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Abstract: In this work, we present methods allowing parallel, hybrid, and serial manipulators to
be analyzed, calibrated, and controlled with the same analytical tools. We introduce a general
approach to describe any robotic manipulator using established serial-link representations. We use
this framework to generate analytical kinematic and calibration Jacobians for general manipulator
constructions using null space constraints and extend the methods to hybrid manipulator types
with complex geometry. We leverage the analytical Jacobians to develop detailed expressions for
post-calibration pose uncertainties that are applied to describe the relationship between data set size
and post-calibration uncertainty. We demonstrate the calibration of a hybrid manipulator assembled
from high precision calibrated industrial components resulting in 91.1 µm RMS position error and
71.2 µrad RMS rotation error, representing a 46.7% reduction compared to the baseline calibration of
assembly offsets.

Keywords: parallel manipulators; robot kinematic calibration; hybrid manipulators; pose uncertainty

1. Introduction

Kinematic calibration is the process in which a parameterized mathematical model
used in planning and control operations is adjusted to minimize pose-error. Parallel manip-
ulators, or Parallel Kinematic Machines (PKM), of varying degrees of freedom (DoF) are
well-suited for high load applications requiring precision motion and have been utilized in
applications such as pick-and-place [1], drone manipulators [2], and space telescope mirror
adjustment [3]. Parallel manipulators are advantageous with respect to physical properties
of manipulator stiffness and deflection, but have a significantly reduced workspace volume
relative to serial manipulators. Hybrid manipulators incorporating elements from both
parallel and serial manipulators combine these positive attributes and have been pro-
posed for novel mechanism design [4], near-field antenna measurements [5] and medical
robots [6]. Although the majority of the parallel mechanisms in the literature incorporate
coincident passive joints in the form of universal or spherical joints at the top and bottom
of a prismatic leg similar to the popular 6 DoF Stewart–Gough configuration [7,8], recent
work has modified the design to use offset universal joints to increase stiffness and reduce
manufacturing constraints [9]. This 6-RRRPRR parallel manipulator configuration with
offset R-R joints, with individual parallel members constructed of rotary (R) and prismatic
(P) joints listed in order, requires more general kinematic and calibration approaches than
typically used with Stewart Platform designs due to the removal of the geometric sim-
plifications permitted by the coincident passive joints and is of particular interest within
this work. We present constraint-based approaches to solve the kinematics and calibration
problems for strictly parallel manipulators and hybrid parallel-serial manipulators, such as
the example pictured in Figure 1, with the general construction shown in Figure 2.
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Figure 1. CAD representation of a complex hybrid manipulator similar to that simulated for cal-
ibration approach validation. Hybrid manipulators can be used to extend the fine end-effector
positioning of parallel manipulators over a large workspace.

Parallel manipulators are advantageous with respect to physical properties of ma-
nipulator stiffness and deflection, but present significantly more challenges in analysis
than serial manipulators due to the large number of kinematic parameters required to
describe the manipulator and the large forward kinematic solution space [10]. Common
planning operations, such as inverse and forward kinematics, are difficult to compute
due to the possibility of singularities existing in the manipulator workspace, and the char-
acteristic constraint-driven motion introduces difficulties in calibration. The calibration
and kinematic evaluation of complex parallel manipulators typically relies on varying de-
grees of geometric simplifications and external measurements. Efficient forward kinematic
calculation has been achieved through the use of special construction geometry, inverse-
kinematic-residual minimization, algebraic solutions, and polynominal methods [11–14].
Hybrid manipulator kinematics encounter similar problems to strictly parallel manipu-
lators, with closed-form solutions detailed for specific construction geometries such as
stacked 3 DoF parallel manipulators [4].

Parallel manipulator calibration has been achieved using classic second-order con-
strained optimization techniques to simultaneously solve passive joint positions and
kinematic parameters [15]. Although similar methods are implemented for kinematic
workspace analysis and design [16,17], the problem complexity grows rapidly with ma-
nipulator design. Subsequent calibration literature uses first-order fitting and addresses
mechanism constraints by restricting physical motion of the manipulator [18,19], adding
redundant joint instrumentation [20–22], or using inverse-kinematics solutions [23] and
forward-kinematics solutions [24] to generate approximate passive joint information. Ap-
proaches that require manipulator modifications, such as physical motion restriction or joint
instrumentation, are undesirable as they are difficult or impossible to add to existing manip-
ulators. Accordingly, we focus on methods that approximate the passive joint information
that can be extended to hybrid manipulators incorporating passive joint features.

The inverse-kinematic-residual approach to calibration minimizes the difference be-
tween a measured prismatic leg length and an estimate created from the inverse-kinematics
solution at a desired pose [23]. This method can be described as a position-vector-
minimization implementation of loop closure methods with the approximate passive
joint information [20]. This calibration approach benefits from high-accuracy measure-
ment methods, such as laser tracker metrology systems [25,26], and has been extended
to solve the inverse-kinematics and calibrate a 6-RRRPRR parallel manipulator with off-
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set R-R joints [3,27]. Recent work typically utilizes Product-of-Exponentials (POE) link
representation [28], with successful calibrations demonstrated on a 3 DoF parallel manipu-
lator and a 6 DoF Stewart Platform [29].

Figure 2. Robotic manipulators representative of those described in this work. Displayed as (A) parallel
manipulator, (B) serial manipulator, and (C) hybrid manipulator.

Pose-error Jacobian minimization methods based on forward-kinematics solutions are
commonly used in serial manipulator calibrations in which an end-effector measurement
is used to create a virtual closed kinematic chain [30]. The pose-error minimization em-
beds the passive joint estimate within the Jacobian to holistically minimize the difference
between a measured pose and a forward-kinematics solution generated with the current
parameter set. Analytical Jacobian formulations exist for standard Stewart Platform leg
geometry [31], but not for general manipulators. The difficulty associated with determin-
ing analytical Jacobians has led to the use of computationally intensive and less accurate
direct perturbation methods to find an approximate Jacobian [24,32] or the use of heuristic
optimization methods to minimize pose-error such as the Nelder–Mead [33]. Recent work
using pose-error minimization has focused on specialized manipulators with relatively
low mechanical complexity. Mechanism-specific analytical Jacobians have been developed
in 3 DoF [34] and 5 DoF [35] cases and implemented with regularization techniques and
genetic algorithm fitting to allow for pose-error calibration.

Although standard Least-Squares fitting methods are common throughout literature,
the noisy measurements have been identified as having large impacts on calibration quality
due to low parameter identifiability [20]. Alternate approaches for handling the low
parameter identifiability of parallel manipulators have been demonstrated in manipulator-
specific or representation-specific cases, such as ridge regression, truncated singular value
decomposition, and null space conditioning [36–38]. These techniques can positively
impact the quality of the final calibration and have been compared in [29].

Post-calibration manipulator uncertainty analysis has been sparsely identified in the
literature. Monte Carlo techniques have been implemented on parallel manipulator for
analysis, but remain computationally expensive for comprehensive workspace analysis [39].
The uncertainty minimization calibration approach demonstrated by [21] utilizes a priori
covariance estimates based on construction specifications for kinematic parameters and
encoders as inputs. As the covariance estimates were inflated arbitrarily to maintain
congruence with expected manufacturing tolerances, final pose uncertainty cannot reliably
be obtained from this approach.
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The manipulator-specific approach to model derivation and analysis found in state-
of-the-art literature for parallel manipulators starkly contrasts with the mature body of
work for general serial manipulators, and the common inverse-kinematic-residual mini-
mization approaches are problematic to extend to holistic hybrid manipulator calibration.
The myriad of possibilities for the construction of novel parallel and hybrid manipulators
exacerbates the lack of consensus in the robotics field concerning their kinematics and
calibration, driving the need for a simple and generalized representation capable of imple-
mentation across the variety of manipulators found in the industry and research sectors.

This paper’s contribution can be broken into three distinct areas. First, we present
a general approach to describing any robotic manipulator with the same mathematical
framework as serial-chain manipulators. Second, we provide general analytical methods
to construct both kinematic and calibration Jacobians for any robot manipulator. Third,
we leverage these methods to quantify the post-calibration pose uncertainty for any robot
manipulator based on measurement uncertainty, which has not been previously done. This
work extends the state-of-the-art by allowing parallel, hybrid, and serial manipulators to
be analyzed, calibrated, and controlled with the same analytical tools.

This paper is structured as follows. In Section 2, we review the nonlinear least squares
based kinematic calibration framework as implemented on serial robots and detail how
a parallel manipulator can be represented using serial parameterization and simplified
numerical kinematics solutions. A method to enforce mechanical constraints on a Jacobian
level via null-space is introduced as a component of the inverse kinematics method. The
analytical velocity Jacobian for a parallel manipulator is presented. We then extend the
constraint propagation to generate a unified calibration Jacobian for hybrid manipulators
allowing for simultaneous calibration. We additionally present a detailed uncertainty
analysis based on this calibration method and develop guidelines for uncertainty-aware
calibrations. In Section 3, we demonstrate this method on a simulated and real world
hybrid manipulator, respectively. In Section 4, we discuss calibration performance and
possible extensions of our work. For convenience, the notion used throughout this paper
is summarized in Table 1. Matrix size is displayed in brackets before description and
subscripts provide contextual definitions.

Table 1. Mathematical Notation Summary.

Symbol Description

R [3 × 3] Rotation matrix
d [3 × 1] Cartesian displacement vector
T [4 × 4] Homogeneous transformation matrix
τ Vector-based transform parameterization
e Pose-error vector
J Calibration Jacobian
C Constraint Jacobian
φ Vector of all kinematic parameters
θ Vector of all actuator inputs
ψ Vector of all passive joints
v Subscript denoting velocity Jacobian
N Number of measurement poses within a data set
P Number of φ terms for a link
L Number of links representing a manipulator

2. Materials and Methods
2.1. Calibration Methodology Overview

We develop general pose-error Jacobians for kinematics and calibration by apply-
ing existing serial manipulator link definitions and Jacobian formulations to individual
kinematic chains between the distal and proximal frames of a parallel manipulator. By
segregating the Jacobian information related to active joints, passive joints, and kinematic
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parameters, we construct constraint matrices between all kinematic chains within the
manipulator. We condition the pose-error Jacobians with the null space of these constraint
matrices to only permit updates that do not introduce error between the distal frames of
each kinematic chain. This produces a single Jacobian for the entire parallel manipulator,
permitting it to be used for fitted kinematic and calibration solutions.

The calibration approach in this section is described in a general manner. Analytical
definitions of pose-error Jacobians exist for many serial robotic link representations, and
are straightforward to calculate if not available. The advantages of individual parameteri-
zations vary and are dependent on the final application.

2.2. Pose-Error Minimization Framework

Calibration procedures aim to reduce discrepancies in expected and measured poses
for a robot manipulator. We extend an established calibration framework that minimizes
a 6 DoF pose-error calculated at a number of measured poses by adjusting the nominal
kinematic model parameters of a manipulator [30]. We detail the basic principles and
operation of this framework to provide contextual basis for our extensions starting in
Section 2.3.

2.2.1. Objective and Error Formulation

Calibration can be expressed as the general optimization problem

arg min
φ
‖E‖2, (1)

where E is a general representation of a pose-error vector at all points within a measurement
data set. A robust error model is required to evaluate the performance of the kinematic
model and permit effective calibration. The position error ∆p is calculated as

∆p = dm − dc, (2)

where d represents a vector containing the Cartesian position of the robot manipulator end-
effector with subscript denoting as the value being either obtained through a measurement
(m) or calculation (c) via the mathematical model.

