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Abstract: Several industrial robotic applications that require high speed or high stiffness-to-inertia
ratios use parallel kinematic robots. In the cases where the critical point of the application is the speed,
the compliance of the main mechanical transmissions placed between the actuators and the parallel
kinematic structure can be significantly higher than that of the parallel kinematic structure itself.
This paper deals with this kind of system, where the overall performance depends on the maximum
speed and on the dynamic behavior. Our research proposes a new approach for the investigation
of the modes of vibration of the end-effector placed on the robot structure for a system where the
transmission’s compliance is not negligible in relation to the flexibility of the parallel kinematic
structure. The approach considers the kinematic and dynamic coupling due to the parallel kinematic
structure, the system’s mass distribution and the transmission’s stiffness. In the literature, several
papers deal with the dynamic vibration analysis of parallel robots. Some of these also consider
the transmissions between the motors and the actuated joints. However, these works mainly deal
with the modal analysis of the robot’s mechanical structure or the displacement analysis of the
transmission’s effects on the positioning error of the end-effector. The discussion of the proposed
approach takes into consideration a linear delta robot. The results show that the system’s natural
frequencies and the directions of the end-effector’s modal displacements strongly depend on its
position in the working space.

Keywords: parallel manipulator; robot modeling and simulation; robot design

1. Introduction

Parallel robots are Parallel Kinematics Machines (PKM) which have been investigated
for a long time, as demonstrated by some key papers [1–3]. The parallel kinematic config-
uration gives to these robotic systems a high stiffness/inertia ratio. This characteristic is
due to closed kinematic chains, where some members are mainly subject to axial loads;
hence, these links can be designed to be slender and light without the risk of decreasing
the system’s overall stiffness. Moreover, the parallel kinematic configuration allows the
positioning of the driving motors on the fixed frame of the robot, reducing, therefore, the
moving masses [4,5].

The linear delta kinematic configuration [3] is characterized by linear axes instead of
the rotary ones used within the well-known classical Delta configuration [1,2]. As a result,
for this configuration, the working volume is spatially extended along a direction whose
length depends only on the length of the linear axes. Applications in the industrial field
requiring high speed and working volume extended along a direction can use linear delta
robots designed with a suitable transmission that on one hand permits high linear speed
and on the other has low inertia. This configuration is suitable for the primary packaging
station of a production line or for transferring production goods between two lines. Linear
transmissions based on a timing belt are an interesting solution due to the low mass, high
speed, long travel length and low cost, especially if compared with other kinds of linear
transmissions, such as ball-screws.
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It should be moreover remarked that the overall performance of the system depends
not only on the kinematic structure of the manipulator, but also on the characteristics of
transmissions between motors and joints; hence, in order to achieve the expected system
performance, the synthesis requires a synergistic design approach [6].

Despite the attractive characteristics of a belt transmission from the inertial point of
view, it is also a well-known intrinsically deformable device that introduces significant
flexibility between motors and driven joints. Several researchers have investigated belt
transmissions for many years under several aspects. Some authors defined a methodol-
ogy for the estimation of the characteristic parameters of a linear belt drive, considering
lumped parameter modeling, mainly for control purpose [7]. Other authors focused
their attention on the acoustic radiation of a timing belt due to its vibrations. Such dy-
namic behavior was investigated by means of a numerical multi-body model [8]. As far
as modeling is concerned, many authors developed numerical models of timing belts,
taking into consideration also the interaction between the belt and pulley [9–11]. Other
recent works also focused on the influence of the tensioner on the dynamic behavior
of the belt [12,13], while other papers dealt with new issues concerning the usage of
oval pulleys in belt transmissions [14,15]. As confirmation of the researcher’s interest in
the dynamic behavior of timing belts, there is also an interesting review on the method-
ologies for modeling and analysis of the axial and torsional vibration of these kinds of
transmissions [16].

Regarding the dynamics of a parallel kinematics robot, many works can be found
in the literature where the modal analysis of the system is performed, but only taking
into consideration the robotic system and not the contribution due to the transmissions’
stiffness. In this context, some authors performed the modal analysis, developing the
models by means of a commercial software [17–20], while other authors developed their
own model [21–24], sometimes with the aim to investigate the low-order dynamics of the
system [25]; in all these cases, nothing about the transmission is taken into consideration.

In the literature, papers focusing on both the robotic system and on the transmission
can be found. However, they generally concern the definition of control algorithms for
the suppression of vibrations [26,27], the estimation of the system’s parameters [28], or the
definition of the positioning error in the workspace [29,30].

Our research is related to investigating the dynamic vibration behavior of parallel
kinematics robots, where the mechanical transmissions have lower stiffness than the one of
the parallel kinematic structure. This approach is quite different from the methodologies
detailed in the previously cited works. In particular, we are interested in the overall system,
transmissions included, focusing on the influence of the transmissions’ stiffness on the
natural frequencies and the mode shapes of the parallel robot.

The main contribution of our paper is to highlight, taking into consideration also the
transmissions and their stiffness, how the modes of vibration of the belt transmissions’
carriages, which depend on the mass distribution within the system and on the coupling
effect due to the parallel kinematic chains, are reflected to the end-effector as a function of
its position within the workspace. The results are the end-effector’s modal displacements’
directions due to the system’s characteristics. Moreover, these results are a function of
the end-effector position in the workspace. For this reason, we have named our approach
“Modal Kinematic Analysis”.

