
����������
�������

Citation: Bottin, M.; Boschetti, G.;

Rosati, G. Optimizing Cycle Time of

Industrial Robotic Tasks with

Multiple Feasible Configurations at

the Working Points. Robotics 2022, 11,

16. https://doi.org/10.3390/

robotics11010016

Academic Editor: Guangjun Liu

Received: 8 November 2021

Accepted: 13 January 2022

Published: 15 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Optimizing Cycle Time of Industrial Robotic Tasks with
Multiple Feasible Configurations at the Working Points

Matteo Bottin 1,* , Giovanni Boschetti 2 and Giulio Rosati 1

1 Department of Industrial Engineering, University of Padova, 35131 Padova, Italy; giulio.rosati@unipd.it
2 Department of Management and Engineering, University of Padova, 36100 Vicenza, Italy;

giovanni.boschetti@unipd.it
* Correspondence: matteo.bottin@unipd.it

Abstract: Industrial robot applications should be designed to allow the robot to provide the best
performance for increasing throughput. In this regard, both trajectory and task order optimization
are crucial, since they can heavily impact cycle time. Moreover, it is very common for a robotic
application to be kinematically or functionally redundant so that multiple arm configurations may
fulfill the same task at the working points. In this context, even if the working cycle is composed
of a small number of points, the number of possible sequences can be very high, so that the robot
programmer usually cannot evaluate them all to obtain the shortest possible cycle time. One of the
most well-known problems used to define the optimal task order is the Travelling Salesman Problem
(TSP), but in its original formulation, it does not allow to consider different robot configurations at the
same working point. This paper aims at overcoming TSP limitations by adding some mathematical
and conceptual constraints to the problem. With such improvements, TSP can be used successfully to
optimize the cycle time of industrial robotic tasks where multiple configurations are allowed at the
working points. Simulation and experimental results are presented to assess how cost (cycle time)
and computational time are influenced by the proposed implementation.

Keywords: robot redundancy; travelling salesman problem; robot optimization

1. Introduction

The most common industrial robot applications are related to the handling of products,
the welding, and the assembly of parts [1]. In such applications, the performance of
the robotic workcell is usually limited by the performance of the robot, i.e., the time
required by the robot to move between the points. Moreover, usually, these applications
are kinematically redundant; in other words, the robot kinematic chain has more degrees
of freedom than those required by the task; thus, the robot can perform the same task
with several different configurations at one or more working point. The redundancy is
mainly due to the symmetry of the task, in which the products can be handled by rotating
around the tool axis continuously, (e.g., when vacuum grippers are used), or by discrete
angles, (e.g., when standard grippers with two symmetrical fingers are used); thus, it is
possible to rotate 180◦ around the tool axis to pick up an object. In common industrial
installations, redundancy is disregarded. In fact, setting up a new workcell is usually a
long and tedious process; thus, it is more important to perform a speedy setup instead
of optimizing the robot movements. Fortunately, teach-by-demonstration techniques are
gaining in popularity [2], thus speeding up the process while, at the same time, including
redundancy [3].

As the same task can be performed with different robot configurations, it is possible to
choose such configurations so that the movement between points is optimized, i.e., joint
displacement is minimized. Redundant robot movement is a well-known topic in liter-
ature [4,5] and has been exploited both for the execution of tasks [6], to promote safe
human–robot interaction [7] and to implement multiple robot applications [8].

Robotics 2022, 11, 16. https://doi.org/10.3390/robotics11010016 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics11010016
https://doi.org/10.3390/robotics11010016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0001-6611-173X
https://orcid.org/0000-0003-2452-221X
https://orcid.org/0000-0002-5150-9486
https://doi.org/10.3390/robotics11010016
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics11010016?type=check_update&version=2

Robotics 2022, 11, 16 2 of 15

Many of the aforementioned applications are also flexible in terms of task order. In
other words, the overall task can be performed independently from the subtask order. For
example, if a robot has to fill a grid with products, the order in which the grid is filled is
irrelevant to the overall task (i.e., the entire grid completion). As a result, different subtask
orders may result in different task times due to the different sequence of movements
between the points. To obtain the best order to fulfill the task, solving the Travelling
Salesman Problem (TSP) is a valuable option [9]. Such TSP, which aims at finding the
shortest path to visit all the “cities” (i.e., the points) once, has been studied extensively
over the years thanks to its wide applicability; in fact, researchers are still proposing novel
algorithms to solve this problem as efficiently as possible [10–12]. TSP has been used in
many fields, such as package delivery [13], in which multiple drones were used to deliver
packages to customers at the same time, task scheduling for assembly lines [14], medical
waste collection during the COVID-19 pandemic [15,16], and rolling scheduling problem
in the production of iron and steel [17]. Moreover, the TSP has been jointed with Genetic
Algorithms (GA) to divide the tasks between robots [18], although GA are usually stochastic
and may provide different solutions based on the simulation.