Small rotational errors can be represented as a differential orthogonal rotation [30],
however, this approach poorly represents large rotational errors. To provide more robust
calibration behavior, we implement an angle-axis based alternative that linearizes the
rotation error for all error magnitudes as

e[∆Ω]× = Re = RmR>c , (3)

where R represents the rotation matrix representation of the robot manipulator end-effector
using the subscript notation defined above. The angle-axis equivalent ∆Ω is calculated
from the rotation error (Re) using standard conversion methods [40].

These error components are packed into a pose-error vector as

e =

[
∆p
∆Ω

]
, (4)

where ∆p is the position error and ∆Ω is the rotation error. The calculation of this error
vector between transforms is referenced in this work as e(T1, T2), although the inputs are
typically contextually inferred.

2.2.2. Jacobian Packing

Pose-error evolution with respect to the manipulator kinematic parameters φ is de-
scribed in a linear manner by analytical Jacobians. When evaluated at a pose with known
actuator positions θ, each calibrated parameter produces a [6 ×1 ] vector of the relationship
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between the 6 DoF error term and perturbations to the respective kinematic parameter. As a
single error term exists for each measured pose, the vectors corresponding to all kinematic
parameters are horizontally concatenated in a common Jacobian packing method [30]. For
convenience, parameters associated with an individual serial link are grouped, resulting in
the block Jacobian for a single pose of

Jφ =

[ [
∂e

∂φ1,1
· · · ∂e

∂φ1,P

]
︸ ︷︷ ︸

Link 1

· · ·
[

∂e
∂φL,1

· · · ∂e
∂φL,P

]
︸ ︷︷ ︸

Link L

]
, (5)

where the Jacobian blocks corresponding to links with P parameters are displayed. Blocks
corresponding to any number of links can be concatenated to permit calibration of any
possible serial manipulator construction. Symbolic definitions for pose-error Jacobian com-
ponents for the link parameterizations used within this work are provided in Appendix B.

Multiple pose measurements are required for convergence of the pose-error minimiza-
tion solution during calibration of nontrivial robotic manipulators. To accommodate any
number of measurements, pose-error terms (4) and the concatenated kinematic parameter
Jacobian (5) are vertically concatenated for N points as

JΦ =


Jφ,1
Jφ,2

...
Jφ,N

, E =


e1
e2
...

eN

. (6)

Here, a Jacobian representing all measured poses is expressed with an uppercase Φ,
while a Jacobian representing any single measured pose is expressed with a lowercase φ.

2.2.3. Parameter Update

Manipulator kinematic parameters φ can be found to minimize the pose-error using
the Gauss–Newton approach to nonlinear least squares with JΦ and E. Successive ∆φ steps
on a set of all measured poses are calculated as

∆φ = J†
ΦE, (7)

where † indicates the pseudoinverse of a matrix. Within this work, the pseudoinverse is
calculated using Singular Value Decomposition (SVD) of the Jacobian matrix as

A† = VΣ−1U>, (8)

where U, Σ, V are standard SVD components [41]. Small singular values within Σ cor-
responding to poorly identifiable kinematic parameters can result in the calculation of
extremely large terms within the pseudoinverse generation process. These parameters
are ignored by replacing the terms within Σ−1 that correspond with singular values with
condition numbers above a specified threshold with 0 [42]. This produces a similar step to
Levenberg–Marquardt fitting with a fixed damping parameter.

The step is added to the existing φ and the process is repeated until convergence
conditions are met. More robust stepping algorithms such as the Levenberg–Marquardt
method [43] or Sequential Quadratic Programming [44] can also be used to generate steps
in cases where high parameter sensitivity results in nonconvergent behavior for standard
Gauss–Newton steps, but implementation details for these algorithms is outside of the
scope of this work and may require additional gradients to be developed. The constrained
Jacobians produced in this work are applied for a variety of analytical purposes outside of
fitting techniques, and are a primary focus of this work.
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2.3. Parallel Manipulator Parameterization and Kinematics

To calibrate parallel manipulators simultaneously with serial links within the frame-
work detailed above, an analogous Jacobian is required that captures the sensitivities of
the kinematic parameters of the manipulator with respect to the final pose. A parallel ma-
nipulator is represented as a special serial link which returns a single transform provided a
set of active joint inputs, with kinematic behavior mathematically represented by standard
serial links.

Actively controlled joint parameters corresponding to the linear or rotary actuators of
a robotic manipulator are denoted by θ, while passively driven joint parameters such as
unpowered bearings or slides driven by the constraints of the manipulator are denoted by ψ.
Static offsets that describe the manipulator (for example mechanical linkages and metrology
systems used during calibration) are incorporated in this work with general symbol τ,
which represents a parameterized transform in vector format that can be calibrated as a
typical link within the presented framework.

2.3.1. Serial Chain Parameterization

Parallel manipulators are constructed from several serial chains connected in a manner
that constrains their motion. These serial chains, termed parallel members within this work,
are often underactuated due to the presence of one or more unpowered joints. A parallel
member is represented using a standard serial link models positioned by pose offsets τ
to align the distal and proximal frames of the complete parallel manipulator in the home
position. Shown with appropriate notation in Figure 3, each parallel member M can have
any number of links. Individual serial links within the parallel member serial chains are
denoted as Mj,k, in which the first subscript denotes the parent parallel member and the
second the relative position of the link within the parallel member.

The pose of a hybrid manipulator can be described by constructing a serial chain P
composed of any one parallel member and the strictly serial links of the manipulator. In
each possible serial chain, the distal and proximal ends of the parallel member as well as
the complete hybrid manipulator must remain coincident in any valid configuration as
displayed in Figure 3. These frame constraints are used to capture the sensitivities of the
complete manipulator and allow for calibration.

2.3.2. Forward Kinematics

The constraints that drive the passive joints of a parallel manipulator introduce
additional nonlinearities into the forward kinematics problem, resulting in numerous
valid analytical solutions for any set of input θ [45]. We avoid the complexity of analytical
solutions by implementing a nonlinear least squares inverse kinematics fitting method with
the serial chain representation of the parallel manipulator to generate a valid transform
for a parallel manipulator. This method allows a single valid solution within the desired
workspace to be found quickly in cases with a singularity-free work envelope and a nearby
pose approximation. Collision checking for fitted solutions can be conducted quickly due
to the proximity to the initial feasible pose.

The forward kinematics fitting process adjusts pose estimate vector τ, corresponding
to Tparallel in Figure 3, and passive joint parameters ψ to yield a valid final transform for
the parallel manipulator. This process can be expressed as the optimization problem for
the M parallel members as

arg min
τ, ψ

‖Ef‖2

subject to e(T1, Tm) = 0 ∀ m ∈M,
(9)

where each T is the transform calculated for an individual parallel member indicated via
subscript with associated input set (φ, θ, ψ). Without loss of generality, we choose a point
and quaternion (p&q) formulation of pose to generate singularity-free Jacobians over a
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small number of parameters. Pose-error terms (4), between the distal transform of each
parallel member at ψ and the pose guess τ, are minimized to find a convergent forward
kinematics solution. The errors for each of the M parallel members of the manipulator are
vertically concatenated similar to (6) into a single [6M×1] error vector as

Ef =


e1
e2
...

eM

. (10)

Figure 3. Notation representing the hybrid manipulator. Standard serial links are represented in green, with parallel
members M1 and M2 formed from serial links in blue. Adjustable pose offsets are represented by dashed lines, while serial
links are solid. Strictly serial links L1 and L2 share parameters across each serial chain. The length of links M1,2 and M2,2

and the joint angles of links L1 and L2 are actuated (active joints, θ). All rotation joints within parallel members M1 and M2

are unactuated (passive joints, ψ).

The forward kinematic error Ef is minimized by constructing Jacobian Jf to adjust both
pose estimate and passive joint parameters simultaneously as

Jf =

Jτ Jψ,1 . . . 0
...

...
. . .

...
Jτ 0 . . . Jψ,M

, (11)

where Jτ used in this work is provided in Appendix A and Jψ are the horizontally con-
catenated serial chain velocity Jacobians for the passive joints of the parallel members
identified by the second subscript. As active joint values θ are fixed for any given forward
kinematics problem, the velocity Jacobian Jθ terms are not included. Kinematic parameters
φ are used to generate the error terms, but are absent from this Jacobian formulation as
they are not adjusted in this process.

The update step for the fitting process is calculated similarly to (7) as[
∆τ
∆ψ

]
= J†

f Ef. (12)

The forward kinematics fitting process terminates when error is reduced below a
specified threshold or updates are no longer reducing error by a secondary threshold. To
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ensure convergence to the expected pose, it is preferable to use a more accurate initial
estimate for τ based on nominal inputs or metrology measurements.

2.3.3. Inverse Kinematics

Determining the active joint parameters θ to reach a specific pose is necessary for mo-
tion planning. We extend the inverse kinematics fitting methods developed in the previous
section to formulate a constrained velocity Jacobian that describes a linear relationship
between active and passive joint angles and end-effector pose. This allows valid input
combinations close to the starting position of the manipulator for a desired pose to be
found with nonlinear least squares methods.

The passive joint parameters ψ of a parallel manipulator are required to fully charac-
terize its motion. Provided a valid starting configuration for the parallel manipulator and a
desired pose Tdes, an identical pose-error e is calculated using (4) for each parallel member.
The inverse kinematics fitting process is formulated as

arg min
θ,ψ

‖e
(

Tdes, Tparallel

)
‖2

subject to e(T1, Tm) = 0 ∀ m ∈M,
(13)

where both active and passive joint values are adjusted to reach the desired pose. A valid
starting configuration indicates that the distal frames of all constituent parallel members
are coincident as displayed by Tparallel in Figure 3.

At a coincident configuration the difference in parallel member final pose (10) must
be zero, allowing for the relationship between parallel member parameter changes and
coincident frame motion to be modelled. The pose estimate Jacobian (11) is reframed as a
constraint to maintain a coincident frame and expanded to incorporate the active joints of
the parallel member θ as

C =

Jτ −Jθ,1 . . . 0 −Jψ,1 . . . 0
...

...
. . .

...
...

. . .
...

Jτ 0 . . . −Jθ,M 0 . . . −Jψ,M

. (14)

To yield a valid coincident pose for the parallel manipulator for a parameter update
step (7), it must have form

C

∆τ
∆θ
∆ψ

 = 0, (15)

which can also be expressed as,

M∆Jττ = Jθ∆θ + Jψ∆ψ, (16)

where Jθ and Jψ are the horizontally concatenated Jacobian blocks of M parallel members.
Any change in the coincident frame pose representation τ directly impacts the total

pose-error of the parallel manipulator as defined in (4) to an arbitrary frame of interest as

∆e = Jτ∆τ. (17)

By substitution and matrix manipulation,

∆e =
1
M
[
Jθ Jψ

][∆θ
∆ψ

]
, (18)

where it becomes apparent that a scaling factor of 1
M is necessary to condition the parallel

member Jacobians for use in a constrained parallel manipulator.
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Nota Bene: this approximation is only valid in cases where the parallel manipulator
begins in a constrained state with zero constraint error and does not inherently enforce the
constraint with an arbitrary parameter step. The addition of this scaling factor only ensures
that the weighting found during the forward kinematics process is expressed during the
calibration process, removing the need to generate a specific τ constraint.