The paper takes into consideration a 3 d.o.f. linear delta produced by the Italian
company Mechatronics and Dynamic Devices s.r.l. [31]. This device has linear belt trans-
missions on which we have already carried out some experimental activities, showing the
influence of the belt transmissions’ stiffness on the dynamics of the overall system [32].
As previously mentioned, the stiffness of the parallel kinematic part is higher than the
rigidity of the belts; this is why we have modeled the parallel kinematic part as being
rigid, considering the belt transmissions to be the only deformable elements. Regarding
the transmissions, we already highlighted that we are not interested in analyzing specific
aspects, such as acoustic emissions, due to the belt’s vibration or the contact between the
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belt and pulley. Moreover, in the case of a linear drive system that moves a carriage with a
mass significantly higher than the belt’s mass, the latter can be neglected; hence, the trans-
mission can be modeled as the lumped stiffnesses, one for each part of the belt, changing
with the configuration of the transmission, i.e., changing with the carriages positions.

2. Materials and Methods
2.1. The Parallel Robot under Analysis

The parallel robot on which we have applied our “Modal Kinematic Analysis” ap-
proach is a 3 d.o.f. parallel kinematic machine produced by the Italian company Mecha-
tronics and Dynamic Devices s.r.l. [31] that is characterized by the typical linear delta
kinematic configuration.

Figures 1 and 2 present the linear delta, whose main characteristics are the following:

• The three linear axes are parallel.
• Each linear axis is composed of a linear belt transmission. The belt is a HTD-5

characterized by a 15 mm width and a specific stiffness (or stiffness per unit of length
and unit of width) of ksp = 2.42 × 106 N/m.

• The system is driven by means of brushless motors, characterized by a nominal torque
of 0.7 Nm; a maximum velocity of 10,000 rpm; and a rotor inertia of 0.017× 10−3 kg·m2.

• The motors are connected to the driven pulley of the linear belt transmission by means
of a planetary gearbox characterized by a reduction ratio equal to 10.

• The maximum axis stroke is 1.2 m.
• The distance lr between axes is 200 mm.
• The length ld of the links connecting the carriages to the end-effector is 400 mm.

The constraints between the links and, respectively, the carriages and the mobile
platform are realized by means of universal joints, highlighted in blue for the carriages
and in red for the mobile platform in Figure 3. Hence, each link is composed of two rods
realizing a four bar linkage with a parallelogram configuration.

Figure 1. Linear delta under analysis.
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Figure 2. Diagram of the linear delta.

parallelogram
configuration

ϕ3
ϕ2

Figure 3. On the left: connection links and joints. On the right: local coordinate systems on the mobile platform.

2.2. Kinematics and Dynamics of the Parallel Kinematic Part

This section presents the model for the kinematics and the dynamics of the parallel
kinematic part of the manipulator. This part has very high stiffness and low weight due
to the carbon fiber composite material of the rods. For these reasons, it is possible to
say that the flexibility of the parallel kinematic part can be considered negligible with
respect to the compliance of the linear belt transmissions. This subsystem can be thus
modeled as being composed of rigid bodies, whereas the only flexible elements are the
transmissions. Moreover, the belt’s mass is negligible with respect to the carriages mass;
accordingly, we neglect the inertial contributions of the belt, and simply model its stiffness
using configuration-dependent lumped parameters.

The rigid structure of the manipulator is responsible not only for the dynamic coupling
between the linear axes, but also for the overall mass distribution of the system; the rigid-
body kinematics and dynamics of this subsystem—composed of the mobile platform, of
the distal links and of the trucks—must, therefore, be thoroughly accounted for.

The kinematics of the manipulator are largely analogous to those of the Delta robot
designed by Reymond Clavel and analyzed, for example, in [1,2]; as such, this mechanical
structure results in a mobile platform with three translational degrees of freedom [3].
Figure 2 shows the reference frame with respect to which the end effector’s position is
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measured, while Figure 3 depicts three sets of local coordinates useful to completely
describe the kinematics of the parallel bar linkages.

The angular positions ϕj, j = 1, 2, 3 of the universal joints that connect the distal rods
to the platform are also shown in Figure 3. The free coordinates x1, x2 and x3 that govern
the kinematics of the manipulator are those relative to the longitudinal displacement of
the three trucks. Given the geometric parameter lr that defines the distance between two
adjacent linear guides, the truck positions ej are trivially expressed as functions of xj:

e1 =




x1
0
0


 , e2 =




x2
−lr,

0


 , e3 =




x3
lr,
0


 . (1)

The direct and inverse functions between these quantities and the center point p of
the moving platform must furthermore be determined. The chief relationships that allow
to do so are the vector loop equations written for each kinematic chain:

ej + ld,j + (p− cj) = p ∀j ∈ [1, 2, 3] . (2)

In Equation (2), ld,j is the vector pointing from the jthtruck ej to the position cj of

the jthplatform universal joint constraint, while the difference (p− cj) is a constant vector
entirely determined by the geometry of the moving platform.

The vector loop equations, whose geometric meaning is depicted in Figure 4, must be
satisfied for every assembled configuration of the robot. To exactly enforce them when the
truck position vectors ej are known, it is sufficient to intersect three spheres of radius ld
and centered in the points,

sj = ej + (p− cj) ; (3)

indeed, the intersection point coincides with the admissible p, from which the constraint
positions cj can be then found.

Figure 4. Vector loops for the three kinematic chains.

On the other hand, if p is given the points cj can be immediately determined; the inter-

section of the sphere of radius ld and center cj with the segment generated by the jthlinear
guide allows then the determination of ej (and xj) that satisfy the vector loop equations.

