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Abstract: Motion control in dynamic environments is one of the most important problems in using
mobile robots in collaboration with humans and other robots. In this paper, the motion control of a
four-Mecanum-wheeled omnidirectional mobile robot (OMR) in dynamic environments is studied.
The robot’s differential equations of motion are extracted using Kane’s method and converted to
discrete state space form. A nonlinear model predictive control (NMPC) strategy is designed based
on the derived mathematical model to stabilize the robot in desired positions and orientations. As a
main contribution of this work, the velocity obstacles (VO) approach is reformulated to be introduced
in the NMPC system to avoid the robot from collision with moving and fixed obstacles online.
Considering the robot’s physical restrictions, the parameters and functions used in the designed
control system and collision avoidance strategy are determined through stability and performance
analysis and some criteria are established for calculating the best values of these parameters. The
effectiveness of the proposed controller and collision avoidance strategy is evaluated through a
series of computer simulations. The simulation results show that the proposed strategy is efficient in
stabilizing the robot in the desired configuration and in avoiding collision with obstacles, even in
narrow spaces and with complicated arrangements of obstacles.

Keywords: omnidirectional mobile robot; Kane’s dynamics; model predictive control; velocity
obstacles; obstacle avoidance

1. Introduction

With the advancement of technology and the invention of new wheels with special
structures, omnidirectional mobile robots (OMRs) have been presented and widely used
recently in industrial applications, space exploration, medical fields etc. [1–3]. In spite
of conventional mobile robots that use two driver wheels to control the robot motion on
restricted directions, OMRs are not limited by nonholonomic constraints and can move in
any direction from every configuration [4]. This characteristic increases the maneuverability,
swiftness and accuracy of the mobile robot, which makes the robot capable of working in
small workspaces and dynamic environments with high precision [5].

The dynamics and control of OMRs with different types and numbers of omni wheels
have attracted several researchers recently due to their mobility and special maneuverability.
Therefore, the kinematics, dynamics and motion optimization of OMRs have been studied
extensively in the previous studies. The kinematic and dynamic modeling of a four wheels
OMR have been investigated using Lagrange formulation in [4–6]. Kim et al. [7] have
investigated minimum energy trajectory generation for a three wheels OMR based on the
simplified dynamic model of the robot, and designed an optimal controller to control the
motion of the robot on a minimum energy trajectory with a fixed heading. Considering
the effects of disturbances and friction forces on the wheels, the adaptive sliding mode
controller has been designed to control a mobile robot with four poly wheels robustly on
desired trajectories [8]. A model predictive control and filtered smith predictor have been
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designed based on the kinematic model of a three wheels mobile robot to control its motion
on specific trajectories [9]. Huang et al. has investigated the challenges of path tracking of
an OMR in [10]. The robot’s dynamic model and computed-torque-like-controller approach
have been used to address these challenges. The slippage of the wheels and the friction
forces have also been considered in the robot’s model.

Although several types of omni-wheels such as Mecanum wheels [11] and orthogonal
wheels have been presented in the previous studies, the Mecanum wheels showed better
performance by maximum omnidirectional efficiency and robust omnidirectional maneu-
verability [4]. A Mecanum wheel is composed of small rollers installed in a certain angle
around a circular hub. Using this construction provides two degrees of freedom for the
wheel to move in two perpendicular directions and increases the maneuverability of the
OMRs. Therefore, the modeling and control problems of OMRs with Mecanum wheels
have been the subject of many studies in recent years.