The relationship (18) is used in the inverse kinematic fitting process. By considering
the active and passive joints of each parallel member of a parallel manipulator separately, a
composite velocity Jacobian for independent parallel member motion is defined as

Jv =
1
M
[
Jθ Jψ

]
, (19)

where M represents the number of parallel members that define a parallel manipulator
and Jθ and Jψ are the active and passive joint parameter Jacobians of all constituent parallel
members concatenated in the link-wise manner described in (5).

While representing the motion of many separate serial chains, the Jv in (19) does not
yet capture the constraints of the complete parallel manipulator as each chain can move
without impacting the others. For any valid pose, the end-effector frames for each of the
parallel members serial chains must remain coincident; no pose-error can exist between
them. This constraint is enforced by using the previously calculated Jacobians Jθ and Jψ.
To match the column order of (19), the constraint matrix for each Jacobian is constructed
separately but with identical block structure. The constraint matrix associated with Jθ is

Cθ =


Jθ,1 −Jθ,2 0 . . . 0
Jθ,1 0 −Jθ,3 . . . 0

...
...

...
. . .

...
Jθ,1 0 0 . . . −Jθ,M

, (20)

where the second Jacobian subscript identifies the parallel member each block is associated
with. The passive joint parameter constraint matrix Cψ is generated by substituting the
appropriate Jψ components for the parallel members into the structure. The individual
constraint matrices are combined for final use as

Cv =
[
Cθ Cψ

]
, (21)

where the column dimension matches that of Jv.
To ensure that no constraint error is generated by updates to θ and ψ, a null space is

constructed from the combined constraint matrix and propagated to the combined parallel
manipulator velocity Jacobian Jv as

J†
v|C = N (Cv)(JvN (Cv))

†, (22)

where N (Cv) indicates the null space of the input constraint matrix. It should be noted
that the null space of a matrix is not unique - any valid null space can be multiplied by a
real value to yield another valid solution [46]. The construction of (22) can use any valid
null space.

For use in the inverse kinematics of hybrid manipulators, this must be converted via a
second pseudo-inverse operation to standard form Jv|C or calculated in the alternate form

Jv|C = (JvN (Cv))N (Cv)
†. (23)

The constrained velocity Jacobian is used to successively calculate parameter steps
as shown in (7), with the process terminating once ‖E‖2 has fallen below a set tolerance
or additional exit conditions are met. If the fitting process fails to converge, the feasibility
of the pose should be evaluated. As passive joints are updated during every forward
kinematic calculation, components of the constrained velocity Jacobian related to ψ are
removed before step calculation, leaving only the desired θ components.
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2.4. Parallel Manipulator Calibration

The constraint methods implemented for inverse kinematic calculations of parallel
manipulators can be used to create a pose-error Jacobian for calibrated kinematic parame-
ters. By imposing kinematic constraints to each of the parallel members of a manipulator,
we assemble complete parameterized kinematic information and condition it such that the
parallel manipulator acts as a virtual serial link in hybrid manipulator cases.

2.4.1. Jacobian Packing

The passive joints of a parallel manipulator are responsible for the characteristic
closed-loop kinematics but are seldom fitted with encoders in commercial units. Should
the joint angles of one parallel members be completely known, the calibration problem
can be solved by a standard serial approach as implemented in [21]. To remove the need
for fitting a platform with additional encoders, our work considers these passive joints as
an additional set of unknown parameters to be solved for on a pose-by-pose basis. The
Jacobians linked to kinematic parameter and passive joints are emplaced into a composite
calibration Jacobian Jcal as

Jcal =


Jφ,1 Jψ,1 0 . . . 0
Jφ,2 0 Jψ,2 . . . 0

...
...

...
. . .

...
...

Jφ,N 0 0 . . . Jψ,N

, (24)

where the second subscript identifies the pose to which the Jacobian is related. Kinematic
parameters associated with the standard serial links are separated from those associated
with each parallel members and recombined as

Jφ,i =
[
Jφ,serial Jφ,parallel

]
. (25)

2.4.2. Constraint Matrix Construction

The calibration Jacobian matrix Jcal captures the kinematics of each serial chain within
the hybrid robotic manipulator, but ignores the physical constraints that drive the passive
joints within the manipulator. Each of the individual parallel members within the parallel
manipulator share distal and proximal frames; zero pose-error (4) exists between any con-
stituent serial chain at any valid set of joint parameters θ and ψ. Any kinematic parameter
φ changes made during calibration must not violate this zero pose-error constraint. By
conditioning Jcal with the null space of linearized kinematic parameter constraints Cφ and
passive joint constraints Cψ, valid parameter steps are enforced.

The format presented in (20) is implemented as to calculate Cφ and Cψ for N pose
measurements. These component constraint matrices are packed into a composite matrix
in a manner similar to (24) with structure

Ccal =


0 Cφ,1 Cψ,1 0 . . . 0
0 Cφ,2 0 Cψ,2 . . . 0
...

...
...

. . .
...

0 Cφ,N 0 0 . . . Cψ,N

, (26)

where the subscripted number indicates the pose with which each Jacobian is associated
with. As the serial link kinematic parameters cannot cause error between the parallel
members end frames, zeros matrices corresponding to the columns of these parameters are
appended to the left hand side of the matrix to match the dimensionality of the standard
serial link Jacobians present in (24).

When used with hybrid robotic manipulators, the Jacobians used to generate the
constraint matrices must represent the error evolution of the distal frames of the parallel
members that compose a parallel manipulator rather than that of the hybrid manipulator.
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Should multiple parallel manipulators be present in the hybrid manipulator, additional
sets of constraints are required.

Similarly to the inverse kinematics case, the constrained pseudo-inverse is calculated as

J†
cal|C = N (Ccal)(JcalN (Ccal))

†. (27)

While it is necessary to incorporate the passive joint parameters and associated con-
straints to properly capture the dynamics of a parallel manipulator, the forward kinematics
process (Section 2.3.2) must be run to acquire updated pose information at the beginning
of each calibration loop. To prevent redundant parameter updates, the portions of the
pseudoinverse related to these passive ψ parameters are removed as

J†
Φ|C = [I 0]J†

cal|C , (28)

where I is a full-rank identity matrix appropriately sized to match the number of φ terms
and zeros are appended to reach proper matrix dimensions. In the case where the Jacobian
for a single measured pose is generated, notation Jφ|C is used. Using the reduced Jacobian
form a calibration step is calculated according to (7) and added to the parameter estimate
from the previous step.

2.4.3. Pose-by-Pose Jacobian Generation

In the case of D DoF data collection, the dimensions of the Jcal and the associated Ccal
are defined as

[DMN ×
(
length(φ) + Ulength(ψ)

)
], (29)

where N is the total number of measured poses and U is the number of parallel manipulator
poses requiring a unique ψ solution. For purely random pose selection N = U, and the
linear growth of the system dictates that DM > length(ψ) for the problem to remain
defined with a sufficiently large number of pose measurements. If this condition does not
exist, multiple pose measurements must be collected for each ψ solution by retaining the
parallel manipulator pose while moving the strictly serial links such that N > U. The
column of shared kinematic parameters φ of the strictly serial links results in a linked
constraint matrix that does not permit direct simplification, demanding computationally
expensive null space and pseudoinverse calculations for (27).

To permit the problem to remain computationally tractable for general calibration
purposes, we present a method for enforcing the constraint framework on a pose-by-pose
basis. Efficient Jacobian generation is accomplished by isolating the parallel manipulators
of a hybrid manipulator and analyzing them individually. Serial Jacobians for kinematic
parameters φ and passive joints ψ are generated for each of the M parallel members
and horizontally concatenated to form composite Jacobians Jφ and Jψ. All Jacobians
generated during this process only consider the parallel manipulator-values are relative to
the proximal frame of the parallel manipulator. These Jacobians are then combined to form
unconstrained calibration Jacobian

J̃cal =
1
M
[
Jφ Jψ

]
. (30)

The constraint Jacobians are constructed in the manner proposed in (20) as

C̃cal =
[
Cφ Cψ

]
. (31)

The existence of a valid solution for passive joints is required to be present at the time
of Jacobian generation. These solutions are generated during each epoch of the calibration
process using the forward kinematics approach, and splits the fitting problem to allow for
faster operation.
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Unlike the prior solution approach, the constraint must be applied in a manner that
yields a constrained Jacobian rather than the pseudoinverse calculated in (27) and (28) as

J̃φ|C = J̃calN (C̃cal)([I 0]N (C̃cal))
†, (32)

where I is a full-rank identity matrix appropriately sized to match the number of φ terms
and zeros are appended to reach proper matrix dimensions.

The Jacobian J̃φ|C generated in this manner is in the parallel manipulator local frame
and must be transformed to reflect the geometric position of the manipulator within the
hybrid manipulator before use [47]. As implemented, this process transforms the Jacobian
with rows corresponding to position and rotation error terms (4) as

J =
[

Jp
JΩ

]
(33)

to desired world frame, designated as frame 0 within this work, from local proximal and
distal frames `− 1 and ` as

Jworld =

[ 0R` 0
0 0R`

][
Jp −

[
`d`→L

]
×

JΩ

JΩ

]
, (34)

where the associated rotation matrices R and position offsets p are calculated using the
other links of the hybrid manipulator.

The Jacobians for each constituent link in the manipulator are horizontally concate-
nated to yield the final calibration Jacobian. This process, although appearing to be a minor
alteration to the methods described in Section 2.4 ensures that constrained calibration can
be accomplished with sufficiently large pose data sets on manipulators with large numbers
of passive joints that require fitting by reducing Jacobian dimensions to

[DN × length(φ)]. (35)

The Jacobians generated in this manner have been validated to match those generated
using numerical parameter perturbation methods.

2.5. Pose Uncertainty Estimation

A major contribution of this work is extending the constrained Jacobians described
in this work to estimate the pose uncertainty of a calibrated robotic manipulator. We
detail the process for propagating covariance matrix representations of known measure-
ment uncertainty in the pose-error (4) space and manipulator encoder resolutions at any
pose. This is of particular interest in model-based positioning control cases with high
accuracy requirements.

Residual pose uncertainty after a calibration is driven in part by measurements with
uncertainty being incorporated into the least-squares fitting process. The measurement
uncertainties are propagated into the final fitted parameters via the developed calibration
Jacobians (28) as

Σφ = J†
Φ|CΣp

(
J†

Φ|C

)>
, (36)

where Σφ is the covariance matrix for the calibrated kinematic parameters φ arranged
to match the column order of Jcal|C . The covariance matrix Σp is constructed by diago-
nally inserting the covariance matrices for all pose measurements used in the calibration
diagonally as
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Σp =

Σp,1 0
. . .

0 Σp,N

, (37)

where Σp,n indicates the (DoF × DoF) covariance matrix associated with an individual
pose measurement. In this work, pose covariance matrix is (6 × 6), with elements ordered
to match the pose-error vector (4) as [px, py, pz, Ωx, Ωy, Ωz]. Each of these components is
expressed in the units of m2 and rad2 for position and rotation error terms, respectively.