However, TSP suffers from a primary disadvantage: in its basic formulation, the path
must visit all the cities once; thus, it does not allow for leaving a city unvisited. This major
limitation has also been studied in the years. Luo et al. [13] use multiple travelers to reach
all the cities; in this sense, each traveler has to reach only a subset of cities. Similar problems
have been faced in [19], where multiple layers are considered, and in [20], where each
traveler is capable of reaching their own cluster of cities and can also move in a cluster
of shared locations available to all the travelers. Li et al. [21] introduced virtual tasks to
associate tasks of different orders; these are also grouped into clusters. The proposed
methods focus on putting forward a solution that allows for visiting all the cities with
multiple travelers. However, in other applications, a designer can be interested in the
opposite scenario: visiting only a subset of cities with a single traveler (e.g., to check only a
small part of a component for anomalies [22]).

In this paper, we aim to solve this issue, by focusing on a robotic application. In fact, if a
redundant application is considered, the robot can reach a point (i.e., a city) with multiple
configurations, thus requiring different movement times. As a result, each configuration
can be considered a separate city, but the different configurations in the same points are
mutual, so the robot must visit one of the possible configurations and not the others. In
particular, this paper aims at adapting the TSP to the following scenarios:

• to find the optimal task order in the case of multiple working points with multiple
configurations and no fixed sequence;

• to find the optimal configurations in the working points with multiple configurations
and a fixed sequence.

The paper is structured as follows: Section 2 introduces the complexity of the problem
of the multiple-configurations; Section 3 describes the analytical model required to imple-
ment the multi-configuration within the TSP; Section 4 shows simulation and experimental
results to analyze how both the cost and computational time of the TSP solution are affected
by the model parameters. Finally, conclusions are drawn in Section 5.

2. Industrial Robotic Tasks with Multiple Feasible Configurations at the
Working Points

Let us consider the problem in which the robot should perform a task composed of
N points, where the sequence is not imposed by the task. For example, let us consider a
quality inspection where a robot must move a camera around an object from a starting
(home) position, taking N − 1 shots of the object. In this context, the number of possible
paths nN , i.e., the number of possible sequences of points, is as follows [23]:

nN =
(N − 1)!

2
(1)

Robotics 2022, 11, 16 3 of 15

as a path is made up of N − 1 connections and the direction of the path is not relevant.
In fact, Equation (1) holds for an industrial robot, since the joints are actuated by means
of electric motors, thus moving from point i to point j has the same cost of the inverse
motion. Conservative forces (e.g., gravity) are not relevant, since the TSP provides a closed
path. The complexity of the problem (i.e., nN) greatly increases by increasing the number
of points N: for example, 5 points led to nN = 12, while 10 points led to nN = 181, 440.
Hence, it is crucial to find a way of narrowing down the number of possible paths to ensure
low computational times.

If a point can be reached with multiple configurations, the number of paths increases.
For example, if a single point can be reached with k configurations, each of the paths
yielded by Equation (1) must be considered k times; thus, the total number of paths becomes
k(N − 1)!/2. In fact, in the aforementioned case of the quality inspection, a camera with a
rectangular sensor can fulfill the task by taking a photo by rotating 180◦ about its optical
axis (Figure 1). The path must now choose between two configurations (k = 2) for a single
point, doubling the number of possible paths.

Figure 1. In this case, the same image of the workpiece (yellow) can acquired by the camera (red),
rotated by 180 degrees, with the robot in both configurations shown.

This situation occurs when either the tool can be placed in different ways or the
robotic arm can be posed in different configurations, or both. Indeed, an industrial 6-
axis robot is kinematically redundant, as its inverse kinematic problem provides multiple
solutions based on the structurally available configurations. For a standard robot, such
configurations are commonly related to the shoulder (lefty/righty), elbow (above/below),
and wrist (flip/no flip), with a total of eight (8) possible combinations of configurations.
In practice, it is often impossible that all the configurations are feasible (due to possible
collisions or joint mechanical limits), but among the possible configurations, it is important
to choose the one that optimizes robot performance. Particularly, flip/no-flip configurations
are usually feasible, as they rarely result in collisions with the environment.

In general, let mi be the number of points with ki multiple configurations and Ng be
the number of groups of points holding the same number of configurations. The number of
possible paths is as follows:

Robotics 2022, 11, 16 4 of 15

nN,multi =

(Ng

∏
i=1

(ki)
mi

)
(N − 1)!

2
(2)

where ∑
Ng
i=1 mi = N. Please note that, when all the points allow only one configuration (i.e.,

Ng = 1, k1 = 1, m1 = N), Equation (2) yields Equation (1).
The higher the number of configurations for each point, the higher the number of

combinations. For example, in Figure 2a, the number of combinations is shown for different
k values under the hypothesis that all the points have the same number of configurations
(i.e., Ng = 1, k1 ≥ 1, m1 = N).

Moreover, even in the case of a fixed point sequence, the number of combinations, in
the case of ki > 1, is not equal to 1. Indeed, a designer could be interested in optimizing
the performance of the robot by choosing the appropriate configurations in the case of a
fixed robot task order, i.e., when the industrial process is composed of a fixed sequence of
subtasks. In this case, Equation (2) can be simplified as follows:

nN,multi =
Ng

∏
i=1

(ki)
mi (3)

As there is only one fixed point sequence, so the term (N − 1)!/2 is neglected. Even
without the factorial factor of Equation (2), the number of combinations greatly increases
with ki (Figure 2b).