Other positional quantities of interest are the centers of mass of the distal linkages
and the Euler angles describing the rotation of the linkage rods. Since the two rods of each
linkage are constrained to perform the same motion, the kinematics of the entire distal link
can be abstracted to those of its center-line.



Robotics 2021, 10, 132 6 of 22

Given that each distal rod is a slender, axially symmetric body, the position dj of the

center of mass of the jthlinkage can be expressed as a weighted average of the constraint
and carriage position.

dj =
Wccj + Wtej

Wc + Wt
, (4)

where Wc is the weight of the universal joint and Wt is the weight of the truck.
A physically meaningful description of the distal link rotation must take into account

the actual configuration of the universal joint connecting each rod pair to the end-effector.
With reference to Figure 5, where the red dashed line represents the direction of the generic
link j, the most straightforward solution involves a joint allowing a rotation of the rod pair
first around the local x-axis by an angle αj, and then around the rotated local y′-axis by an
angle β j. The third Euler angle γj around the local z′′-axis, directed as the distal rod itself,
is kinematically constrained to be equal to zero.

αj

αj

β jβ j

Figure 5. Euler angle for the definition of generic link j orientation.

Given the vector

uj = e[j]j − c[j]j (5)

expressed in the jth frame of reference, these angles are easily computed as:

α
[j]
j = arctan

(−uj,2

uj,3

)
(6)

β
[j]
j = arcsin

(
uj,1

||uj||

)
(7)

γ
[j]
j = 0 . (8)

Additionally, the rotation matrix R[j]
d,j of the distal link can be constructed from the

Euler angles through standard formulas for the composition of elementary rotations.
As the position kinematics of the platform are described as a sequence of geometric

rather than analytical operations, the Jacobian analysis must also be developed in the same
vein. The first goal is to determine the Jacobian matrix relating the time derivative of the
truck coordinates to the velocity of the mobile platform.

To do so, the formula for the velocity kinematics of rigid bodies can be applied to the
three kinematic chains connecting the platform to the base. Recalling that the platform can
only translate and therefore ċj = ṗ the following equations can be written:

ṗ = ė1 + ω1 ∧ (p− e1) (9)

ṗ = ė2 + ω2 ∧ (p− e2) (10)

ṗ = ė3 + ω3 ∧ (p− e3) . (11)
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The yet unknown distal angular velocities ωj can be eliminated from

Equations (9) and (11) by multiplying each side by the quantity (p− ej)
>. In matrix notation:



(p− e1)

>

(p− e2)
>

(p− e3)
>


ṗ =



(p− e1)

> ė1
(p− e2)

> ė2
(p− e3)

> ė3


 . (12)

The truck velocities can then be expressed in terms of the time derivatives of the
free coordinates by highlighting the Jacobian matrices De,j of ej with respect to

x =
[
x1 x2 x3

]>:

ė1 =

De,1︷ ︸︸ ︷


0 0 0
1 0 0
0 0 0


 ẋ , ė2 =

De,2︷ ︸︸ ︷


0 0 0
0 1 0
0 0 0


 ẋ , ė3 =

De,3︷ ︸︸ ︷


0 0 0
0 0 1
0 0 0


 ẋ , (13)

where ẋ =
[
ẋ1 ẋ2 ẋ3

]>. By substitution of Equation (13) in Equation (12), the following
terms can be highlighted:

Dl ṗ = Dr ẋ . (14)

More explicitly,

Dl =



(p− e1)

>

(p− e2)
>

(p− e3)
>


 , Dr =



(p− e1)

>De,1
(p− e2)

>De,2
(p− e3)

>De,3


 . (15)

The platform Jacobian matrix can finally be expressed as Dp = Dl
−1Dr .

Each Jacobian matrix related to the motion of the center of mass of the jth distal linkage
is then easily derived:

Dd,j =
WcDp + WtDe,j

Wc + Wt
. (16)

Given that both positions and velocities of the notable points of the structure are made
explicit, it is also possible to determine analytically the time derivative of the platform
Jacobian matrix as a function of x and ẋ:

Ḋp = Dl
−1(Ḋr − Ḋl Dp) . (17)

To compute Ḋr and Ḋl , it is enough to differentiate, with respect to time, each ele-
ment of Dr and Dl , which can be easily done thanks to the clear geometric meaning of
these matrices.

The Jacobian analysis of the distal link rotations might then be performed.
Equations (6)–(8) can be expressed in vector form as follows:

ψj = f (uj(x)) , (18)

where ψj =
[
αj β j γj

]>.
The function f can be easily differentiated with respect to the components of uj to

yield the matrix D f . On the other hand, the Jacobian matrix of uj with respect to x is

Du,j = R>
f ,j(D[j]

e,j − Dp
[j]) , (19)
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where R f ,j is the constant rotation matrix due to ϕj. It follows that

ψ̇j = D f Du,j ẋ = Dψ,j ẋ . (20)

A linear relationship ω
[j]
j = Ψjψ̇j subsists between the angular velocity of the distal

rod and the time derivative of its Euler angles, with Ψj being defined as

Ψj =




1 0 sin(β j)
0 cos(αj) − cos(β j) sin(αj)
0 sin(αj) cos(β j) cos(αj)


 . (21)

As a result the angular velocity of the distal rods can be expressed as

ω
[j]
j = ΨjDψ,j ẋ . (22)

Finally, in the absolute frame of reference,

ωj = R f ,jΨjDψ,j ẋ = Dω,j ẋ . (23)

Since the kinematics of the rigid subsystem is expressed as a function of x and ẋ, its
kinetic energy can be written as

Tss =
1
2

ẋ>
[

Dp
>mpDp +

3

∑
j=1

(
D>

e,jmtDe,j + D>
d,jmdDd,j + D>

ω,j Id,jDω,j

)]
ẋ . (24)

The mass matrix Mss of the manipulator, which appears inside the parentheses of
Equation (24), is thus composed of terms related to the translations of the mobile platform;
the translations of the trucks; the translations of the center of mass of each distal linkage;
and the rotations of the distal links. Accordingly, the masses mt, md and mp of the trucks,
the distal linkages and the platform appear alongside the inertia matrix Id,j of the distal
links. These quantities are set for the following numerical analyses as

• mt = 1 kg,
• md = 0.7 kg,
• mp = 1.5 kg.