Parameter uncertainty information is extended back into error space for measured
poses using covariance propagation techniques [41] with general form

Σb = JΣaJ>, (38)

where J = ∂a
∂b . Pose-error uncertainty is also influenced by the use of digital encoders for

joint measurement purposes, as there exists a degree of uncertainty in the final positions of
any joint parameter when measured in discrete intervals. The motion of the manipulator
due to these variables is described by the constrained velocity Jacobian, the combined
standard uncertainty [48] as expressed by pose covariance estimate is found as

Σest = Jφ|CΣφJ>φ|C + Jv|CΣθJ>v|C , (39)

where Σθ is the covariance matrix associated with the encoder uncertainty, and Σφ is given
by (36) above. Mean standard deviation values are calculated from these terms as

σ̄ =

√
tr(Σ)

n
, (40)

where Σ is the covariance matrix to be analyzed and n is the number of measured DoF.
For the pose-error vector defined in (4), the position and rotation components can be
evaluated separately for unit-dependent operations with n = 3. In this work, the scalar
quantity produced by using full frame information with n = 6 is used as a comparison
metric between calibration cases, but are unsuitable for other evaluations due to the
meaningless units.

2.6. Dependence on Data Set Size

The ultimate goal of a calibration procedure is to reduce the expected pose-error to
acceptable levels for a given use case. The post-calibration performance can be described
by the covariance of the residual pose-error terms, with low pose-error uncertainty desired
for a calibrated model. We analyze the impacts of adding additional pose measurements
with known uncertainty characteristics to a calibration data set on the estimated covariance
defined in (39).

2.6.1. Expected Jacobians

There exists substantial variation in robot manipulator construction and scale across
industry. Characteristics relating to the convergence of the expected Jacobians for calibrated
parameters J̄φ|C and active motion parameters J̄v|C are difficult to generalize with respect
to total data set size and must be determined on a case-by-case basis to provide accurate
results in the operational volume for the robotic manipulator in question.

A basic algorithmic approach to finding the expected Jacobians is presented in
Algorithm 1 and relies on simulated pose generation using the pre-calibration manipulator.
This method assumes that only small perturbations are present in the manipulator.

As a data set of N pose measurements increases in size, the expected Jacobians
developed above can facilitate analysis of robotic manipulator behavior when used with
the covariance matrices above. In a converged state, (39) can be rewritten as
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Σ̄est = J̄φ|CΣφ J̄>φ|C︸ ︷︷ ︸
Λ

+ J̄v|CΣθ J̄>v|C︸ ︷︷ ︸
β

. (41)

Estimated covariance components related to calibration uncertainty (Λ) and encoder
uncertainty (β) have behavior driven by the calibration fit covariance Σφ and encoder feed-
back covariance Σθ , respectively. Calibration uncertainty is primarily driven by uncertainty
in the measurements used in the fitting process, while encoder uncertainty exists due to
hardware discretization.

Convergence to the expected state is measured by taking the trace of the expected
pose covariance matrices Λ and β. As the eigenvalues of a covariance matrix indicate the
variance in each principle direction, the trace provides a conservative evaluation method
with scalar output for the expected final magnitude of (39).

Algorithm 1: Jacobian convergence algorithm

Input : (θrand, τrand): Simulated random poses in workspace
Output :

(
J̄φ|C , J̄v|C

)
: Converged expected Jacobians

(Nest): Estimated number of required pose measurements
1 Initialize N such that measured DoF ≥ calibrated DoF;
2 while ∆tr(Σest) > ∆min do
3 Generate N pose measurements;
4 for i ∈ N do
5 Calculate Jv|C (22);
6 Calculate Jφ|C (27), insert into J̄cal|C ;
7 end
8 Calculate J̄φ|C and J̄v|C via element-wise mean;
9 Calculate Σest (39);

10 Calculate tr(Σest);
11 if ∆tr(Σest) > ∆min then
12 Increase poses→ N = 2N;
13 end
14 end
15 Return Nest = N;

2.6.2. Covariance Component Evolution

Calibrated kinematic parameter covariance Σφ evolves with the number of points N.
In the simple case where measurement parameter variance is completely independent, as
N increases Σφ evolves as

Σφ =
1
N

Σp. (42)

Covariance terms are introduced into measurement uncertainties by instrument-based
term coupling or by rotating a covariance matrix into a meaningful coordinate frame. Due
to the shape information that these terms impart to the covariance ellipsoid, they cannot
be neglected during analysis. The incorporation of these terms is simplified by using the
expected Jacobians and assuming that each pose measurement covariance Σ̄p,n is static.
In the measurement cases where a pose measurement covariance fluctuates, the expected
covariance matrix for the pose masurements can be used. By substitution, (36) yields

Σφ ≈ J̄†
cal|C Σ̄p

(
J̄†

cal|C

)>
, (43)
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where J̄cal|C is composed of J̄φ|C vertically concatenated N times and Σ̄p is composed of
expected pose measurement covariance matrix Σ̄p,n emplaced as (37).

As N increases, it can be shown that the expectation terms converge and the estimated
covariance component related to the calibrated parameters become

Λ =
1
N

Σ̄p. (44)

In physical manipulators with digital encoders of equal step size, covariance Σθ of
active motion parameters is an invariable quantity driven by encoder step counts. With a
converged expectation for the associated Jacobian, the estimated covariance component β
is a static term that cannot be reduced by adding additional measurements.

2.6.3. Estimated Data Set Size

The approximation (44) can be substituted into (41) and evaluated in a scalar manner
by taking the trace of each matrix. This forms a general relationship of the estimated
post-calibration covariance to the number of pose measurements as

N =
tr
(
Σ̄p
)

tr(Σ̄est)− tr(β)
. (45)

An estimate for the number of data points required to reach a desired pose covariance
matrix Σdes can be found by substituting for Σest and evaluating for N. It can be inferred
from the relationships above that as N → ∞, Σ̄est → β. Should a desired covariance matrix
with a scalar evaluation below that of β be entered in (45), a negative N will be returned
indicating infeasibility.

Variation exists between robotic manipulators that can result in behavior that is poorly
characterized by the proposed estimated Jacobian method. The estimated number of pose
measurements described above is presented as a guideline only; the actual number of
measurements required is dictated by the target manipulator construction and desired
post-calibration performance. A sample application of using this methodology is presented
in Section 3.3 below in a simulated case for validation purposes.

3. Experimental Evaluations
3.1. Simulated Hybrid Manipulator Description

Algorithm robustness and covariance characteristics are validated by simulating a 12
DoF hybrid robot composed of a 6 DoF 6-RRRPRR parallel manipulator with offset R-R
joints similar to that proposed in [9] attached to the end of a midsize industrial 6 DoF serial
manipulator. Nominal parameters representative of commercial products are initialized
for both manipulators. A manipulator arranged in a similar configuration is displayed in
Figure 1.

Kinematic Model and Parameter Identification

Manufacturing errors are added by perturbing the nominal parameters of the hy-
brid manipulator. As the tolerances for the commercial robotic manipulators, within this
scope, are assumed to be relatively small, kinematic parameters φ are perturbed by a
uniformly-distributed random amount within the intervals outlined in Table 2 and applied
on a link-by-link basis within the model before calibration occurs. Values are designed to
reflect typical machining tolerances with respect to manipulator cost and scale. Parallel
manipulator manufacturing error ranges are based on estimates from prior parallel mech-
anism design in the literature [49]. Serial manipulator error ranges inflate these values
by five times to account for approximate differences in scale. Quaternion parameters are
renormalized to unit vector after perturbation. Unperturbed kinematic parameters are
used during data set generation and error comparisons.
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Table 2. Simulated Manufacturing Error Intervals.

Manipulator Type Position (µm) Angle (°)

Serial ±127 ±0.5
Parallel ±25.4 ±0.1

Due to the relative complexity of hybrid manipulators, the total number of kinematic
parameters used to describe the manipulator can be very large. Although hybrid manipula-
tors can typically be described by a relatively small subset of these parameters, this minimal
set of kinematic parameters is dependent on the manipulator configuration and may be un-
known. Non-minimal kinematic parameter sets include poorly identifiable parameters that
must be addressed to prevent numerical instability from occurring during the calibration
process. Jacobian columns associated with poorly identifiable parameters with a condition
number above 500 are ignored by zeroing associated singular value components [42]. This
method provides an effective way of validating the calibration performance on a variety of
manipulator types without extensive parameter set adjustment. A total of 68 kinematic
parameters were calibrated, of which 48 were incorporated in the parallel manipulator
and evenly distributed to the constituent parallel members. A listing of the calibrated
parameters within this case study is found in Table A3.

3.2. Simulated Pose Data

Repeated calibration testing is facilitated by the generation of 20,000 calibration and
2000 validation simulated pose data sets. Each data sets is randomly generated within
feasible active joint space ψ created using the nominal values of the hybrid manipulator,
and contain uncertainty-free measurements in the form of forward kinematics solutions in
a specified world frame. For parallel manipulators, joint parameters are selected such that
a collision-free pose in operational space is formed for each data point.

3.2.1. Measurement Uncertainty

Normally distributed error sampled from covariance matrices is added to the sim-
ulated measurement data generated within this work. The purpose of creating these
uncertain measurements is two-fold: (1) To permit validation of the calibration approach
and algorithms by demonstrating that perturbations corresponding to manufacturing errors
can be removed from kinematic parameters, and (2) to demonstrate that the post-calibration
pose uncertainty will be reduced below that of the data set measurement uncertainty.

Random covariance matrices are generated using a 6 DoF Wishart distribution sam-
pled from an identity matrix [50]. To maintain comparable uncertainty values between
trials, each covariance matrix is scaled such that its trace is equivalent in value to that of a
base uncertainty case in which only variance terms displayed in Table 3 exist at each point.
Values are arbitrarily small and chosen to be distinct from one another. The covariance
matrix for each pose is ordered to match the DoF error terms found in (4).

Table 3. Simulated Data Standard Deviations.

Variable: px (m) py (m) pz (m) Ωx (rad) Ωy (rad) Ωz (rad)

Std Dev: 4 × 10−5 3 × 10−5 2 × 10−5 5 × 10−5 6 × 10−5 7 × 10−5

3.2.2. Impact of Data Set Size on Pose Uncertainty

The relationships between expected pose uncertainty and data set size described in
(41) and (44) are validated by performing Monte Carlo analysis on randomly selected
subsets of the simulated data. Calibration and velocity Jacobians are generated for each
selected pose along with a single random pose covariance matrix scaled such that its trace
matches that of the arbitrary baseline case. The expected Jacobians in each trial are formed
by taking the element-wise mean of the respective point-wise matrices. Trial-invariant
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covariance matrices representing uniformly distributed encoder uncertainty are included
in each trial. The trial covariance traces are combined and converted to percentages of the
covariance traces found in the minimum calibration case in which only twelve 6 DoF pose
measurements are present. The percentage distributions for trials at specified data point
intervals are compared to the baseline encoder uncertainty levels and expected covariance
trace values in Figure 4.

Figure 4. Evolution of the trace of expected pose-error covariance with respect to data set size. Values
are displayed as a percentage of the expected pose-error covariance found at the minimum necessary
calibration data set of twelve 6 DoF poses for the hybrid manipulator. Median values are listed above
each distribution. 100 trials were conducted for each N value to generate the actual distributions
(blue). Distributions predicted by (44) are pictured in red, and show convergence with actual results
as N → ∞.

The validation trials display overestimation of final pose covariance for the simulated
manipulator. The large workspace volume covered by the simulated points results in a
worst-case scenario, as the linear nature of the expected Jacobian cannot fully capture
the highly non-linear behavior of the manipulator. As all trial values are bounded by the
estimated pose covariance, conservative estimates for calibration data set sizes can be safely
generated with (45).