3 4 5 6 7 8 9 10
10

0

10
2

10
4

10
6

10
8

10
10

(a)

3 4 5 6 7 8 9 10
10

0

10
2

10
4

10
6

10
8

10
10

(b)

Figure 2. Number of possible paths for a robotic tasks with multiple feasible configurations at the
working points. (a) Free sequence (Equation (2), Ng = 1, k1 = k, m1 = N). The line with k = 1 is
coincident with nN (Equation (1)); (b) number of possible paths with a fixed sequence (Equation (3),
Ng = 1, k1 = k, m1 = N).

It is worth noticing that an increase in the total number of possible paths is generally
followed by an increase in the computational effort required for finding the best solution.
However, the increase in computational effort is generally followed by a reduction in
the overall solution cost (i.e., a reduction in the robot cycle time). In fact, increasing the
number of possible configurations with the same number of points increases the number of
combinations and, thus, is likely to find a path that requires a lower cost to be followed.

To verify this reasoning, an industrial 6-axis robot (Adept Viper s650) has been ex-
ploited, and 20 simulations have been performed. During each test, N random configura-
tions are chosen in the robot joint space (k = 1); then, the corresponding inverse flip/no-flip
robot configurations are calculated (k = 2). Finally, the configurations with ±180◦ on the
last joint are calculated for both the flip/no-flip configurations (k = 4).

For each value of k, all of the possible path movement times are calculated. Figure 3a
shows the ratio between the minimum time of the solution with k > 1 (tk) and the minimum

Robotics 2022, 11, 16 5 of 15

time with no multiple configurations (t1, k = 1). It is clear how increasing the number of
possible configurations changes the minimum possible time; thus, simply by considering
different robot configurations, it is possible to reduce the cycle time.

The same trend can be noted if the point sequence is fixed and only the configurations
are to be chosen (Figure 3b). It is worth noticing how, in Figure 3a, the ratio tk/t1 is
calculated by taking, for each N, the best solutions with k = 1 and with k 6= 1, which means
that those solutions may be found with different point sequences. In the case of Figure 3b,
however, the solutions with k = 1 and with k 6= 1 have the same point sequence; thus, tk/t1
may reach even lower values. Indeed, it could be possible that the solution with k = 1 is
way worse than the one with no fixed point sequence so that tk/t1 may decrease.

3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

(a)

3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

(b)

Figure 3. Ratio between the cost of the minimum solution with multiple configurations (tk) and the
corresponding solution with k = 1 (t1): (a) no fixed point sequence; (b) fixed point sequence.

3. Optimizing Cycle Time through the Travelling Salesman Problem

Provided that the task can be fulfilled in nN,Multi different ways, optimization tech-
niques such as the TSP can be used to obtain the optimal solution according to a target cost
function. The TSP provides the path that connects all the points reducing the cost index.
Such a path must visit the points once, and the cost index can be any design target, such
as traveling distance, traveling time, and energy consumption. The cost index is usually
stored within a square matrix C, in which an element chk describes the cost in moving from
point h to point k. Such cost can be any performance index based on the specific application
(e.g., movement time, energy consumption, maximum acceleration, safety index).

The TSP is particularly interesting because it aims at finding the best path among
all the possible combinations. Other optimization techniques, such as genetic algorithms,
are generally stochastic; thus, it is possible that the calculated solution is not the global
optimum. Moreover, increasing the number of configurations has a major drawback: its
maximum possible cost increases with k; thus, choosing the wrong path (with a stochastic
approach) could not benefit from the increase of k and, conversely, could provide an even
more expensive solution (if compared to the case with k = 1).

The TSP can be easily applied in the case of Equation (1), as the solution provided
passes through all the N points. On the contrary, the application of the TSP in the case of
multiple configurations is not straightforward. In fact, the points to be considered are more
than N, as multiple configurations must be considered:

N∗ =
Ng

∑
i=1

kimi (4)

However, the solution must encompass only N points. In other words, the solution
must not provide a path that passes through the same point with different configurations.

Robotics 2022, 11, 16 6 of 15

The TSP does not allow for ignoring some points. It is then necessary to improve the
algorithm to provide a feasible solution. As shown in a previous work [24], it is possible to
divide the positions into clusters. By applying the cluster constraints, the TSP is forced to
choose a path that enters a cluster via one point, visits all the other points of the cluster,
and exits towards other points (Figure 4).

Figure 4. Example of a cluster. The TSP solution enters the cluster and visits all the positions within
the cluster before moving to another cluster.

In this sense, if, for a single point, all the configurations are clustered, the TSP is
forced to move to a point, pass through all the configurations, and move to another point.
However, it is not possible to simply cluster all the configurations together, as the last
configuration of the cluster is different from the first. In fact, it is necessary that the TSP
solution enters and exits from the same configuration; otherwise, the final cost would be
affected. For example, let us consider the quality inspection case (Figure 1). In taking the
photo, the TSP solution must move to the point with a chosen configuration and then move
to the next, ignoring the other configurations.

To overcome this issue, mirror copies are introduced. Mirror copies are copies of the
existing configurations and are used to avoid discrepancies in the final cost of the TSP
solution. As the mirror copies are equal to the configurations, the costs of moving toward
the other points are the same. Configurations and mirror copies of the same point are
grouped into a cluster. To avoid confusion, the points are named via one single subscript
(e.g., Pi); the configurations, with a double subscript (Pi,j); and the mirror copies, with an
asterisk (P∗i,j).