Zimmermann et al. have derived the dynamic equation of an OMR with four
Mecanum wheels based on the nonholonomic model of the wheel and shown that the
nonholonomic constraint is integrable merely in pure translational and pure rotational
motion [12]. Xie et al. used a dynamic window approach to minimize the consumed
energy and consumed power of an OMR with four wheels based on its kinematic model
and dynamic model of its motors [13]. Huang et al. proposed a robust second order
sliding mode controller designed based on the dynamic model of Mecanum-wheeled
mobile robot and adaptive laws have been defined to estimate the switching gains adap-
tively [10]. An extended state observer has been developed to estimate the bounds of
uncertainties and unmeasured states, and sliding mode controller has been designed using
the estimated parameters to improve the tracking performance of a four Mecanum-wheeled
mobile robot [14]. The sliding mode control has also been utilized by other researchers to
develop robust control systems for OMRs with Mecanum wheels in the presence of un-
modeled dynamics and external disturbances [15–17]. Conceica et al. proposed a nonlinear
model predictive control (NMPC) which was designed for trajectory tracking control of a
Mecanum wheeled OMR based on simplified dynamic model of the robot [18]. Han et al.
have developed a dynamic model of an OMR with Mecanum wheels and designed a robust
linear model predictive control (MPC) based on the robot’s linearized dynamic model [19].
Using the kinematic model of an OMR with Mecanum wheel and considering the robot’s
inputs limitations, an MPC system has been also developed in [20] for trajectory track-
ing and a delayed neural network has been proposed to solve the resultant optimization
problem of MPC.

In addition to trajectory tracking and control of mobile robots, obstacle avoidance
and motion planning in dynamic environments are two major problems with the mobile
robot applications which is widely investigated in previous studies [21–23]. Whilst one
of the main advantages of OMRs is their capability to work in collaboration with humans
and other robots in dynamic environments, the problem of online motion planning and
control of OMRs in such situations has been addressed by only a few researchers [24–26].
Zavlangas et al. [24] has used a fuzzy logic controller to plan the robot’s motion in the
presence of obstacles. However, the output of the controller is the acceleration of the robot
and its dynamic behavior as well as its physical characteristics, and these limitations have
not been considered in the proposed method. In addition, stabilization of the robot in the
desired position and orientation has not been studied as a part of the proposed control
system. Leng et al. developed a motion planning strategy for a four wheels OMR based on
the artificial potential field (APF) method and developed a strategy to reduce the robot’s
speed on its trajectory to avoid collision with moving obstacles [25]. In this study, the
robot has been restricted to move on a predefined trajectory determined to minimize the
consumed energy of the robot. In addition, collision avoidance has been achieved by
reducing the speed of the robot in the vicinity of moving obstacles. Consequently, the robot
maneuverability and the performance of the proposed algorithm decreases in crowded
areas and especially in local minima points of APF. Jianhua et al. developed a collision
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avoidance strategy for a three wheels OMR by changing the speed of the robot in the
perpendicular direction to the desired path line [26]. In this method the robot moves on
the linear trajectory between the start and the target points and collision avoidance has
been performed by changing the robots speed in the perpendicular direction to this line.
However, this strategy has some restriction and may be failed in complicated environments
and in the presence of multiple moving obstacles.

The motivation of this work is to develop an online motion planning and obstacle
avoidance strategy for OMR as a part of its feedback control system to stabilize the robot
in desired position and orientation in the presence of static and moving obstacles. This
approach makes it possible to control the state variables and to plan the robot’s trajectory
between obstacles simultaneously based on the robot’s dynamic model and its physical
constraints and limitation. It has been extensively investigated in several recent studies
and shown that the MPC approach has this capability to take the complicated geomet-
rical and dynamical constraints of the system under control [27–30]. Owing to special
properties of MPC technique, obstacle avoidance strategies such as the velocity obstacles
(VO) method [31] can be combined with the MPC system and it can be implemented to
plan the robots motion online. As the control inputs are calculated based on the future
predicted behavior of the system in the MPC technique, such a combination could also
lead to a more efficient motion planning algorithm in complicated obstacle arrangements
and crowded workspaces.