3.3. Simulated Hybrid Manipulator Calibration

To more robustly test the calibration framework and ensure that convergence is
observed over the entire workspace, repeated calibration trials are performed on copies of
the perturbed model. A total of 100 trials are completed, with each trial using a 700 pose sub-
set of the 20,000 simulated calibration poses. Jacobian dimensions in each trial are defined
by (35) are [4200× 68]. The number of poses chosen for each sub-set is informed by the
breakpoint for diminishing returns of expected covariance as displayed in Figure 4. Each
subset is selected randomly without replacement and is generated at the beginning of each
trial. Measurement uncertainty is added to each data set during the trial; uncertain data
sets are not shared between trials nor is uncertainty information permanently associated
with any individual data point.

Each calibration trial typically reached exit conditions in 3 epochs. Standard Gauss–
Newton steps described in (7) are taken with a pseudoinverse cutoff ratio of 1:500 used
to permit calibration of less observable variables. An additional constraint and error
pair corresponding to each calibrated unit quaternion is appended to the previously de-
scribed calibration Jacobian to ensure that only steps that retain the unit quaternion format
are taken.

Each of the calibrated parameterizations is validated with the previously generated set
of 2000 validation poses not used within the calibration process. Each trial utilizes the same
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baseline validation data set, although measurement uncertainty is added independently
in each. Pose-error values for each trial are generated for validation data set in cases
with and without added measurement uncertainty. A scalar metric of performance is
found by separately taking the root-mean-square (RMS) values of the position and rotation
components for each generated error vector. The distributions of the RMS pose-error
residuals before and after calibration for all trials are displayed in Figure 5.

Figure 5. Validation data set error distributions for simulated hybrid manipulator calibration. Mea-
surement uncertainty is added to each data point as described in Section 3.2. Initial error distributions
(red, A) are significantly higher than calibrated error distributions (blue, B). Error distributions on
the same validation data set without measurement uncertainty (green, C) indicate that the calibration
procedure reduces error below the measurable uncertainty threshold. Median values are listed above
each distribution, and a log axis scale is used to present the different magnitudes of data presented.

It is important to note that the error terms generated from validation poses without
measurement uncertainty fall below those with measurement uncertainty, indicating that
for well modelled high precision mechanisms such as parallel manipulators, pose-error
becomes bounded by measurement uncertainty during the fitting process. The calibration
fitting process is capable of reducing kinematic pose-error below this measurement un-
certainty threshold in cases with sufficiently large data sets. This can best be observed in
simulated cases such as presented by merit of being able to generate perfect measurements.

3.4. Experimental Manipulator Description

The developed calibration approach is used to characterize a physical hybrid manip-
ulator. Compared to the high-complexity simulation used for validating the calibration
approach, this test case demonstrates the procedure’s effectiveness with real measurement
uncertainties introduced by the metrology system and a nominal parameterization based
on a commercial parallel manipulator.

A simple hybrid manipulator was constructed using a commercially available 6-
RRRPRR parallel manipulator with offset R-R joints (H-850 6-Axis Hexapod, Physik Instru-
mente, Karlsruhe, Germany. Commercial products or brand names are only mentioned
to clarify what was done in this work. This is not an endorsement of any particular com-
mercial product.) and rotary stage (ACR240HT-ABS, IntelLiDrives, Philadelphia, PA, USA.
Commercial products or brand names are only mentioned to clarify what was done in
this work. This is not an endorsement of any particular commercial product.). Both robot
components are fully calibrated individually, and represent the state-of-the-art calibration
baseline to which we compare our methods.
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Pictured in Figure 6, the robots were securely mounted together and affixed to a
precision optical table. To facilitate multiple data collection methods, laser tracker spherical
targets (Red Ring Reflector 0.5′′, Leica Geosystems, Norcross, GA, USA. Commercial
products or brand names are only mentioned to clarify what was done in this work.
This is not an endorsement of any particular commercial product.) were mounted in an
asymmetric pattern to the top of parallel manipulator.

Figure 6. Experimental 7 DoF hybrid robotic manipulator constructed from a 6-RRRPRR parallel
manipulator with offset R-R joints mounted on a precision rotary stage. Spherical laser tracker target
positions are marked with red. Laser tracker is not in view and is positioned approximately 2 meters
from the manipulator without visual obstructions.

3.4.1. Encoder Information

Encoder information for each of the actuated joints within the experimental hybrid
manipulator is listed in Table 4 with calculated variance terms. Each of the legs of the
parallel manipulator has identical construction and share a single row. Encoder counts
are multiplied by any intermediate gearing to yield final effective resolution. Variance is
calculated based on a uniform distribution of width matching one encoder count in the
pose-error units of meters and radians.

Table 4. Actuated Joint Encoder and Variance Information.

Variable: Encoder Resolution Variance

Rotary Stage 2,097,152 counts/rot 7.4803 × 10−13 rad2

Prismatic Leg 40,960 counts/mm 4.9671 × 10−17 m2
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3.4.2. Identification of Coordinate Systems

Consistent world and end-effector frames are necessary for calibration. Although
the laser tracker used for pose measurements within this work (Leica Absolute Tracker
AT960, Leica Geosystems, Norcross, GA, USA. Commercial products or brand names are
only mentioned to clarify what was done in this work. This is not an endorsement of
any particular commercial product.) generates a measurement frame, the points can be
recorded in reference to an arbitrarily positioned world frame. A coordinate frame with
the z-axis nominally centered and normal to the rotary stage motion was defined using
3 DoF measurements recorded during motion. This world frame is referenced to static
spherical target monuments (Leica Red-Ring Reflector 0.5′′ (Commercial products or brand
names are only mentioned to clarify what was done in this work. NIST does not endorse
commercial products. Other products may work as well or better.)) attached to the table
in Figure 6 and serves as the nominal proximal frame for the hybrid robot model. Frame
errors compensated for by positioning the proximal frame with a calibrated offset.

The frame generated by a 6 DoF target at the home position served as the virtual
end-effector for the hybrid manipulator and is used to determine the nominal distal offset.
To allow for multiple measurement methods, this frame is also referenced to the spatial
locations of the four spherical target nests integrated in the sensor.

3.4.3. Kinematic Model and Parameter Identification

The parallel manipulator kinematic model is implemented as described above, with
parameterization listed in Appendix B. Offsets at the proximal and distal ends of the hybrid
manipulator and between manipulator components are calibrated to compensate for the
poorly defined initial states. Parameters for each of the manipulators were estimated with
physical measurements and available CAD models.

Identifiable parameters within the kinematic model are determined by singular value
analysis. Although singular values below a specified threshold of are removed during the
pseudoinverse generation process, it is important to reduce the model to a minimal state
for increased effectiveness of the calibration process and reduced computation time.

A concatenated calibration Jacobian is generated from an experimental data set de-
scribed below. To ensure appropriate parameter steps, the column scaling is applied to
the Jacobians such that a unitary parameter change would result in an RMS error change
of 1 × 10−5 [51]. By identifying the parameters listed as primary components in the V
columns associated with the singular values with a condition number below 1:500, the
parameter list is reduced significantly. Several parameters related to parallel member link
lengths are retained despite falling below this value for model completeness and to test
the impacts of different condition number cutoff points during calibration. It is noted by
inspection that many of the poorly identifiable parameters removed overlap with either
retained kinematic parameters or passive joint components within individual parallel
members. The limited workspace of the experimental parallel manipulator results in the
lack of rigorous exercise of all degrees of freedom on parallel members leading to poor
identifiability. The permitted condition number is expanded to 1:1000 in the calibration
experiments in the interest of capturing some of these poorly identifiable degrees of free-
dom in the hybrid manipulator throughout the experiments below. A total of 53 kinematic
parameters were calibrated, of which 48 were incorporated in the parallel manipulator
and evenly distributed to the constituent parallel members. A listing of the calibrated
parameters within this case study is found in Table A4.

3.5. Experimental Pose Data Collection

To allow for accurate measurement of the pose of the robotic manipulator, sets of
four laser tracker spherical targets are mounted asymmetrically to the end-effector as
shown in Figure 6. Each target is measured in 3 DoF by the laser tracker system previously
detailed and a 6 DoF end-effector pose is generated by fitting each point cloud to a nominal
relationship of the mounting points to a virtual frame definition. A total of 200 randomized
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poses are generated for the hybrid manipulator within the supported motion ranges such
that all of the spherical targets remain in view of the laser tracker system. The hybrid
manipulator home position is recorded in this manner and included in the data set. The
motion of the rotary stage is constrained to ±π

4 radians to prevent cable breakage.
Laser tracker measurement uncertainty is dependent on the distance between

the spherical target and the measurement head with manufacturer specification
±7.5 µm + 3 µm/m for 3 DoF points [52]. A 3 × 3 covariance matrix Σ is returned by
the data collection software for each point measurement, which is converted to mean
standard deviation using (40). The resultant distribution of uncertainty values calculated
in this manner is displayed in Figure 7, with low variation observed due to the small
workspace of the experimental manipulator.

Figure 7. Mean uncertainty distributions for the collected data set of 800 point measurements (3 DoF)
and the resultant 200 reconstructed frames (6 DoF) used in the experimental calibration of Section 3.6.
Mean uncertainties are defined as the square root of the trace of a covariance matrix divided by its
degrees of freedom (40). In the case of the 6 DoF frame reconstruction, the position terms and rotation
terms are considered separately to illustrate the relative magnitude of the components. Median
values are listed above each distribution.

Encoder values for controllable joint parameters are converted into appropriate in-
put variables θ, with rotary stage position reported with units of radians and parallel
manipulator leg-lengths reported with units of millimeters.

Frame Reconstruction and Uncertainty

Pose reconstruction is implemented as SVD-based point cloud fitting [53], which
calculates the transform between two ordered sets of 3D points while minimizing the least
squares error. Provided a known home position in the world frame, the transform between
a point groups collected at the hybrid manipulator home position and a calibration pose is
used to determine the final pose.

Sets of 3D point measurements acquired by a laser tracker can be used to construct 6
DoF pose measurements. The calculation of pose uncertainties of a 6 DoF pose derived
from a set of N point (3D) measurements is detailed below.

For a series of N point measurements, the final covariance matrix for a single pose is
represented as
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Σm =


Σ1 0 . . . 0
0 Σ2 . . . 0
...

...
. . .

...
0 0 . . . ΣN

, (46)

where Σ is a 3 × 3 covariance matrix for a point indicated by the subscript.
The relationship between the combined covariances and pose-error as defined in (4) is

facilitated by representing the transform of a manipulator in the p&q format detailed in
Appendix A. The calibration Jacobian defined for this construct can be utilized to model
the uncertainties of the least squares fitting process as

Jp =
∂e
∂τ

(
∂p
∂τ′

)†
(47)

where ∂e
∂τ is the [6 × 7] analytical Jacobian for a p&q offset link representing the optimal

transform as specified in Appendix A. Individual point measurements relative to the frame
are added to the p&q offset separately, with the resulting combinations used to generate an
analytical Jacobian at each point. The Jacobian rows related to the position error terms are
vertically concatenated to form ∂p

∂τ′ , a [3N × 7] matrix where N is the number of 3D point
measurements included in point group p.