To obtain a reasonable solution, the TSP must obey to the following constraints in
moving to a point with multiple configurations:

• The path must enter a cluster through one configuration and exit through its mirror
copy.

• To avoid discrepancies in the final cost, the connections within a cluster must have
null cost.

To do so, we propose to connect the configurations and the mirror copies in the
following way: considering point Pi, the j-th configuration (Pi,j) is connected within the
cluster only to its mirror copy (P∗i,j) and to the mirror copy of the following configuration
(P∗i,j+1). The last configuration Pi,k is connected to the mirror copy of the first configuration
P∗i,1.

Moreover, we apply some constraints: with reference to Figure 5, the number of
blue connections must equal the number of configurations k, while the number of yellow
connections must equal k− 1. In total, each cluster contains 2k− 1 connections.

As an example, let us consider Cluster P1 in Figure 5. If the path moves to point P1 via
configuration P1,1, it is then forced to move to P∗1,2, P1,2 and so on, exiting the cluster from
P∗1,1. As a result, k blue connections and k− 1 yellow connections are used. Please notice
that it is not possible for the path to move from P1,1 to P∗1,1 and exit from P∗1,2, as, in this
case, the path would pass through k− 1 blue connections and k yellow connections, not
obeying the aforementioned constraint.

Robotics 2022, 11, 16 7 of 15

Figure 5. Example of connections within and between clusters. Each cluster comprises the feasible
configurations of a working point, together with their mirror copies (identified with an asterisk ∗).

The introduction of the mirror constraint increases the complexity of the TSP, as the
number of cities increases. In fact, it is possible to rewrite Equations (1) and (2) as follows:

nN =
[∑

Ng
i=1(aiki ·mi)− 1]!

2
(5)

nN,multi =

(Ng

∏
i=1

(aiki)
mi

)
(N − 1)!

2
(6)

where

ai =

{
2 if the point has more than one configuration
1 otherwise

(7)

It is worth noticing that ki must be doubled only when the mirror configurations are
needed. Equation (5) is valid with the standard TSP, when no constraints are applied.
Otherwise, Equation (6) holds.

Equations (5) and (6) do not provide the same number of possible paths. It is clear how
the number of possible paths is greatly reduced by applying the constraints, thus reducing
the overall complexity.

The proposed method can be applied also in the case of a working cycle made of a
set of Cartesian paths that must be executed in sequence. Let us consider, as an example,
a painting task where the painting tool must be moved along certain paths; in such an
application, the robot configuration must be kept all along each path, but may change
between the exit point of a path and the starting point of the subsequent path. The cycle
time can be optimized using the proposed method, by assigning a cluster to each path
(Figure 6). The cluster must comprise all the possible configurations of the starting point
of the path (instead of the working point), whereas the mirror copies are substituted by
the corresponding configurations of the exit point of the path. In this way, the TSP will
optimize both the sequence of the paths (clusters) and the robot configuration assigned
to each path, while forcing the robot to keep such configuration all along the path at the
same time.

Robotics 2022, 11, 16 8 of 15

Figure 6. Example of clusters for a working cycle made of a set of Cartesian paths. Each cluster
represents a path, and comprises all possible configurations of the starting point (e.g., P1,i) and of the
ending point (e.g., P2,i). The points are connected in such a way that the TSP will exit the cluster (i.e.,
the robot will exit the path) with the same configuration used while entering the cluster (i.e., with the
same configuration held by the robot while entering the path).

Overall, the optimization procedure by means of the modified TSP can be summarized
as follows (Figure 7):

1. Define the working positions as Cartesian points (Pi).
2. Identify the feasible redundant configurations for each point (Pi,1...m), excluding the

configurations that are outside of robot mechanical limits or that result in collisions
with the workcell equipment.

3. Calculate the elements of the cost matrix C. This part can be performed by means of
common trajectory optimization algorithms, such as RRT-connect algorithms [25,26].

4. Solve the modified TSP using the feasible configurations and the cost matrix as inputs.
5. Finally, the optimal task sequence is provided.

Please note that the TSP outputs a list of the sequence of configurations Pi,j that
minimizes the overall cost. Since the TSP requires the path to pass through all the configu-
rations, the output list must be filtered to remove all the unused configurations (including
the mirror copies), so that the final list is made of a single configuration per point (i.e., the
configurations circled in green in Figure 5).

Figure 7. Optimization process by means of the modified TSP.

Optimizing Cycle Time in the Case of a Fixed Point Sequence

Although the TSP is generally used to choose the optimal path, it is possible to use it
to choose the configurations used with a fixed point sequence (i.e., with a fixed path). In
this case, the number of possible combinations decreases. In fact, as shown in Equation (3),
the term (N − 1)!/2 is related to the number of sequences, which can be neglected in the
case of a fixed sequence. As a result, nN = 1, while Equation (6) can be rewritten as follows:

nN,multi =
Ng

∏
i=1

(aiki)
mi (8)

As shown in [24], it is possible to force the TSP solution to follow a certain path by
making it choose a connection between two points, namely Pi and Pr. To do so, the number
of chosen connections between Pi mirror copies and Pr configurations must be equal to
one: consequently, the TSP solution is forced to move from a mirror copy of Pi toward

Robotics 2022, 11, 16 9 of 15

a configuration of Pr; then, the solution is forced to exit Pr via a mirror copy and move
toward the next point. This process can be iterated until the entire sequence is fulfilled.