Therefore, in this paper, a robust control system is designed using the NMPC tech-
nique; the proposed control system is designed based on the dynamic model of an OMR
with four Mecanum wheels to stabilize the robot in the desired position and orientation
in dynamic environments. After kinematic analysis, the dynamic model of the robot is
extracted using Kane’s method, considering the Mecanum wheels and rollers dynamics. As
a main contribution of this study, a velocity obstacles (VO) strategy is formulated as some
optimization constraints to combine with the NMPC control system and used to move
the robot towards the target point among obstacles. To investigate the effectiveness of the
control system and collision avoidance strategy, some design parameters are defined, and
their values are specified through stability and performance analysis. Finally, the control
system and the proposed obstacle avoidance strategy are assessed through simulation
experiments that the results verify their effectiveness.

The rest of the paper is organized as follows: In Section 2, the kinematic and dynamic
models of the robot are extracted. The control system design and development of obstacle
avoidance strategy are presented in Section 3 based on the NMPC approach. In Section 4,
some simulation experiments are presented to verify the effectiveness of the proposed
controller. Finally, the paper is finished with conclusion in Section 5.

2. Mathematical Modeling

To develop a control system and collision avoidance strategy, a mathematical model
of the robot should be extracted. Therefore, in this section the kinematic and dynamic
modeling of the robot are performed and consequently the differential equations of motion
of the robot are derived.

2.1. Kinematic Modeling

The schematic model of the OMR with four Mecanum wheels is illustrated in
Figure 1. Compared with traditional nonholonomic wheeled mobile robots, the Mecanum
wheels provide an additional degree of freedom for the robot to move also in a lateral
direction. To determine the robot’s position, velocity and acceleration, three coordinate
frames are defined as shown in Figure 1. Coordinate frame {1} is the inertial reference
frame. Coordinate frame {2} is the body coordinate attached to the robot’s center of mass
and rotates with it around the z axis. Coordinate frame {3}i ; i = 1 . . . 4 is attached to
the center of rollers which are in contact with the ground in which its x axis coincides
with the roller’s axis of rotation and its z axis is parallel to the z axis of frame {2}. This
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coordinate frame rotates with the associated wheel; therefore, its angular velocity is equal
to the wheel’s angular velocity and the roller rotates around its x axis by relative angular
speed Ωr i. The position and orientation of the robot in frame {1} could be defined by
three generalized coordinates q = (x, y, θ) as shown in Figure 1. As shown in Figure 1,
the angles of rollers with respect to x axis of frame {2} are Γ =

[
π
2 + φ φ φ π

2 + φ
]

respectively. The coordinate transformation matrix between frame {2} and {1} and frame {3}
and {2} are as follows.
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Figure 1. The schematic model of omnidirectional mobile robot (OMR) and the attached frames.

1
2R =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ; 2
1R = 1

2RT (1)

2
3Ri =

 cos Γi − sin Γi 0
sin Γi cos Γi 0

0 0 1

 ; i = 1 . . . 4 (2)

To simplify the notation of the paper, the mobile platform (MP), the wheels and the
rollers which are in contact with the ground are numbered by 1 to 9 respectively. Therefore,
using time derivative of generalized coordinates, the linear and angular velocity of the MP
is as follows:

1V1 =
[ .
x,

.
y, 0
]T

1ω1 = 2ω1 =
[
0, 0,

.
θ
]T (3)

2V1 = 2
1R1V1 (4)

where the left superscript denotes the frame number that the vector is described in. The
linear velocity of the center of each wheel in frame {2} is calculated in terms of its position
with respect to the robot’s center of gravity and the MP velocity.

2Vi =
2V1 +

2ω1 × 2ri/G ; i = 2 . . . 5 (5)
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where 2ri/G stands for the position vector of each wheel in frame {2}. It is assumed that
each wheel can rotate independently with angular velocity Ωw i ; i = 1 . . . 4 relative to
MP. Therefore, the angular velocity of wheels is determined as follows.

2ωi =
[

0 Ωw j
.
θ
]T

; i = 2...5 , j = 1 . . . 4

1ωi =
2
1R 2ωi

(6)

The rollers of the Mecanum wheels can also rotate freely with respect to the wheel’s
body by Ωr i ; i = 1 . . . 4 and their angular velocity vectors could be written in the
following form.