The combined Jacobian Jp are used to propagate the measurement covariance using
form (38) as

Σp = JpΣmJ>p , (48)

where Σp is a 6 × 6 matrix which represents the final measurement uncertainties and
couplings present in each 6 DoF pose. The order of the terms corresponds to that found
within the standard pose-error vector within this work (4). The uncertainty distributions
for the reconstructed frames used in this calibration are displayed in Figure 7. For the recon-
structed frames, the uncertainties associated with the rotation parameters are significantly
higher than those related to position terms.

3.6. Experimental Hybrid Manipulator Calibration

Calibration of the as-assembled hybrid manipulator was conducted in a two step
process. First, errors introduced during assembly are compensated for by calibrating pose
offsets introduced between the manipulator components and at the distal and proximal
ends of the manipulator. The nominal parameters of the rotary stage and parallel manipu-
lator are not calibrated in this case to preserve the baseline accuracy of the components.
Using the full data set inclusive of manipulator home position, this calibration process
yields 118 µm RMS position error and 182 µrad RMS rotation error. This offset compen-
sation case is considered representative of the hybrid manipulator accuracy without the
calibration techniques developed in this work.

The second step expands the scope of the calibration to include kinematic parameters
of the rotary stage and parallel manipulator components in addition to the pose offsets
identified in the prior step. Calibration was conducted using a random selection with no
replacement of 70% of the data set collected inclusive of the manipulator home position and
rounded up. For the subset of 141 poses, calibration Jacobian dimensions as defined by (35)
are [846× 53]. The calibration terminated after three epochs upon reaching the parameter
change exit condition, with 91.1 µm RMS position error and 64.1 µrad rotation error using
a singular value cutoff ratio of 1:1000. The updated parameterization was validated with
the remaining 30% of the poses from the original data set that were not used within the
calibration process, resulting in 90.4 µm RMS position error and 76.8 µrad rotation error.
The calibration process was repeated with the complete 201 point data set, achieving a final
91.1 µm RMS position error and 71.2 µrad rotation error. This represents a 46.7% reduction
in error compared to the baseline assembly offset calibration case.
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Pose-error distributions for the validation data set are generated for the calibrated
and uncalibrated hybrid manipulator and converted into scalar distributions by separately
taking the RMS of the position and rotation components of the error vector at each pose. The
resultant distributions are displayed in Figure 8 and exist near the identified measurement
uncertainties for the laser tracker system. Measurement uncertainty cannot be stripped
from the measurements outside of simulation, but it is anticipated that the real performance
of the calibration falls below the measurement uncertainty of the laser tracker.

Figure 8. Experimental error distributions for validation data set of 60 poses. Significantly larger pose-
error distributions exist for the parallel manipulator in both position and rotation using manufacturer
calibration (red) when compared to equivalent calibrated quantities (blue). Median values are listed
above each distribution.

3.7. Comparison to Alternate Calibration Methods

Kinematic loop closure calibration methods are implemented on the parallel manipu-
lator portion of the hybrid manipulator. These established methods have been adapted to
the parallel manipulator geometry of interest as demonstrated in [54], but have been widely
implemented for use on canonical Stewart Platform manipulator designs [23] and other
novel parallel mechanisms [20]. Each implementation minimizes a scalar representation of
the position error found within specified kinematic chains, referred to as Position Vector
Loop Closure (PVLC) in this work. Within this work, a basic implementation in which the
position error between the end effector of each parallel leg m ∈ M and the manipulator
transform Tparallel at each measurement is minimized with serial Jacobians generated us-
ing the passive joint parameters ψ found by solving the inverse kinematics to reach the
measured Tparallel and actual leg length measurements φ. This configuration is chosen to
most closely match contemporary literature. After the loop closure calibration has been
completed, the serial manipulator offset calibration is repeated to ensure convergence.

The Nelder–Mead simplex method has been implemented in contemporary literature
for final optimization of a novel 6 DoF parallel manipulator after coarse calibration has been
completed [33]. This approach is implemented using the MATLAB general minimization
function fminsearch, with evaluation function corresponding to the RMS of the total pose-
error vector E. As no options are specified in the corresponding work, default termination
options are retained.

Contemporary literature has implemented Hybrid Genetic Algorithm (HGA) fitting on
a variety of parallel manipulators with comparisons to alternate calibration approaches [29].
This approach is composed of genetic algorithm minimization followed by gradient-based
constrained minimization facilitated by the MATLAB optimization functions ga and fmin-
con, respectively. The option settings are adjusted to a crossover fraction of 0.7, a population
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size of 100 with 3000 maximum generations. Function tolerance is specified to 1 × 10−100 ,
with hybrid function specified to use SQP. As the use of genetic algorithm methods greatly
impacts computational performance, a trial calibration is also performed with only the
gradient-based fmincon function for comparison purposes. Options are identical to the
prior case. Parallel computation is enabled to improve optimization performance for both
related test cases.

The final pose-error found by each of the described calibration approaches and associ-
ated computation time are listed and compared to both the baseline hybrid manipulator
parameterization and our approach (Constrained NLS) in Table 5. In the Nelder–Mead,
HGA, and fmincon cases, the pose-error of the manipulator was not reduced from the base-
line parameterization. Results for these comparisons are discussed in the following section.

Table 5. Alternate Calibration Method Comparison.

Calibration Type RMS Pos. Error (µm) RMS Rot. Error (µrad) Runtime ∗ (s)

Constrained NLS 91.1 71.2 14.9
Serial NLS † [30] 118 182 10.8
PVLC ‡ [20,21,27] 133 168 104
Nelder–Mead [33] 118 182 5150
HGA [29] 118 182 6280
fmincon [29] 118 182 161

∗ Single run timing on MATLAB 2018b with Intel-i7-4700MQ CPU@2.40GHz and 32 GB Memory, † Calibration
of assembly offsets using serial manipulator techniques to reach baseline parameter set, ‡ Best result with
early termination.

4. Discussion
4.1. Alternate Calibration Methods

To compare our calibration approach to the methods outlined above, it is important
to note operational behavior of each type. As [20] and later [10] noted, the closed loop
calibration method without passive joint measurements can fail to converge for some
parameter sets. Similar behavior was found in the experimental calibration of the hybrid
manipulator, with pose-error of the manipulator increasing as the position-based loop
residuals were reduced. This behavior matches the prior observations that such methods
were very sensitive to measurement noise. Simple cases in which the measured end-effector
position of the parallel manipulator are used to perform loop closure on individual kine-
matic chains cannot generally be applied unless parameter sets are carefully selected and
tested and typically only minimize position components of the total pose-error of interest.
Slow convergence is noted due to the updates to the estimated passive joint parameters
and lack of consideration for such changes in each kinematic parameter update step.

Non-gradient optimization methods based on the Nelder–Mead simplex algorithm
have been implemented within the MATLAB environment over the selected parameter
set with an evaluation function corresponding to the RMS of the total pose-error resid-
uals. The evaluation function was not improved on a relevant scale during calibration
, with 1.1709 × 10−17 of calculated RMS reduction, and exited after 438 iterations after
convergence. Two factors hamper the effectiveness of this direct-search method: the
large dimensionality of the calibrated kinematic parameters, which greatly slows the per-
formance of the search, and the presence of a local minima at the initial minimization
conditions created by the baseline calibration pass. Although simplified kinematic parame-
ter sets can be used to improve the performance of this method, the high dimensionality
and very nonlinear behavior of parallel manipulators makes this approach unsuitable for
general use.

The hybrid genetic algorithm fitting method is a general optimization method em-
ployed over the selected parameter set with the evaluation function to be minimized
corresponding to the RMS of the total pose-error residuals. When implemented with the
options detailed in [29], the genetic algorithm component did not reduce pose-error from
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the baseline case, and the subsequent fmincon constrained optimization routine exited
after one iteration due to minimum step tolerances below the specified 1 × 10−7. Once
again, the local minima of the starting conditions generated by the baseline serial pose-error
calibration case are difficult to escape. Parallelization helps offset the cost of the genetic
algorithm component, but computation time is longer than any other minimization method
due to its inclusion.

A direct call to fmincon yields identical results significantly faster. This method uses
minimization methods on a gradient numerically calculated for the evaluation function.
This gradient-based approach suffers from compressing the pose-error dimensions and
the direct computation approach, in which parameter steps are used to approximate the
gradient. As seen in the Serial NLS calibration case, parameter updates can increase
position error while reducing rotation error. When evaluating the total pose-error vector
as a scalar quantity, this information is lost. The direct computation of this gradient on a
highly nonlinear system compounds the problem, resulting in early termination due to
step sizes falling below the specified threshold of 1 × 10−7 .

4.2. Application Overview

The calibration and kinematic framework presented is modular and can be applied
to any robot manipulator construction. Extensive testing on cases with multiple parallel
manipulators or nested parallel constructions are outside of the scope of the intended
application of this work and are omitted from consideration during validation process.
Case-by-case evaluation must be conducted to determine an efficient implementation for
these algorithms.

4.3. Uncertainty Conclusions

The calibration process in both simulated and experimental cases yielded calibrated
pose uncertainty near that of the measurement system when validation poses with mea-
surement uncertainty were used. In the case of the simulated data without measurement
uncertainty, it is noted that the pose-error falls significantly below this mark, indicating that
the calibration procedure is capable of reducing error below the measurable threshold. As
all real measurements contain uncertainty, this motivates the modelling of post-calibration
uncertainty to inform pose selection and data set size to reach desired uncertainty levels
below measurable levels. Although this process cannot impact the pose uncertainty caused
by discrete encoder counts, it minimizes the uncertainty added by physical phenomenon
such as gravitational loading and bending effects that are captured in pose measurements.
Pose-error introduced by these phenomenon are captured during data collection and
minimized by the kinematic parameter calibration, resulting in parameters that best cap-
ture the kinematic performance of the manipulator but may not directly correspond to
physical dimensions.

In the experimental test case, the calibrated uncertainty remains above the measure-
ment uncertainty values. The limited workspace of the experimental hybrid manipulator
does not permit all joints to be extensively exercised, resulting in low identifiability of
the parameters during the calibration process. Joint motion is further limited by the data
collection process as all spherical targets must maintain line-of-sight with the measurement
system. Alternate configurations that permit additional joint motion during measure-
ment, such as altering spherical target placement or incorporating measurements from
a secondary laser tracker unit, will increase parameter identifiability and reduce final
calibrated uncertainty.

4.4. Future Work

The pose covariance model discussed in this work as a method of determining post-
calibration pose uncertainty can be extended to include all possible poses through simulta-
neous fitting of the measurement uncertainty model. Given a series of pose measurements
with pose uncertainty, a cyclic fitting process such as expectation-maximization can be ap-
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plied to a parameterized representation of the measurement system during the calibration
process [55]. The resultant model can be used to characterize measurement uncertainty—
and therefore calibrated pose uncertainty - over the entire workspace. This can be used to
determine more accurate bounds for estimated calibration data set sizes or pose selection
and path planning that minimizes known uncertainty.