Assuming Wt = Wc, the distal link inertia is calculated in the principal and barycentric
frame as

Ĩd,j = md
l2
d

12




1 0 0
0 1 0
0 0 0


 . (25)

Conversely, the gravitational potential of the subsystem is related only to the mobile
platform and to the center of mass of the distal links, as only these are allowed to move
along the vertical direction. Indicating as g the gravitational constant, the gravitational
potential Ug can be written as:

Ug = −g
[
0 0 1

]
(

mp p +
3

∑
j=1

mddj

)
. (26)

The gradient of Ug can be computed straightforwardly as follows:

∇Ug = −g
[
0 0 1

]
(

mpDp +
3

∑
j=1

mdDd,j

)
. (27)
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2.3. Belt Transmission Dynamics

As already mentioned, the mass of the belts can be neglected; therefore, the kinetic
energy associated to the belt transmission is determined by the rotational inertia not only of
the pulleys, but more significantly of the three motors and gearboxes, which are assumed
to rotate rigidly with the actuated pulley.

To properly describe the system, six additional coordinates ϑj,1 ϑj,2 (with j = 1, 2, 3)
associated to the rotation of the pulleys are required. Figure 6 shows a diagram of the
timing belt in which the stiffnesses and the coordinates are highlighted for the jth axis.
Which pulley is driven by the motor is shown in Figure 2.

ϑj1
ϑj2

k j1

k j2 k j3

xj

max(xj)
min(xj)

lt

Figure 6. Diagram of the jth linear belt transmission.

Denoting as Ip,j,k the rotational inertia of the pulley described by the coordinate ϑj,k,
the kinetic energy of the three transmissions can be expressed in the form

Tt =
1
2

3

∑
j=1

(
Ip,j,1ϑ̇2

j,1 + Ip,j,2ϑ̇2
j,2

)
, (28)

By introducing the array of pulley coordinates

ϑ> =
[
ϑ1,1 ϑ2,1 ϑ3,1 ϑ1,2 ϑ2,2 ϑ3,2

]
(29)

and by suitably collecting the mass terms, the kinetic energy of the transmissions can be
expressed in matrix notation as

Tt =
1
2

ϑ̇
>Mt ϑ̇ . (30)

In Equation (30) the transmission mass matrix Mt is a 6-by-6 diagonal and con-
stant matrix. For the subsequent analyses, pulleys having the following characteristics
are considered:

• Radius Rp = 35 mm,
• Inertia around the rotation axis Ip,j = 130× 10−6 kg ·m2.

Furthermore, the motor and gearbox inertia—suitably projected on the machine side
through the gearbox reduction rate—is added to the inertia of the actuated pulleys.

3. Overall Dynamics

The total kinetic energy of the system can then be expressed as:

T(x, ϑ, ẋ, ϑ̇) = Tss(x, ẋ) + Tt(ϑ, ϑ̇) . (31)

Introducing the array of the free coordinates of the overall system as

q =

[
x
ϑ

]
, (32)
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the complete mass matrix can be easily assembled:

M =

[
Mss 0

0 Mt

]
. (33)

The overall mass matrix is a function of the trucks’ positions. In a similar way,
the mechanical stiffness of each transmission changes with the position of the truck, as
this defines the free lengths of the three segments of which the timing belt is composed.
As already highlighted in Section 2.1, the specific stiffness ksp quantifies the stiffness
of the timing belt for each unit length and unit width of the belt itself, and as such, it
is one of the parameters commonly specified within the product datasheet. For a given
configuration, the stiffness coefficients of the belt sections are therefore computed according
to the following equation:

k j,k =
wbksp

l f ,j,k
, (34)

in which wb is the belt width, and l f ,j,k is the free length of the considered belt segment.
More explicitly, the stiffness coefficients for each belt transmission are computed as

k j,1 = wbksp
(
max(xj)−min(xj)

)−1 (35)

k j,2 = wbksp

(
x∗j −min(xj)−

1
2

lt

)−1
(36)

k j,3 = wbksp

(
max(xj)− x∗j −

1
2

lt

)−1
, (37)

where x∗j represents the undeformed jth truck coordinate, lt is the length of the truck, and
min(xj) and max(xj), shown in Figure 6, are fixed structural parameters that correspond
to the maximum and minimum displacements achievable by an ideally dimensionless cart.