3ωi =
[

Ωr j 0
.
θ
]T

; i = 6...9, j = 1 . . . 4

2ωi =
2
3R 3ωi

(7)

Using Equation (6) the linear velocity of the center of each roller is calculated
as follows:

2V j =
2Vi −

[
Rw Ωw j 0 0

]T ; i = 2...5, j = 6...9 (8)

where Rw is the radius of wheels. It is assumed that the rollers of the Mecanum wheels
is rolling without slipping on the ground. Therefore, the velocity of the contact point of
each roller with the ground is zero and the linear velocity of rollers’ center could also be
determined using Equation (7).

2V j =
2ωi ×

[
0 0 Rr

]T ; i = 6...9, j = 6...9 (9)

where Rr is the radius of rollers. By equating Equations (8) and (9) a system of eight
algebraic equations is obtained that could be solved to calculate four wheels’ angular speed
with respect to MP (Ωw i) and four roller’s angular speed with respect to wheels’ body
(Ωr i) as follows:

Ωw = 1 Jw
.
q = 1 Jw


.
x
.
y
.
θ

 ; Ωr =
1 J r

.
q = 1 J r


.
x
.
y
.
θ

 (10)

where Ωw and Ωr (4× 1) are vectors of angular speeds of the wheels and rollers respec-
tively, and Jw is the Jacobian matrix between wheels angular speed and the MP velocity in
frame {1} in the following form.

Jw =
1

Rw


sin(θ + φ)/sin φ − cos(θ + φ)/sin φ −(L cos φ + H sin φ)/sin φ
cos(θ + φ)/cos φ sin(θ − φ)/cos φ (H cos φ + L sin φ)/cos φ
cos(θ + φ)/cos φ sin(θ − φ)/cos φ −(H cos φ + L sin φ)/cos φ
sin(θ + φ)/sin φ − cos(θ + φ)/sin φ (L cos φ + H sin φ)/sin φ

 (11)

The Jacobian matrix Jr is also in a similar form and is not presented here due to the
space limitation. In addition, these Jacobian matrixes can be transformed into frame {2}
using coordinate transformation matrix from Equation (1).

It is obvious from Equations (10) and (11) that the angular velocities of the wheels
have the following relationship, which imposes a constraint originated from 3 DOF planar
motion of MP.

Ωw 1 + Ωw 2 −Ωw 3 −Ωw 4 = 0 (12)
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The robot’s linear and angular velocity could be determined in terms of wheels angular
speeds using Equation (11) and the pseudo invers of Jacobian matrix 1 Jw as follows.

1 J∗ =
(1 J T1 J

)−11 J T
.
x
.
y
.
θ

 = 1 J∗ Ωw
(13)

Equation (13) is indeed the kinematic model of the OMR and can be used to calculate
the velocity of the MP in terms of angular speed of the wheels.

To extract the dynamic model of the robot, the linear and angular acceleration of all
robot parts should be specified. The linear and angular acceleration of the MP is determined
as follows:

1a1 =
[ ..
x,

..
y, 0
]T

1α1 = 2α1 =
[
0, 0,

..
θ
]T

2a1 = 2
1R1a1

(14)

Substituting Ωw i and Ωr i from Equation (10) in Equations (6) and (8), the linear and
angular velocity of the rollers and the angular velocity of the wheels are determined in
terms of q and

.
q. Therefore, taking time derivative of Equations (5) and (8) in frame {1},

the linear and angular acceleration of these parts are calculated as follows:

2αi =
3

∑
j=1

∂
(2ωi

)
∂qj

.
qj +

3

∑
j=1

∂
(2ωi

)
∂

.
qj

..
qj +

2ω1 × 2ωi ; i = 2 . . . 9 (15)

2ai =
3

∑
j=1

∂
(2Vi

)
∂qj

.
qj +

3

∑
j=1

∂
(2Vi

)
∂

.
qj

..
qj +

2ω1 × 2Vi ; i = 2 . . . 9 (16)

2.2. Dynamic Modeling

In this paper, robot’s differential equations of motion are extracted using Kane’s
method [32] which is a powerful approach to derive the dynamic model of complex
multibody systems. Considering