4. Validation
4.1. Simulation Results

To simulate the modified TSP capabilities, a test has been carried out in a Matlab
environment. As the TSP is a general problem and is disjointed from the robot movement,
to simplify the test, a random set of Cartesian points has been chosen. The simulations
have been carried out on a Windows 10 laptop equipped with an i7-8750H and 16 GB of
DDR4 RAM, and for each set of parameters, the simulation has been computed 10 times.

Figure 8 shows the results of the simulations. In particular, Figure 8a shows the cost
of the solution provided by the TSP, normalized by the corresponding cost that could be
provided by the standard TSP (m/N = 0). By looking at the overall cost (Figure 8a), it is
clear how the introduction of multiple configurations greatly reduces the final solution
cost. This result was expected, as by introducing new configurations for the same point,
the final path can follow new routes, thus reducing the final cost. It is worth noticing that
the irregular shape of Figure 8a is due to the randomness of the problem: as stated before,
the points for each simulation are chosen randomly in the Cartesian space.

(a) (b)

Figure 8. Simulation results with k = 2: (a) normalized solution cost and (b) computational time
(log scale).

The increase in complexity is followed by an increase in the computational time
required to obtain a solution (Figure 8b). The computational time increases greatly when
the number of points increases, but even for a mid-range laptop, the time needed to obtain
a solution is reasonable even with a high number of points (less than 80 s for the worst-case
scenario). Indeed, for most of the combinations of Figure 8b, the computational time is way
less than a second.

4.2. Experimental Testing

To test the effectiveness of the proposed method, it has been used in an example
of a real case application, in which a robot is used to capture some photos on the sides
of a pyramid trunk, where some symbols are placed (Figure 9). The camera is placed
perpendicular to the 6-joint axis to improve reachability. The robot is an Omron Adept
Viper s650, and the camera used is a monochromatic Allied Vision Pike F-505. The camera
sensor is rectangular; thus, the photo can be taken by rotating the camera axis by about 180◦.
To increase the complexity of the problem, both flip/no-flip configurations are considered.
The final objective is to decrease the overall robot movement time.

Robotics 2022, 11, 16 10 of 15

Figure 9. Experimental setup including one Adept s650 anthropomorphic manipulator, one AVT Pike
F-505 industrial camera, and one piece to be inspected (the pyramid trunk, to the left).

Overall, the parameters of the problem are shown in Table 1, where the photos are
taken atop the pyramid trunk and on three out of four inclined sides. The points are
where the photos are taken and are placed at a distance of 100 mm from the pyramid sides
(Figure 10). One home position is included in the problem. As a result, nN = 1.3× 1035

for the standard TSP (Equation (5)), and nN,multi = 49, 152 for the TSP with constraints
(Equation (6)).

Table 1. Parameters of the real case study.

Ng (N = 5) mi ki

1 4 4
2 1 1

Figure 10. Monochromatic images of the symbols placed on the sides of the trunk pyramid.

The experimental test has been carried out as follows: first, the position of the pyramid
is measured with respect to the robot base, and the points are consequently defined; then,
the simulator (developed in Matlab) calculates all the possible movement costs and the TSP
is solved; finally, the optimal list of movements is sent to the robot to check the validity of
the solution.

To address the validity of the method, the order provided by the TSP is compared to
the order chosen by a human operator. The final movements are very similar (Figure 11);
however, their overall costs (i.e., the overall movement time) are fairly different. This is
due to the large displacements that the robot joints must traverse between the locations
(Figure 12a), which result in wider speed bottlenecks (Figure 12b). As a result, while the

Robotics 2022, 11, 16 11 of 15

optimal movement (Figure 11a) takes 2.92 s, the movement of the operator (Figure 11b)
takes 3.18 s, with a reduction of nearly 9%. It is to be categorically noted that this reduction
is linked solely to this example: it may vary based on the application. The TSP solution is
obtained with a computational time of 1.08 s on a mid-range Windows 10 laptop. The swift
calculation makes it possible to use the TSP with the simulator to test different positions of
the workpiece in the robot workspace to obtain even better results (as in [27]).

Then, all the feasible paths have been considered to check how the movement time
varies by changing the order of the points and by changing the chosen configurations. To
do so, three different scenarios have been considered:

1. Each point has a single robot configuration;
2. Each point has two robot configurations (flip/no flip);
3. Each point has two robot configurations (flip/no flip) and the rotation takes place

around the camera axis (considered case study).

Such scenarios have been implemented for five tests, each of which has a different
pyramid position and rotation.

(a) (b)

Figure 11. Optimized robot movement for the case study (a) and order defined by the operator (b).

The results are shown in Tables 2 and 3. The former table shows how increasing the
complexity of the problem (i.e., introducing new configurations for each position) makes it
possible to improve the solution provided via the TSP. Indeed, by considering two robot
configurations only, the average final solution cost decreases by more than 6%. This result
is further improved if the rotation around the camera axis is also considered: the average
solution cost is reduced by 7.38%. The latter table (Table 3) highlights the importance of
the optimization provided by the TSP. In fact, the TSP solution is generally lower than
half of the time required for an average task order for the described case study. This
average value has been calculated by considering all the possible task orders, with two
robot configurations and two camera rotations.

