289 39.50583604

16.43037097 0.336896677 0.01807357200 2.381578838 0.191901642 16.17115993
0.419700279 0 0 0.425200882 0.009137089 0.097243405
0.436341228 8.1710e− 06 6.8e− 08 0.296286531 0.06785905 0.294686677

0.766497 0 0.01855 1.401573 0 1.295152



k in
N m
rad

=



k1,x k1,y k1,z
k2,x k2,y k2,z
k3,x k3,y k3,z
k4,x k4,y k4,z
k5,x k5,y k5,z
k6,x k6,y k6,z



=



16028000 16028000 5823000
9566000 4255000 11361000
3766000 2717000 13247000
3246000 3246000 1056000
2528000 2528000 1203000
2191000 2191000 454000


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Appendix D. Mode Shape Visualization

a) b)

c) d)

Figure A3. The first four mode shapes (first mode 1 in a), second mode in b) third mode in c), fourth
mode in d)), simulated with the rigid body model at xT .
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Appendix E. R2 results of Ri,xx and Ri,yy
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Figure A4. Benchmarks of different kernel designs for modeling the spatial behavior of Ri,xx

andRi,yy based on R2 (R2 values lower than 0.1 are not displayed to their full extend for better
comprehensibility).
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