.
q =

( .
x,

.
y,

.
θ
)

as three independent generalized velocities,
the velocities of all parts of the robot are calculated in Section 2.1 in terms of the generalized
velocities. Therefore, the linear and angular partial velocities of each part is defined
as follows:

2V j
i =

∂
(2Vi

)
∂

.
qj

; i = 1 . . . 9; j = 1 . . . 3 (17)

2ω
j
i =

∂
(2ωi

)
∂

.
qj

; i = 1 . . . 9 ; j = 1 . . . 3 (18)

Substituting Equation (10) in Equation (6), partial relative angular velocities of wheels
with respect to MP are also defined as follows:

2ω
j
rel i =

∂
(2ωk − 2ω1

)
∂

.
qj

; i = 1 . . . 4 ; j = 1 . . . 3 ; k = 2 . . . 5 (19)

The inertia forces and moments of all robot’s parts are determined using Equa-
tions (14)–(16):

2R∗i = −mi
2ai ; i = 1 . . . 9 (20)

2T∗i = −Ii
2ωi − 2ωi × Ii

2ωi ; i = 1 . . . 5 (21)
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where mi is the mass of each part and Ii is the moment of inertia matrix of each part about
its principle axes. Since the principle axes of the rollers are parallel to the axes of frame {3}
the inertia moments of rollers could be determined as follows:

2T∗i = 2
3Rj(−Ii

3
2Rj

3αi)−2
3 Rj

3(3ωi × Ii
3ωi); i = 6 . . . 9 ; j = 1 . . . 4 (22)

The only active forces exerted on robot’s parts are the motors’ torque and the viscous
frictions between the wheels and the MP shafts, that are both associated with the relative
angular velocities of the wheels with respect to the MP.

Ti =
[

0 0 0
]T ; i = 1...9 . . . 9

Trel j =
[
0 uj 0

]T −
[
0 µ f Ωw j 0

]T
; j = 1 . . . 4

(23)

where uj ; j = 1 . . . 4 are motor’s torque considered as the system control inputs and µ f
is the coefficient of viscous friction. The generalized inertia and active forces and moments
are calculated based on the Kane’s definition as follows:

F∗r =
9

∑
i=1

2R∗i · 2Vr
i +

9

∑
i=1

2T∗i · 2ωr
i ; r = 1...3 (24)

Fr =
9

∑
i=1

2Ri · 2Vr
i +

9

∑
i=1

2Ti · 2ωr
i +

4

∑
i=1

2Trel i · 2ωr
rel i ; r = 1...3 (25)

Finally, the differential equations of motion of the robot are determined using Kane’s
equation in the following form:

F∗r + Fr = 0 ; r = 1...3 (26)

2.3. State Space Representation

Three differential equations of motion in Equation (26) describe the relationship
between the generalized coordinates, their time derivatives and the motor’s torque exerted
on the robot’s wheels. These equations could be rewritten in the following standard form:

M(q)
..
q = −C

(
q,

.
q
)
+ A(θ)U (27)

where M(q) ∈ R3×3 is invertible positive definite mass matrix, C
(
q,

.
q
)
∈ R3×1 is a vector

of centrifugal acceleration, Coriolis acceleration and viscus friction forces, A(θ) ∈ R3×4 is
a matrix which its components are functions of MP orientation (θ) and robot geometrical
parameters, U =

[
u1 u2 u3 u4

]T ∈ Φ ⊂ R4 is the vector of motor’s torque and Φ is
the input constraint set defined based on maximum allowable motors’ torque as follows:

Φ =
{

U ∈ R4 s.t |ui| ≤ umax, i = 1 . . . 4
}

(28)

Multiplying both sides of Equation (27) by M(q)−1,
..
q is determined and the state

space representation of the robot is obtained as follows.