Robotics 2022, 11, 16 12 of 15

0 1 2 3

-50

0

50

0 1 2 3

-120

-100

-80

-60

-40

-20

0 1 2 3

160

180

200

220

240

260

0 1 2 3

0

50

100

150

0 1 2 3

-100

-50

0

50

100

0 1 2 3

-50

0

50

100

150

(a)

0 0.5 1 1.5 2 2.5 3 3.5

-300

-200

-100

0

100

200

300

0 0.5 1 1.5 2 2.5 3 3.5

-200

-100

0

100

200

300

0 0.5 1 1.5 2 2.5 3 3.5

-300

-200

-100

0

100

200

300

0 0.5 1 1.5 2 2.5 3 3.5

-300

-200

-100

0

100

200

300

0 0.5 1 1.5 2 2.5 3 3.5

-300

-200

-100

0

100

200

300

0 0.5 1 1.5 2 2.5 3 3.5

-400

-200

0

200

400

600

(b)

Figure 12. Joint displacements (a) and speeds (b) for the Test 1, Scenarios 1 (blue) and 3 (red)
of Table 2.

Table 2. Movement times of the solutions provided by the TSP for different scenarios.

Scenario Movement Time [s] Mean Time ReductionTest 1 Test 2 Test 3 Test 4 Test 5

1 3.1755 3.2651 3.3701 3.376 3.216 -
2 3.0278 3.0972 3.1748 3.131 2.9833 6.02%
3 2.969 3.0183 3.1519 3.131 2.9226 7.38%

Table 3. Movement times of all the possible paths for different pyramid positions for Scenario 3.

Cost Movement Time [s]
Test 1 Test 2 Test 3 Test 4 Test 5

Minimum (TSP) 2.969 3.0183 3.1519 3.131 2.9226
Mean 6.5620 6.5752 6.6562 6.7475 6.5519
Maximum 10.8018 10.7906 10.7883 10.9330 10.8422

Finally, the case study has been used to test how the TSP handles the choice of the best
configurations in the case of a fixed task sequence. Let us consider the sequence of points
1-2-3-4-5 (Figure 11a). The three aforementioned scenarios have been used in the case of
Test 1 of Table 2.

Robotics 2022, 11, 16 13 of 15

The results (Table 4) show how TSP reduces the overall movement time even in the
case of a fixed sequence. This result is very promising, as it can greatly improve the cycle
time of an industrial robot without any need for changing the production process. This is
because the only change relies on the movement of the robot itself.

Table 4. Movement times of the solutions provided by the TSP for different scenarios with a
fixed sequence.

Scenario Movement Time [s] Mean Time Reduction

1 3.766 -
2 3.758 <1%
3 3.486 7.43%

The results of the optimization, of course, may be influenced by the environment
surrounding the robot: changing the initial and final configurations of a movement results in
different trajectories, which may result in collisions between the robot and the environment.
A collision check must be performed (like in [28]) before solving the TSP, to validate the
connections between the feasible configurations of different working points.

4.3. Applicability of the Modified TSP

The modified TSP becomes more flexible and can be applied to different use case
scenarios, in which the optimization of the task cannot be retrieved at a glance by a robot
programmer.

For example, in the assembly tasks with multiple feeders and several working positions
with multiple configurations, the modified TSP can calculate the optimal task order to
improve productivity. In [29], a heat exchanger coil has to be assembled by means of a
SCARA robot and a symmetric end-effector. Each heat exchanger coil is made of 40 parts
to be inserted (20 of first type, 16 of second type, 4 of third type) and 3 bowl feeders that
provide the parts. Moreover, the structure of the SCARA and the symmetry of the end
effector provide 4 configurations per position.

In robotic spot welding, the robot may rotate by some degrees around the normal
to the welding spot surface. This range of rotation may be discretized, and the TSP can
calculate the best configuration at working points to optimize the task. In [30], a welding
task is made up of 10 welding spots. Let us assume that each welding spot can be reached
with at least 3 configurations. The total number of possible combinations, as of Equation (2)
is very high.

Finally, in collaborative applications, redundant robots can be deployed to improve
flexibility and safety, since ideally the robot can reach working positions with infinite
configurations. Such configurations can be chosen with the aim of improving productivity
(reducing movement time between positions) or with the aim of improving safety, to
prevent the robot from exerting exceeding forces in specific directions (e.g., directed to
the operator). In [31], a collaborative assembly task of 10 positions is simulated. In such
an application, the proposed TSP approach can be applied by setting the cost cij between
positions as defined by safety indexes.

All aforementioned examples are summarized in Table 5. It is clear that the imple-
mentation of an automatic procedure that considers redundant configurations may be of
great importance in several industrial applications. Moreover, the modified TSP can be
implemented in pair with well-known optimization algorithms (such as RRT-connect), that
can be used for the optimization of a single movement and for the population of the cost
matrix C.

Robotics 2022, 11, 16 14 of 15

Table 5. Example of case studies and the complexity of the problem.

Application N mi ki nN,multi (Equation (2))

Assembly [29] 40
20 4

1.23× 107016 4
4 4

Welding [30] 10 10 3 1.07× 1010

Collaborative [31] 10 10 5 1.77× 1012

5. Conclusions

This paper proposed an improvement to the Traveling Salesman Problem that allows
to optimize throughput of a robotic workcell in multi-configuration scenarios, widespread
in common industrial robot applications. Such method can be used both in the case of
point-to point motions (e.g., quality inspection) and in the case of working cycles made of
a set of Cartesian paths (e.g., painting). The mathematical additions to the TSP are fairly
simple and are very easy to implement.