If large rigid motions of the system are considered, the elastic actions do not admit
a potential function, due to the non-constant stiffness coefficients. However, if small
displacements around a given undeformed configuration are to be investigated, the stiffness
variations can be neglected, and an elastic potential for each belt can be determined as

Uel,j = −
1
2

(
k j,1
(

Rp
(
∆ϑj,2 − ∆ϑj,1

))2
+ k j,2

(
∆xj − Rp∆ϑj,2

)2
+ k j,3

(
Rp∆ϑj,1 − ∆xj

)2
)

. (38)

Here, the variables ∆ϑj,1, ∆ϑj,2 and ∆xj are to be interpreted as displacements around
the undeformed configuration ϑ∗j,1, ϑ∗j,2, x∗j :

∆ϑj,1 = ϑj,1 − ϑ∗j,1 (39)

∆ϑj,2 = ϑj,2 − ϑ∗j,2 (40)

∆xj = xj − x∗j . (41)

The potential function of the free system can then be obtained by summation of the
gravitational and elastic potentials:

U(q) = Ug(x) +
3

∑
j=1

Uel,j(q) . (42)

The dynamic model describes a semi-definite system, which therefore can undergo
rigid motions. Indeed, the motors apply torques to the system and do not set the position
of the actuated pulleys. The equilibrium condition of the system, for a given position of the
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end-effector, can, however, be evaluated by introducing static torques τst,1, τst,2, τst,3 applied
to the actuated pulleys in order to keep the end-effector in the desired configuration.

The external generalized forces acting on the generalized coordinates of the system
can therefore be expressed in vector notation as

Q =
[
0 0 0 τst,1 0 0 0 τst,2 τst,3

]> . (43)

It should be noted that the vector Q defined in (43) is consistent with the location of
the motors reported in Figure 2, and thus properly distinguishes the actuated degrees of
freedom (namely ϑ1,1, ϑ2,2 and ϑ3,2) from the passive ones. In more detail, the position
of the static torques within vector Q corresponds to the position of the driven pulleys’
rotational angles in vector q. The other elements of vector Q are equal to zero because they
correspond to the position of the non-actuated coordinates.

A static equilibrium configuration should satisfy the condition

∇U(q) + Q = 0 . (44)

The solution of the set of Equation (44) yields the static equilibrium configuration
around which we develop the modal analysis. In particular, the static torques and the
pulleys’ rotations are the unknowns of the problem, while the displacements of the trucks,
which alone define the position of the mobile platform, are fixed. This choice is moti-
vated by the need to express the several results of the modal analysis as functions of the
mobile platform coordinates, as this can shed additional insight also on the functional
characteristics of the robotic device.

4. Configuration-Dependent Modal Analysis

The modal analysis around a given equilibrium configuration qeq can be performed by
substituting into Lagrange’s equations the approximated kinetic energy and
potential functions.

In particular,

T̃(q̇) = T(qeq, q̇) (45)

Ũ(q) = U(qeq) +∇U(qeq)(q− qeq) +
1
2
(q− qeq)

>HU(qeq)(q− qeq) , (46)

where HU is the Hessian matrix of the total potential.
Lagrange’s equations assume the form

d
dt

∂T̃
∂q̇
− ∂Ũ

∂q
= Q . (47)

Remembering the equilibrium conditions, Equation (47) can be written in the familiar
matrix notation,

Mq̈ + Kq = 0 , (48)

in which the stiffness matrix is simply defined as K = −HU .
It might be observed that the Hessian matrix associated to Uel, can be analytically

obtained by double differentiation, while the one relative to the gravitational potential Ug
is computed using the following property of the time derivative of the Jacobian matrices—
chiefly Dp—that govern the gradient ∇Ug,

Ḋp(x, ẋ) =
3

∑
j=1

∂

∂xj
Dp ẋj . (49)
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Evaluating Ḋp(x, δjk), with δjk being Kronecker’s Delta, the partial derivatives
∂

∂xj
Dp

can be recovered, from which, in turn, the Hessian matrix of the gravitational potential can
be straightforwardly constructed.

The mass and stiffness matrices are constant for each position qeq, taken into account
inside the investigated workspace. For each position, an eigenvalue problem for the matrix
M−1K is then set up and solved in order to highlight the configuration-dependent natural
frequencies and modal vectors of the system. As expected, the first three modes represent
the rigid motions of the system, while the remaining six are proper vibration modes.

Although a detailed workspace analysis of the manipulator is outside the scope of
this work, the investigation refers to a significant working plane selected by the Jacobian’s
condition number of the rigid subsystem. The Jacobian’s condition number of the chosen
plane is more uniformly distributed and has the lower mean value, i.e., 3.5. Figure 7 shows
the selected plane at the position z = −245 mm. An equally distributed sampling of this
plane defines the investigated end-effector’s pose, giving the equilibrium positions qeq.

245 working plane

working volume

Figure 7. Reference plane position within the working volume (represented in green).

5. Results and Discussion

This section presents the results of the modal analysis developed on the end-effector’s
positions belonging to the plane defined in the previous section. The software package
selected for the implementation of the system’s model, and for the development of the
modal analysis for different end-effector’s positions is MathWorks® MATLAB®, owing to
its matrix processing and data visualization capabilities. The first results reported are the
natural frequencies for each of the six modes of vibration (the remaining three, related to the
rigid motion of the system, are not included); f1 − f6 are the natural frequencies (expressed
in Hz) of the modes 1 to 6, sorted in ascending order. In particular, Figure 8 shows how
the natural frequencies change by changing the position(xp, yp) of the end-effector on the
reference plane. The red markers are positioned along a line corresponding to the direction
of the central axis (axis 1) at points, within the useful working area (boundary effects
excluded), where the natural frequencies have their maximum and minimum value. The
black markers qualitatively indicate the position of the three motors.
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Figure 8. Natural frequencies.