5. Conclusions

A unified and computationally efficient calibration framework based on null space con-
straint propagation was developed that extends established serial manipulator techniques
to parallel and hybrid manipulators composed of both parallel and serial manipulators.
Kinematic models based on this approach were presented and validated on both simulated
and experimental hybrid manipulators. Notably, a reduction to 91.1 µm RMS position error
and 71.2 µrad RMS rotation error was observed using the methods outlined in this work.
A generalized uncertainty estimation framework was also developed that can accurately
characterize the residual uncertainty found at calibrated poses or those measured with
known uncertainty. This model was used to guide the calibration data set size selection to
meet desired uncertainty levels in the case studies.
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Appendix A. Point-Quaternion Links

It is useful to have a serial link representation to model 6 DoF offsets between actuated
links. A convenient vector-based parameterization of this lies in the point and quaternion
(p&q) pair. Given a basic homogeneous transformation matrix

T =

[
R d
0 1

]
, (A1)

the equivalent p&q representation is defined as

τ =

[
d
Q

]
(A2)

where Q↔ R. The quaternion vector Q contains all related terms arranged as
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Q =


q0
q1
q2
q3

, (A3)

with related subset vector q containing only terms q1, q2, q3.
Conversions to quaternion space from rotation matrices and vice versa are detailed

in [56]. For compactness in later formulas, the components of the p&q pair are emplaced
into a [7 × 1] vector as

τ =
[
px py pz Q>

]>. (A4)

For calibration purposes, the Jacobian relating the p&q parameter vector τ to the
pose-error defined in (4) relative to the end-effector frame is defined as

Jτ =

[ LR` v
0 LR`−1ω

]
, (A5)

where ω reflects the rotation generated by adjusting the quaternion as

ω = 2
[
−q q0I− [q]×

]
(A6)

and v reflects the translation resulting from the rotation as

v = − LR`−1

[
`−1d`−1→L

]
×

ω. (A7)

This Jacobian must be converted from the distal frame to the world frame as detailed
in (34).

Appendix B. Supplementary Case Study Information

In this work, the moving links of serial manipulators are represented with a combina-
tion of classic Denavit–Hartenberg [57] and Hayati [58] parameters to allow for enhanced
calibration sensitivity across links with both perpendicular and parallel end frames. Point-
Quaternion links are used for all calibrated offsets. Manipulator model link types are
abbreviated for use in this appendix according to Table A1.

Table A1. Link Type Abbreviations.

Link Type Motion Type Abbreviation Offset Parameter

Denavit–Hartenberg Rotation DHR θ
Prismatic DHP d

Hayati Rotation HR θ
Prismatic HP d

Point-Quaternion Offset None PQ None

The symbolic definitions of the analytical pose-error Jacobians based on [30] for each
of the link representations used in this work are presented below in Table A2 to aid in
implementation. Each symbolic term produces a [6× 1] vector with elements ordered as
(4). The γ term offsets the active joint position, and uses the same Jacobian definition as the
offset parameter identified in Table A1.



Robotics 2021, 10, 124 29 of 32

Table A2. Symbolic Jacobian Definitions.

Parameter a α β d θ

Denavit–Hartenberg [57]
[

xi
n

0

] [
xi

n × bi
n

xi
n

]
NA

[
zi

n−1
0

] [
zi

n−1 × bi
n−1

zi
n−1

]

Hayati [58]
[

x
′i
n

0

] [
x
′i
n × bi

n
x
′i
n

] [
yi

n × bi
n

yi
n

]
NA

[
zi

n−1 × bi
n−1

zi
n−1

]

Within these expressions, bi
n is a vector from the nth coordinate system to the distal

frame of the manipulator at pose i, and xi
n and zi

n are the first and third columns of the
rotation matrix from the distal frame to the current link frame, respectively.

Tabulated descriptions of the hybrid manipulator models calibrated in Sections 3.3 and 3.6
are listed below to provide more complete case study information. Values associated with each
kinematic parameter are omitted.

Cells marked with ’1’ indicate that the parameter is calibrated, while ’0’ indicates an
uncalibrated parameter. Blank cells indicate that parameters are not present in the link
designated at the current row. Active and passive joint variables are designated with an
’A’ or ’P’, respectively. No quaternion parameters Q are calibrated in the presented case
studies, with the associated column is omitted for spacing purposes. All 6 parallel members
have identical construction and calibrated parameters, but parameter values are not linked.

Simulated case study parameters are indicated in Table A3, in which a total of 68
kinematic parameters are calibrated, of which 48 are incorporated in the parallel manip-
ulator. Experimental case study parameters are indicated in Table A4, in which a total
of 53 kinematic parameters are calibrated, of which 48 are incorporated in the parallel
manipulator. The initial experimental calibration case that exclusively adjusted offset links
was expanded to include all p and Q components.

Table A3. Simulated Hybrid Manipulator Parameters.

Link Type Variable
a α β d θ γ p

Serial
Arm

DHR 1 1 1 A 1
HR 1 1 1 A 1

DHR 1 1 1 A 1
DHR 1 1 1 A 1
DHR 1 1 1 A 1
HR 0 0 0 A 0

Parallel
Member

PQ [1,1,0]
DHR 1 0 0 P 0
DHR 0 0 0 P 0
HP 0 0 0 A 0 1

DHR 0 0 0 P
DHR 1 0 0 P
DHR 0 1 0 P
PQ [1,1,0]

As both the simulated and experimental studies use the same parallel manipulator
construction, example concatenated Jacobian blocks Jφ, Jψ, Jθ for this system are provided
guidance for translating the parameters found in Tables A3 and A4. Links are labelled
relative to their position in the parallel member kinematic chain ∀ m ∈M.
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Jφ,m =
[

Jp,m,1 Ja,m,2 Jγ,m,4 J1,m,6 Jα,m,7 Jp,m,8
]

(A8)

Jψ,m =
[

Jθ,m,2 Jθ,m,3 Jθ,m,5 Jθ,m,6 Jθ,m,7
]

(A9)

Jθ,m =
[

Jd,m,4
]

(A10)

Table A4. Experimental hybrid manipulator parameters.

Link Type Variable
a α β d θ γ p

Proximal
Offset PQ [1,1,0]

Rotary
Stage HR 1 0 0 A 0

Int.
Offset PQ [0,0,1]

Parallel
Member

PQ [1,1,0]
DHR 1 0 0 P 0
DHR 0 0 0 P 0
HP 0 0 0 A 0 1

DHR 0 0 0 P
DHR 1 0 0 P
DHR 0 1 0 P
PQ [1,1,0]

Distal
Offset PQ [0,0,1]

References
1. Campos, L.; Bourbonnais, F.; Bonev, I.A.; Bigras, P. Development of a Five-Bar Parallel Robot With Large Workspace. In

Proceedings of the 34th Annual Mechanisms and Robotics Conference, Parts A and B. ASMEDC, Montreal, QC, Canada, 15–18
August 2010; Volume 2. [CrossRef]

2. Danko, T.W.; Chaney, K.P.; Oh, P.Y. A parallel manipulator for mobile manipulating UAVs. In Proceedings of the IEEE
International Conference on Technologies for Practical Robot Applications (TePRA), Woburn, MA, USA, 11–12 May 2015; IEEE:
Piscataway, NJ, USA, 2015. [CrossRef]

3. Han, H.; Han, C.Y.; Xu, Z.B.; Zhu, M.C.; Yu, Y.; Wu, Q.W. Kinematics analysis and testing of novel 6-P-RR-R-RR parallel platform
with offset RR-joints. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2018, 233, 3512–3530. [CrossRef]

4. Tanev, T.K. Kinematics of a hybrid (parallel–serial) robot manipulator. Mech. Mach. Theory 2000, 35, 1183–1196. [CrossRef]
5. Gordon, J.A.; Novotny, D.R.; Francis, M.H.; Wittmann, R.C.; Butler, M.L.; Curtin, A.E.; Guerrieri, J.R. Millimeter-Wave Near-Field

Measurements Using Coordinated Robotics. IEEE Trans. Antennas Propag. 2015, 63, 5351–5362. [CrossRef]
6. Kucuk, S.; Gungor, B.D. Inverse kinematics solution of a new hybrid robot manipulator proposed for medical purposes. In

Proceedings of the 2016 Medical Technologies National Congress (TIPTEKNO), Antalya, Turkey, 27–29 October 2016; IEEE:
Piscataway, NJ, USA, 2016. [CrossRef]

7. Stewart, D. A Platform with Six Degrees of Freedom. Proc. Inst. Mech. Eng. 1965, 180, 371–386. [CrossRef]
8. Gough, V.E. Universal tyre test machine. In Proceedings of the FISITA 9th International International Automobile Technical

Congress, London, UK, 30 April–5 May 1962.
9. Gloess, R.; Lula, B. Challenges of extreme load hexapod design and modularization for large ground-based telescopes. Modern

Technologies in Space-and Ground-based Telescopes and Instrumentation. In Proceedings of the SPIE, San Diego, CA, USA, 27
June–2 July 2010. [CrossRef]

10. Wampler, C.W. Forward displacement analysis of general six-in-parallel sps (Stewart) platform manipulators using soma
coordinates. Mech. Mach. Theory 1996, 31, 331–337. [CrossRef]

11. Cheok, K.C.; Overholt, J.L.; Beck, R.R. Exact methods for determining the kinematics of a stewart platform using additional
displacement sensors. J. Robotic Syst. 1992, 10, 689–707. [CrossRef]

http://doi.org/10.1115/detc2010-28962
http://dx.doi.org/10.1109/tepra.2015.7219682
http://dx.doi.org/10.1177/0954406218817001
http://dx.doi.org/10.1016/S0094-114X(99)00073-7
http://dx.doi.org/10.1109/TAP.2015.2496110
http://dx.doi.org/10.1109/tiptekno.2016.7863076
http://dx.doi.org/10.1243/PIME_PROC_1965_180_029_02
http://dx.doi.org/10.1117/12.858156
http://dx.doi.org/10.1016/0094-114X(95)00068-A
http://dx.doi.org/10.1002/rob.4620100508


Robotics 2021, 10, 124 31 of 32

12. Liu, K.; Fitzgerald, J.M.; Lewis, F.L. Kinematic analysis of a Stewart platform manipulator. IEEE Trans. Ind. Electron. 1993,
40, 282–293. [CrossRef]

13. Merlet, J. Direct kinematics of parallel manipulators. IEEE Trans. Robot. Autom. 1993, 9, 842–846. [CrossRef]
14. McAree, P.R.; Daniel, R.W. A Fast, Robust Solution to the Stewart Platform Forward Kinematics. J. Robot. Syst. 1996, 13, 407–427.