The results show how the computational time, which increases with the complexity of
the problem, remains reasonable in most cases. Simulation and experimental results show
the effectiveness of the method by comparing the cycle time provided by the modified TSP
and the one obtained by a task sequence intuitively chosen by a human operator. Moreover,
it is shown that even a fixed task sequence (e.g., an assembly sequence) can be improved
by means of the modified TSP. Future work will aim to reduce the computational effort
required by the algorithm.

Author Contributions: Conceptualization, M.B. and G.B.; methodology, M.B. and G.R.; software,
M.B.; validation, M.B., G.B. and G.R.; formal analysis, G.B. and G.R.; investigation, G.B. and G.R.; data
curation, M.B.; writing—original draft preparation, M.B., G.B. and G.R.; writing—review and editing,
M.B., G.B. and G.R.; visualization, M.B., G.B. and G.R.; supervision, G.B.; project administration, G.R.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. International Federation of Robotics. IFR Press Conference. 2020. Available online: https://ifr.org/downloads/press2018/

Presentation_WR_2020.pdf (accessed on 7 November 2021).
2. Billard, A.; Calinon, S.; Dillmann, R.; Schaal, S. Survey: Robot Programming by Demonstration; Technical Report; Springrer:

Berlin/Heidelberg, Germany, 2008.
3. Alizadeh, T.; Karimi, N. Exploiting the task space redundancy in robot programming by demonstration. In Proceedings of the 2018

IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 2394–2399.
[CrossRef]

4. Bottin, M.; Rosati, G. Trajectory optimization of a redundant serial robot using cartesian via points and kinematic decoupling.
Robotics 2019, 8, 101. [CrossRef]

5. Bottin, M.; Rosati, G.; Cipriani, G. Iterative Path Planning of a Serial Manipulator in a Cluttered Known Environment. Mech.
Mach. Sci. 2021, 91, 237–244. [CrossRef]

6. Lu, Y.A.; Tang, K.; Wang, C.Y. Collision-free and smooth joint motion planning for six-axis industrial robots by redundancy
optimization. Robot. Comput.-Integr. Manuf. 2021, 68, 102091. [CrossRef]

7. Calinon, S.; Sardellitti, I.; Caldwell, D. Learning-based control strategy for safe human-robot interaction exploiting task and robot
redundancies. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei,
Taiwan, 18–22 October 2010; pp. 249–254. [CrossRef]

8. Touzani, H.; Hadj-Abdelkader, H.; Seguy, N.; Bouchafa, S. Multi-Robot Task Sequencing & Automatic Path Planning for Cycle
Time Optimization: Application for Car Production Line. IEEE Robot. Autom. Lett. 2021, 6, 1335–1342. [CrossRef]

https://ifr.org/downloads/press2018/Presentation_WR_2020.pdf
https://ifr.org/downloads/press2018/Presentation_WR_2020.pdf
http://doi.org/10.1109/ICMA.2018.8484455
http://dx.doi.org/10.3390/robotics8040101
http://dx.doi.org/10.1007/978-3-030-55807-9_27
http://dx.doi.org/10.1016/j.rcim.2020.102091
http://dx.doi.org/10.1109/IROS.2010.5648931
http://dx.doi.org/10.1109/LRA.2021.3057011

Robotics 2022, 11, 16 15 of 15

9. Bellmore, M.; Nemhauser, G.L. The traveling salesman problem: A survey. Oper. Res. 1968, 16, 538–558. [CrossRef]
10. Zhang, J.; Hong, L.; Liu, Q. An improved whale optimization algorithm for the traveling salesman problem. Symmetry 2021,

13, 48. [CrossRef]
11. Krishna, M.; Panda, N.; Majhi, S. Solving traveling salesman problem using hybridization of rider optimization and spotted

hyena optimization algorithm. Expert Syst. Appl. 2021, 183, 115353. [CrossRef]
12. Agrawal, A.; Ghune, N.; Prakash, S.; Ramteke, M. Evolutionary algorithm hybridized with local search and intelligent seeding

for solving multi-objective Euclidian TSP. Expert Syst. Appl. 2021, 181, 115192. [CrossRef]
13. Luo, Z.; Poon, M.; Zhang, Z.; Liu, Z.; Lim, A. The Multi-visit Traveling Salesman Problem with Multi-Drones. Transp. Res. Part C:

Emerg. Technol. 2021, 128, 103172. [CrossRef]
14. Bottin, M.; Faccio, M.; Minto, R.; Rosati, G. Sales kit automated production: An integrated procedure for setup reduction in case

of high products variety. Appl. Sci. 2021, 11, 110. [CrossRef]
15. Eren, E.; Rıfat Tuzkaya, U. Safe distance-based vehicle routing problem: Medical waste collection case study in COVID-19

pandemic. Comput. Ind. Eng. 2021, 157, 107328. [CrossRef]
16. Vianello, C.; Strozzi, F.; Mocellin, P.; Cimetta, E.; Fabiano, B.; Manenti, F.; Pozzi, R.; Maschio, G. A perspective on early detection

systems models for COVID-19 spreading. Biochem. Biophys. Res. Commun. 2021, 538, 244–252. [CrossRef]
17. Su, F.; Kong, L.; Wang, H.; Wen, Z. Modeling and application for rolling scheduling problem based on TSP. App. Math. Comput.