translations have been divided by the pulley radius to compare non-homogeneous linear464

and angular coordinates fairly.465

Mode f , [Hz] x1/Rp x2/Rp x3/Rp ϑ1,1 ϑ2,1 ϑ3,1 ϑ1,2 ϑ2,2 ϑ3,2
1 40.873 -6.77e-15 -3.19e-01 3.19e-01 -9.69e-15 -1.37e-01 1.37e-01 -8.31e-15 1.00e+00 -1.00e+00
2 46.854 -4.04e-04 -2.54e-02 -2.54e-02 -1.50e-02 -5.02e-01 -5.02e-01 -1.50e-02 1.00e+00 1.00e+00
3 54.286 -1.89e-02 -6.88e-03 -6.88e-03 1.00e+00 -5.35e-02 -5.35e-02 3.94e-02 2.50e-01 2.50e-01
4 136.237 -4.90e-05 -9.67e-07 -9.67e-07 7.36e-02 -3.35e-05 -3.35e-05 -1.00e+00 2.37e-06 2.37e-06
5 136.835 2.17e-05 7.78e-04 7.78e-04 -5.46e-05 -1.00e+00 -1.00e+00 7.79e-04 4.15e-02 4.15e-02
6 159.823 -5.25e-05 -1.23e-03 -1.23e-03 -4.13e-04 1.00e+00 1.00e+00 1.92e-02 -2.40e-02 -2.40e-02

Table 1: Modal vector for each natural frequency, at the point of minimum.

Both in Table 1 and in Table 2 it can be seen that the motion of the free pulley466

is dominant within the modal vectors of modes 4, 5, and 6; on the other hand the467

component associated to the actuated pulleys is the most significant for modes 1, 2 and 3.468

This rather clean distinction between lower and higher frequency modes is also reflected469

Figure 8. Natural frequencies.

As expected, all the graphs are symmetric with respect to the system’s central linear
axis (axis 1), while the change of the natural frequencies along the y axis depends on the
specific mode of vibration. Regarding the first mode, the graph shows that the frequency
has its maximum value located in the lower half of the reference plane; starting from this
point, moving toward the upper or the lower end of the working plane (i.e., increasing
of decreasing coordinate yp), the frequency decreases, reaching its minimum value at the
upper end. For the second mode, minimum and maximum values correspond, respectively,
to the upper end and to the lower end of the working area. Moving toward lower yp
coordinate values, the frequency increases with a gradient more significant in the lower
half of the area. The third mode has the frequency’s minimum value at approximately the
middle of the working area, and the frequency increases, both increasing and decreasing
coordinate yp. The gradient of the frequency becomes quite significant near the ends of
the area. For the fourth mode, the behavior is almost symmetric also along the y direction,
with the maximum value at the upper end and the minimum value in the middle. The fifth
mode is characterized by a progressive increase of the frequency from the lower end to the
higher one. The sixth mode has the minimum value located approximately in the middle
of the area, and the maximum value at the lower end. Again, the frequency increases, both
increasing and decreasing the position yp, but with a gradient higher in the upper half
rather than in the lower one.
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However, the information concerning the natural frequencies is not enough to com-
pletely understand the system’s behavior. As a matter of fact, even if we know the frequency
of vibration corresponding to a specific mode, we do not know how the system vibrates
according to the mode. So we do not know which is the influence of that specific mode on
the behavior of the end-effector. In order to reach this goal, the attention must be focused
on the modal vectors and on their projection on the end-effector’s coordinates; this is the
key point. The values of the modal vectors for the positions corresponding to the minimum
and maximum values of the frequency, taken along the symmetry axis of the plane within
the workspace area not affected by boundary effects, are summarized for each mode of
vibration in Tables 1 and 2. The truck translations are divided by the pulley radius to
compare non-homogeneous linear and angular coordinates fairly.

Table 1. Modal vector for each natural frequency, at the point of minimum.

Mode f , [Hz] x1/Rp x2/Rp x3/Rp ϑ1,1 ϑ2,1 ϑ3,1 ϑ1,2 ϑ2,2 ϑ3,2

1 40.873 −6.77 × 10−15 −3.19 × 10−1 3.19 × 10−1 −9.69 × 10−15 −1.37 × 10−1 1.37 × 10−1 −8.31 × 10−15 1.00 −1.00

2 46.854 −4.04 × 10−4 −2.54 × 10−2 −2.54 × 10−2 −1.50 × 10−2 −5.02 × 10−1 −5.02 × 10−1 −1.50 × 10−2 1.00 1.00

3 54.286 −1.89 × 10−2 −6.88 × 10−3 −6.88 × 10−3 1.00 −5.35 × 10−2 −5.35 × 10−2 3.94 × 10−2 2.50 × 10−1 2.50 × 10−1

4 136.237 −4.90 × 10−5 −9.67 × 10−7 −9.67 × 10−7 7.36 × 10−2 −3.35 × 10−5 −3.35 × 10−5 −1.00 2.37 × 10−6 2.37 × 10−6

5 136.835 2.17 × 10−5 7.78 × 10−4 7.78 × 10−4 −5.46 × 10−5 −1.00 −1.00 7.79 × 10−4 4.15 × 10−2 4.15 × 10−2

6 159.823 −5.25 × 10−5 −1.23 × 10−3 −1.23 × 10−3 −4.13 × 10−4 1.00 1.00 1.92 × 10−2 −2.40 × 10−2 −2.40 × 10−2

Table 2. Modal vector for each natural frequency, at the point of maximum.