[CrossRef]
15. Everett, L.J. Forward Calibration of Closed-Loop Jointed Manipulators. Int. J. Robot. Res. 1989, 8, 85–91. [CrossRef]
16. Staicu, S. Dynamics of the 6-6 Stewart parallel manipulator. Robot. Comput.-Integr. Manuf. 2011, 27, 212–220. [CrossRef]
17. Chaudhury, A.N.; Ghosal, A. Optimum design of multi-degree-of-freedom closed-loop mechanisms and parallel manipulators for a

prescribed workspace using Monte Carlo method. Mech. Mach. Theory 2017, 118, 115–138. [CrossRef]
18. Zhuang, H.; Roth, Z.S. Method for kinematic calibration of stewart platforms. J. Robot. Syst. 1993, 10, 391–405. [CrossRef]
19. Khalil, W.; Besnard, S. Self calibration of Stewart-Gough parallel robots without extra sensors. IEEE Trans. Robot. Autom. 1999,

15, 1116–1121. [CrossRef]
20. Hollerbach, J.; Lokhorst, D. Closed-loop kinematic calibration of the RSI 6-DOF hand controller. IEEE Trans. Robot. Autom. 1995,

11, 352–359. [CrossRef]
21. Wampler, C.W.; Hollerbach, J.; Arai, T. An implicit loop method for kinematic calibration and its application to closed-chain

mechanisms. IEEE Trans. Robot. Autom. 1995, 11, 710–724. [CrossRef]
22. Zhuang, H.; Liu, L. Self-calibration of a class of parallel manipulators. In Proceedings of the IEEE International Conference on

Robotics and Automation, Minneapolis, MN, USA, 22–28 April 1996; IEEE: Piscataway, NJ, USA, 1996. [CrossRef]
23. Zhuang, H.; Yan, J.; Masory, O. Calibration of stewart platforms and other parallel manipulators by minimizing inverse kinematic

residuals. J. Robot. Syst. 1998, 15, 395–405. [CrossRef]
24. Masory, O.; Wang, J.; Zhuang, H. On the accuracy of a Stewart platform. II. Kinematic calibration and compensation. In

Proceedings of the IEEE International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993; Volume 1,
pp. 725–731. [CrossRef]

25. Chai, K.S.; Young, K.; Tuersley, I. A practical calibration process using partial information for a commercial Stewart platform.
Robotica 2002, 20, 315–322. [CrossRef]

26. Meng, G.; Tiemin, L.; Wensheng, Y. Calibration method and experiment of Stewart platform using a laser tracker. In Proceedings
of the IEEE International Conference on Systems, Man and Cybernetics, Washington, DC, USA, 8 October 2003; Volume 3,
pp. 2797–2802. [CrossRef]

27. Han, C.; Yu, Y.; Xu, Z.; Wang, X.; Yu, P.; Zhou, X. Complete kinematic calibration of a 6-RRRPRR parallel kinematic machine
based on the optimal measurement configurations. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2019, 234, 121–136. [CrossRef]

28. Okamura, K.; Park, F. Kinematic calibration using the product of exponentials formula. Robotica 1996, 14, 415–421. [CrossRef]
29. Sun, T.; Lian, B.; Yang, S.; Song, Y. Kinematic Calibration of Serial and Parallel Robots Based on Finite and Instantaneous Screw

Theory. IEEE Trans. Robot. 2020, 36, 816–834. [CrossRef]
30. Bennett, D.J.; Hollerbach, J.M. Autonomous calibration of single-loop closed kinematic chains formed by manipulators with

passive endpoint constraints. IEEE Trans. Robot. Autom. 1991, 7, 597–606. [CrossRef]
31. Mayer, R.; Oliviers, M.P. Global kinematic calibration of a Stewart platform. In Proceedings of the ASME Dynamic Systems and

Control Division, San Francisco, CA, USA, 12–17 November 1995; Volume 57.
32. Ibaraki, S.; Yokawa, T.; Kakino, Y.; Nakagawa, M.; Matsushita, T. Kinematic calibration on a parallel kinematic machine tool of

the Stewart platform by circular tests. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July
2004; IEEE: Piscataway, NJ, USA, 2004. [CrossRef]

33. Wu, J.F.; Zhang, R.; Wang, R.H.; Yao, Y.X. A systematic optimization approach for the calibration of parallel kinematics machine
tools by a laser tracker. Int. J. Mach. Tools Manuf. 2014, 86, 1–11. [CrossRef]

34. Sun, T.; Zhai, Y.; Song, Y.; Zhang, J. Kinematic calibration of a 3-DoF rotational parallel manipulator using laser tracker. Robot.
Comp.-Integr. Man. 2016, 41, 78–91. [CrossRef]

35. Song, Y.; Zhang, J.; Lian, B.; Sun, T. Kinematic calibration of a 5-DoF parallel kinematic machine. Precis. Eng. 2016, 45, 242–261.
[CrossRef]

36. Huang, P.; Wang, J.; Wang, L.; Yao, R. Kinematical calibration of a hybrid machine tool with Regularization method. Int. J. Mach.
Tools Manuf. 2011, 51, 210–220. [CrossRef]

37. Liu, Y.; Wu, J.; Wang, L.; Wang, J. Parameter identification algorithm of kinematic calibration in parallel manipulators. Adv. Mech.
Eng. 2016, 8. [CrossRef]

38. Chen, G.; Kong, L.; Li, Q.; Wang, H.; Lin, Z. Complete, minimal and continuous error models for the kinematic calibration of
parallel manipulators based on POE formula. Mech. Mach. Theory 2018, 121, 844–856. [CrossRef]

39. Jokiel, B.; Ziegert, J.C.; Bieg, L. Uncertainty propagation in calibration of parallel kinematic machines. Precis. Eng. 2001, 25, 48–55.
[CrossRef]

40. Murray, R.M.; Li, Z.; Sastry, S.S. A Mathematical Introduction to Robotic Manipulation; CRC Press: Boca Raton, FL, USA, 1994.
[CrossRef]

41. Magnus, J. Matrix Differential Calculus with Applications in Statistics and Econometrics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019.
42. Hollerbach, J.; Khalil, W.; Gautier, M. Springer Handbook of Robotics; Chapter Model Identification; Springer: Berlin/Heidelberg,

Germany, 2008; pp. 321–344.

http://dx.doi.org/10.1109/41.222651
http://dx.doi.org/10.1109/70.265928
http://dx.doi.org/10.1002/(SICI)1097-4563(199607)13:7<407::AID-ROB1>3.0.CO;2-S
http://dx.doi.org/10.1177/027836498900800405
http://dx.doi.org/10.1016/j.rcim.2010.07.011
http://dx.doi.org/10.1016/j.mechmachtheory.2017.07.021
http://dx.doi.org/10.1002/rob.4620100306
http://dx.doi.org/10.1109/70.817674
http://dx.doi.org/10.1109/70.388777
http://dx.doi.org/10.1109/70.466613
http://dx.doi.org/10.1109/robot.1996.506838
http://dx.doi.org/10.1002/(SICI)1097-4563(199807)15:7<395::AID-ROB2>3.0.CO;2-H
http://dx.doi.org/10.1109/ROBOT.1993.292064
http://dx.doi.org/10.1017/S0263574701004027
http://dx.doi.org/10.1109/ICSMC.2003.1244309
http://dx.doi.org/10.1177/0954406219869985
http://dx.doi.org/10.1017/S0263574700019810
http://dx.doi.org/10.1109/TRO.2020.2969028
http://dx.doi.org/10.1109/70.97871
http://dx.doi.org/10.23919/acc.2004.1386770
http://dx.doi.org/10.1016/j.ijmachtools.2014.06.003
http://dx.doi.org/10.1016/j.rcim.2016.02.008
http://dx.doi.org/10.1016/j.precisioneng.2016.03.002
http://dx.doi.org/10.1016/j.ijmachtools.2010.11.009
http://dx.doi.org/10.1177/1687814016667908
http://dx.doi.org/10.1016/j.mechmachtheory.2017.11.003
http://dx.doi.org/10.1016/S0141-6359(00)00055-6
http://dx.doi.org/10.1201/9781315136370


Robotics 2021, 10, 124 32 of 32

43. Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168.
[CrossRef]

44. Bonnans, J.F.; Gilbert, J.C.; Lemarechal, C.; Sagastizábal, C.A. Numerical Optimization: Theoretical and Practical Aspects; Springer:
Berlin/Heidelberg, Germany, 2006.

45. Raghavan, M. The Stewart Platform of General Geometry Has 40 Configurations. J. Mech. Des. 1993, 115, 277–282. [CrossRef]
46. Hoffman, K.; Kunze, R. Linear Algebra, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1971.
47. Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics: Modelling, Planning and Control; Springer: London, UK, 2010.
48. Taylor, B.N.; Kuyatt, C.E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST Technical

Note 1297; NIST: Gaithersburg, MA, USA, 1994.
49. Wang, J.; Masory, O. On the accuracy of a Stewart platform. I. The effect of manufacturing tolerances. In Proceedings of the IEEE

International Conference on Robotics and Automation, Atlanta, GA, USA, 2–6 May 1993. [CrossRef]
50. Wishart, J. The generalised product moment distribution in samples from a normal multivariate population. Biometrika 1928,

20A, 32–52. [CrossRef]
51. Schröer, K. Chapter Theory of kinematic modelling and numerical procedures for robot calibration. In Robot Calibration; Chapman

& Hall: Boca Raton, FL, USA, 1993; pp. 157–196.
52. Hexagon Manufacturing. Leica Absolute Tracker AT960 Data Sheet; Cedar House: Minehead, UK, 2016.
53. Arun, K.; Huang, T.; Blostein, S. Least-squares fitting of two 3-D point sets. IEEE T Pattern Anal. IEEE Trans. Pattern Anal. Mach.

Intell. 1987, PAMI-9, 698–700. [CrossRef] [PubMed]
54. Huang, T.; Zhao, D.; Yin, F.; Tian, W.; Chetwynd, D.G. Kinematic calibration of a 6-DOF hybrid robot by considering multi-

collinearity in the identification Jacobian. Mech. Mach. Theory 2019, 131, 371–384. [CrossRef]
55. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. B

1977, 39, 1–22.
56. Shuster, M.; Junkins, J.; American Astronautical Society. A Survey of Attitude Representations; Journal of the Astronautical Sciences;

American Astronautical Society: Springfield, VA, USA, 1993.
57. Hartenberg, R.S.; Denavit, J. A kinematic notation for lower pair mechanisms based on matrices. J. Appl. Mech. 1955, 77, 215–221.
58. Hayati, S.; Tso, K.; Roston, G. Robot geometry calibration. In Proceedings of the IEEE International Conference on Robotics and

Automation, Philadelphia, PA, USA, 24–29 April 1988; Volume 2, pp. 947–951. [CrossRef]

http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1115/1.2919188
http://dx.doi.org/10.1109/robot.1993.291970
http://dx.doi.org/10.1093/biomet/20A.1-2.32
http://dx.doi.org/10.1109/TPAMI.1987.4767965
http://www.ncbi.nlm.nih.gov/pubmed/21869429
http://dx.doi.org/10.1016/j.mechmachtheory.2018.10.008
http://dx.doi.org/10.1109/ROBOT.1988.12181

	Introduction
	Materials and Methods
	Calibration Methodology Overview
	Pose-Error Minimization Framework
	Objective and Error Formulation
	Jacobian Packing
	Parameter Update

	Parallel Manipulator Parameterization and Kinematics
	Serial Chain Parameterization
	Forward Kinematics
	Inverse Kinematics

	Parallel Manipulator Calibration
	Jacobian Packing
	Constraint Matrix Construction
	Pose-by-Pose Jacobian Generation

	Pose Uncertainty Estimation
	Dependence on Data Set Size
	Expected Jacobians
	Covariance Component Evolution
	Estimated Data Set Size


	Experimental Evaluations
	Simulated Hybrid Manipulator Description
	Simulated Pose Data
	Measurement Uncertainty
	Impact of Data Set Size on Pose Uncertainty

	Simulated Hybrid Manipulator Calibration
	Experimental Manipulator Description
	Encoder Information
	Identification of Coordinate Systems
	Kinematic Model and Parameter Identification

	Experimental Pose Data Collection
	Experimental Hybrid Manipulator Calibration
	Comparison to Alternate Calibration Methods

	Discussion
	Alternate Calibration Methods
	Application Overview
	Uncertainty Conclusions
	Future Work

	Conclusions
	Point-Quaternion Links
	Supplementary Case Study Information
	References