2021, 407, 126333. [CrossRef]
18. Hofmann, T.; Wenzel, D. How to minimize cycle times of robot manufacturing systems. Optim. Eng. 2021, 22, 895–912. [CrossRef]
19. Alfandari, L.; Toulouse, S. Approximation of the Double Traveling Salesman Problem with Multiple Stacks. Theor. Comput. Sci.

2021, 877, 74–89. [CrossRef]
20. He, P.; Hao, J.K.; Wu, Q. Grouping memetic search for the colored traveling salesmen problem. Inf. Sci. 2021, 570, 689–707.

[CrossRef]
21. Li, S.; Zeng, Q.; Chen, F.; Huang, X. A cost-effective planning method for automatic measurement based on task similarity and

octopus optimization. Meas. Sci. Technol. 2021, 32, 095001. [CrossRef]
22. Mocellin, P.; Vianello, C.; Maschio, G. CO2 transportation hazards in CCS and EOR Operations: Preliminary lab—Scale

experimental investigation of CO2 pressurized releases. Chem. Eng. Trans. 2016, 48, 553–558. [CrossRef]
23. Dutot, A.; Olivier, D. 5—Swarm Problem-Solving. In Agent-Based Spatial Simulation with NetLogo; Banos, A., Lang, C., Marilleau,

N., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, pp. 117–172. [CrossRef]
24. Bottin, M.; Rosati, G.; Boschetti, G. Working Cycle Sequence Optimization for Industrial Robots. Mech. Mach. Sci. 2021,

91, 228–236. [CrossRef]
25. Kuffner, J.J., Jr.; La Valle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the 2000 IEEE

International Conference on Robotics and Automation, San Francisco, CA, USA, 24–28 April 2000; Volume 2, pp. 995–1001.
26. Kang, J.G.; Lim, D.W.; Choi, Y.S.; Jang, W.J.; Jung, J.W. Improved RRT-connect algorithm based on triangular inequality for robot

path planning. Sensors 2021, 21, 333. [CrossRef] [PubMed]
27. Doan, N.C.N.; Lin, W. Optimal robot placement with consideration of redundancy problem for wrist-partitioned 6R articulated

robots. Robot. Comput.-Integr. Manuf. 2017, 48, 233–242. [CrossRef]
28. Bottin, M.; Boschetti, G.; Rosati, G. A novel collision avoidance method for serial robots. Mech. Mach. Sci. 2019, 66, 293–301.

[CrossRef]
29. Rossi, A.; Rosati, G.; Cenci, S.; Carli, A.; Riello, V.; Foroni, A.; Mantovani, M.; Zanotti, L. Flexible assembly system for heat

exchanger coils. In Proceedings of the ETFA2011, Toulouse, France, 5–9 September 2011. [CrossRef]
30. Pires, J.; Loureiro, A.; Godinho, T.; Ferreira, P.; Fernando, B.; Morgado, J. Welding robots. IEEE Robot. Autom. Mag. 2003, 10, 45–55.

[CrossRef]
31. Boschetti, G.; Faccio, M.; Milanese, M.; Minto, R. C-ALB (Collaborative Assembly Line Balancing): A new approach in cobot

solutions. Int. J. Adv. Manuf. Technol. 2021, 116, 3027–3042. [CrossRef]

http://dx.doi.org/10.1287/opre.16.3.538
http://dx.doi.org/10.3390/sym13010048
http://dx.doi.org/10.1016/j.eswa.2021.115353
http://dx.doi.org/10.1016/j.eswa.2021.115192
http://dx.doi.org/10.1016/j.trc.2021.103172
http://dx.doi.org/10.3390/app112110110
http://dx.doi.org/10.1016/j.cie.2021.107328
http://dx.doi.org/10.1016/j.bbrc.2020.12.010
http://dx.doi.org/10.1016/j.amc.2021.126333
http://dx.doi.org/10.1007/s11081-020-09531-w
http://dx.doi.org/10.1016/j.tcs.2021.05.016
http://dx.doi.org/10.1016/j.ins.2021.04.090
http://dx.doi.org/10.1088/1361-6501/abfc86
http://dx.doi.org/10.3303/CET1648093
http://dx.doi.org/10.1016/B978-1-78548-157-4.50005-4
http://dx.doi.org/10.1007/978-3-030-55807-9_26
http://dx.doi.org/10.3390/s21020333
http://www.ncbi.nlm.nih.gov/pubmed/33419005
http://dx.doi.org/10.1016/j.rcim.2017.04.007
http://dx.doi.org/10.1007/978-3-030-00365-4_35
http://dx.doi.org/10.1109/ETFA.2011.6059045
http://dx.doi.org/10.1109/MRA.2003.1213616
http://dx.doi.org/10.1007/s00170-021-07565-7

	Introduction
	Industrial Robotic Tasks with Multiple Feasible Configurations at the Working Points
	Optimizing Cycle Time through the Travelling Salesman Problem
	Validation
	Simulation Results
	Experimental Testing
	Applicability of the Modified TSP

	Conclusions
	References