Mode f , [Hz] x1/Rp x2/Rp x3/Rp ϑ1,1 ϑ2,1 ϑ3,1 ϑ1,2 ϑ2,2 ϑ3,2

1 49.692 5.33 × 10−1 −5.35 × 10−3 −5.35 × 10−3 −1.00 5.05 × 10−3 5.05 × 10−3 3.63 × 10−2 2.06 × 10−2 2.06 × 10−2

2 126.906 −2.14 × 10−17 1.17 × 10−2 −1.17 × 10−2 1.45 × 10−16 −6.46 × 10−1 6.46 × 10−1 −6.19 × 10−16 −1.00 1.00

3 135.238 −7.71 × 10−4 −2.68 × 10−2 −2.68 × 10−2 2.68 × 10−3 2.65 × 10−1 2.65 × 10−1 −2.37 × 10−2 1.00 1.00

4 157.310 8.51 × 10−4 5.57 × 10−6 5.57 × 10−6 2.55 × 10−2 9.86 × 10−3 9.86 × 10−3 −1.00 −2.75 × 10−4 −2.75 × 10−4

5 250.799 4.92 × 10−19 6.90 × 10−4 −6.90 × 10−4 −3.36 × 10−16 −1.00 1.00 −2.27 × 10−17 9.76 × 10−3 −9.76 × 10−3

6 263.843 1.16 × 10−3 2.78 × 10−5 2.78 × 10−5 8.66 × 10−3 −1.10 × 10−4 −1.10 × 10−4 −1.00 −1.74 × 10−4 −1.74 × 10−4

In both Tables 1 and 2, it can be seen that the motion of the free pulley is dominant
within the modal vectors of modes 4, 5, and 6; on the other hand, the component associated
to the actuated pulleys is the most significant for modes 1, 2 and 3. This rather clean
distinction between lower and higher frequency modes is also reflected in the magnitude
of the displacements of the trucks; indeed the maximum absolute truck displacement over
modes 1, 2 and 3 is at least one order of magnitude greater than that of modes 4, 5 and 6.

The kinematic modal analysis results are also represented from the working space
point of view, highlighting, for different positions on the reference plane, the directions
of the end-effector’s displacement as a consequence of the projection of the modal vector
components related to the carriages’ displacement. In other words, they represent the
projection of the modal vectors after suitable normalization on the mobile platform using
the Jacobian matrix Dp. The direction of the end-effector’s displacements are represented,
for modes 1 to 6, in Figures 9–14.
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Mode f , [Hz] x1/Rp x2/Rp x3/Rp ϑ1,1 ϑ2,1 ϑ3,1 ϑ1,2 ϑ2,2 ϑ3,2
1 49.692 5.33e-01 -5.35e-03 -5.35e-03 -1.00e+00 5.05e-03 5.05e-03 3.63e-02 2.06e-02 2.06e-02
2 126.906 -2.14e-17 1.17e-02 -1.17e-02 1.45e-16 -6.46e-01 6.46e-01 -6.19e-16 -1.00e+00 1.00e+00
3 135.238 -7.71e-04 -2.68e-02 -2.68e-02 2.68e-03 2.65e-01 2.65e-01 -2.37e-02 1.00e+00 1.00e+00
4 157.310 8.51e-04 5.57e-06 5.57e-06 2.55e-02 9.86e-03 9.86e-03 -1.00e+00 -2.75e-04 -2.75e-04
5 250.799 4.92e-19 6.90e-04 -6.90e-04 -3.36e-16 -1.00e+00 1.00e+00 -2.27e-17 9.76e-03 -9.76e-03
6 263.843 1.16e-03 2.78e-05 2.78e-05 8.66e-03 -1.10e-04 -1.10e-04 -1.00e+00 -1.74e-04 -1.74e-04

Table 2: Modal vector for each natural frequency, at the point of maximum.
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Mode f , [Hz] x1/Rp x2/Rp x3/Rp ϑ1,1 ϑ2,1 ϑ3,1 ϑ1,2 ϑ2,2 ϑ3,2
1 49.692 5.33e-01 -5.35e-03 -5.35e-03 -1.00e+00 5.05e-03 5.05e-03 3.63e-02 2.06e-02 2.06e-02
2 126.906 -2.14e-17 1.17e-02 -1.17e-02 1.45e-16 -6.46e-01 6.46e-01 -6.19e-16 -1.00e+00 1.00e+00
3 135.238 -7.71e-04 -2.68e-02 -2.68e-02 2.68e-03 2.65e-01 2.65e-01 -2.37e-02 1.00e+00 1.00e+00
4 157.310 8.51e-04 5.57e-06 5.57e-06 2.55e-02 9.86e-03 9.86e-03 -1.00e+00 -2.75e-04 -2.75e-04
5 250.799 4.92e-19 6.90e-04 -6.90e-04 -3.36e-16 -1.00e+00 1.00e+00 -2.27e-17 9.76e-03 -9.76e-03
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Figure 15. In-plane and out-of-plane components of the first modal vector projected on the mobile platform.

The figures on the left represent the displacement in the x − y plane, while the487

figures on the right represent the displacement in z direction.488

This approach highlights the first order effects of the truck displacements on the489

displacement of the end effector. The in-plane component was defined and represented490

as
√

δp1 + δp2, while the absolute value of the vertical out of plane component is repre-491

sented separately. The vibrational displacements of the mobile platform are represented492

using the same scale, allowing a quantitative comparison between the effects of different493

modes.494

In particular, Figures 15, 16 and 17 are related to the first three modes and show495

that, for these modes, the direction’s displacements of the end-effector both along the496

reference plane and along the vertical direction are significant (please note that the497

colorbars of the graphs have all the same scale). Moreover, the shape of the diagrams498

Figure 14. Displacement’s direction of the end-effector for mode 6.

From the analysis of these diagrams, it is evident that the direction of vibration of the
end-effector, due to a specific mode of vibration, strongly depends on its position within
the reference plane. For all the modes, the displacement directions are symmetric with
respect to the central axis, and they progressively change by changing the yp coordinate.
Figures 15–20 represent, in another way, the same modal vectors, focusing on values of
in-plane and out-of-plane displacements rather than on the directions of vibration, using
the same modal vector normalization for all the figures.
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Figure 16. In-plane and out-of-plane components of the second modal vector projected on the mobile platform.
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Figure 17. In-plane and out-of-plane components of the third modal vector projected on the mobile platform.

is clearly symmetric with respect to central axis. As far as the y direction is concerned,499
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The figures on the left represent the displacement in the x− y plane, while the figures
on the right represent the displacement in the z direction.

This approach highlights the first-order effects of the truck displacements on the
displacement of the end-effector. The in-plane component was defined and represented as√

δp2
1 + δp2

2, where δp1 and δp2 are the first two components of the modal vector projected
on the end-effector, while the absolute value of the vertical out of plane component δp3
is represented separately. The vibrational displacements of the mobile platform are rep-
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resented using the same scale, allowing a quantitative comparison between the effects of
different modes.

In particular, Figures 15–17 are related to the first three modes and show that, for
these modes, the direction’s displacements of the end-effector, both along the reference
plane and along the vertical direction, are significant (please note that the color bars of the
graphs have all the same scale). Moreover, the shape of the diagrams is clearly symmetric
with respect to the central axis. As far as the y direction is concerned, Figure 15, which
refers to the first mode of vibration, shows that the upper half of the working plane, the
one nearer to motors 1 and 2, is characterized by values of in-plane displacements lower
than the ones corresponding to the lower half-plane, the one nearer to motor 1. Hence,
displacements increase as the yp coordinate increases. For the out-of-plane components
graph, the behavior is opposite: as yp coordinate increases, the displacement decreases.
The displacement’s maximum value is located in a small area just below the half of the
plane. Moreover, it should be noted that along the symmetry axis, there is a position near
to the middle of the area where the vertical displacement has a sudden change.

As regards the second mode of vibration, Figure 16 shows an opposite behavior with
respect to Figure 15, for both the in-plane and out-of-plane displacements. The in-plane
displacement decreases as the yp coordinate increases, with the minimum value located
just above the central position, and the maximum one located in small areas on opposite
sides just below the center of the plane. On the contrary, the vertical displacement increases
as the yp coordinate increases, and there is an area around the middle of the plane where it
has its maximum value and where a sudden change occurs.

For the in-plane displacement related to the third mode of vibration (Figure 17), the
working plane is again divided in two equal parts: the lower one is characterized by values
lower than the upper part. Moreover, no sudden changes are highlighted, just small areas
where the values slightly change with respect to the values of the respective half area. The
out-of-plane component is quite uniformly distributed along the plane, with a central area
where the values increase and some areas are located approximately near the ends of the
plane’s horizontal and vertical middle lines where the values decrease.

As regards the displacements related to the fourth, fifth and sixth modes, respectively
depicted in Figures 18–20, the displacements, both in-plane and out-of-plane, of the end-
effector are clearly negligible. This confirms on the entire working plane that—as already
seen for some notable configurations analyzed in Tables 1 and 2—the truck displacements
associated to modes 4, 5 and 6 are comparatively smaller, and thus do not generate
appreciable motions at the end-effector.

6. Conclusions

The proposed approach is applied to a parallel kinematic manipulator with driven
joints characterized by low mechanical stiffness. It outlines the effects of the stiffness of
the transmission, of the mass distribution and of the coupling between the joints due to
the parallel kinematic chains on the end-effector’s vibration direction and magnitude. The
mathematical approach considers the masses of all the elements of the parallel kinematic
part, the system’s actual configuration, i.e., that it is subject to a motion control algorithm,
where the motors are torque controlled, and the transmissions’ stiffness, leading to a 9 d.o.f.
system. The direction of vibration of the end-effector, which depends on the dynamic con-
figuration of the system, is represented by the modal vector calculated from the equations
of the system’s model, linearized around the investigated points of the workspace.

The discussed results show that the magnitude and direction of the modal displace-
ments at the end-effector, evaluated in suitable points of the working space, are influenced
by the configuration-dependent mass distribution and transmission’s stiffness.

The method, applied to a linear delta manipulator, highlights that the effects of
the different vibration modes can be effectively compared, considering the amplitude of
displacement of the end-effector in the x− y plane or z-direction.
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Moreover, the discussion of the results outlines that the displacement’s direction
of the end-effector changes along the working area as a function of the kinematic and
transmission configuration. For the same vibration mode (i.e., the first), in some zones of
the working space, the end-effector is subject to vibration in the vertical direction, while in
other zones, the displacement’s direction is predominantly horizontal. In the same way,
the frequency associated with the mode varies in the workspace. The proposed approach
constitutes a useful support for the system’s design in evaluating the end-effector vibration
direction for a given vibration mode, in choosing the working area within the plane, in
selecting the proper motion laws, and in synthesizing the control system.

Finally, the proposed approach introduces, in an effective and computationally ef-
ficient way, the mass distribution and the coupling effects of the parallel kinematic part
as a function of the investigated end-effector positions, thanks to the used mathematical
approach. Lastly, our work could open the way toward its implementation in the cases of
robots where the stiffness of the parallel kinematic part cannot be neglected.
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