.
q = g1(X) + g2(X)U (29)

where X =
[

q
.
q
]T ∈ R6 is the vector of state variables, g1(X) : R6 → R6 is a nonlinear

vector function of states, g2(X) : R6 → R6×4 is a nonlinear input matrix, U : R0+ → Φ ⊂ R4

is the control input vector and
.
X =

[ .
q

..
q
]T ∈ R6. Mathematical model in Equa-

tion (29) is discretized to be used in designing the control system in the proceeding sections,
as follows.
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Xk+1 = f(Xk, Uk) =

tk+∆∫
tk

(g1(X(τ)) + g2(X(τ))U(τ))dτ ' (g1(Xk) + g2(Xk)Uk)∆ + Xk (30)

where Xk ∈ R6 is the system state in time tk = k∆ ; k = 0, 1, 2, . . ., Uk ∈ Φ ⊂ R4 is
the vector of control inputs in time tk, ∆ is a sampling period and the control input signal
U(τ) = Uk is assumed to be constant in each sapling interval [tk, tk+1].

3. Motion Control in Dynamic Environment

To use the OMR in collaboration with human or other mobile robots, its motion control
in dynamic environments should be considered. Therefore, an obstacle avoidance strategy
is developed for the robot to prevent its collision with static and moving obstacles. The
obstacles are assumed to be cylindrical objects that move with known constant velocity on
linear trajectories. Consequently, an obstacle with different shape could be considered as a
cylindrical object with a radius equal to its largest dimension. It is also assumed that the
radius, position and velocity of each obstacle could be evaluated once it is located in the
robot’s sensors’ ranges.

3.1. Formulation of the VO Algorithm

In VO method firstly proposed by Fiorini et al. [31], a set of velocities called VO is
determined for each obstacle and the velocity of the robot is calculated in which it is not
a member of VO sets of all obstacles. This approach has been used in some previous
studies [33–36] for the motion planning of mobile robots and vehicles in the presence
of moving obstacles. Using the VO strategy, the problem of collision avoidance could
be formulated as some velocity constraints that should be satisfied to guarantee the safe
motion of the vehicle among obstacles. This method is formulated in this section in which
it could be combined with the NMPC designed for stabilization of OMR in the next section.

To simplify the subsequent calculations, the robot is considered as a point and the
largest dimension of the robot is added to the radius of all obstacles.

Ren
i = Ro

i + Rrobot + Rsa f e (31)

where Ren
i denotes the enlarged radius of ith obstacle, Ro

i is the nominal radius of ith
obstacle, Rrobot is equal to the largest dimension of the robot and Rsa f e is the radius of
small safe region around the robot. Suppose that the robot is in position 1Pr(tk) = (xk, yk)

T

in frame {1} at time tk, the set of active obstacles OA(tk) is defined as the number of all
obstacles located in the robot’s sensors ranges. More precisely:

OA(tk) =
{

i ∈ R
∣∣∣ i ≤ NO and ‖1Pr(tk)− 1Po

i (tk)‖ − Ro
i − Rrobot ≤ δ

}
(32)

where NO is the number of obstacles, 1Po
i (tk) =

(
xo

i , yo
i
)T is the position vector of ith

obstacle in frame {1} at time tk, δ is the robot’s sensors ranges and ‖ · ‖ denotes 2-norm
operator. Suppose that the robot and an active enlarged obstacle move with velocities
1Vr(tk) =

( .
xk,

.
yk
)T and 1Vo

i (tk) =
( .

xo
i ,

.
yo

i

)T
in frame {1} respectively. The relative velocity

of robot with respect to the obstacle is determined as follows.

1Vr/o
i (tk) =

1Vr(tk)− 1Vo
i (tk) ; i ∈ OA(tk) (33)

The collision cone is also defined as the planar conical region encircled by two tangent
lines k1 and k2 as depicted in Figure 2. These tangent lines are specified by their angles λs

i
and λe

i with respect to the x axis of frame {1}. These angles could be determined in each
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time tk based on the enlarged obstacle radius and the position vectors of the robot and
obstacle in frame {1}.

λs
i = tan−1

(
yo

i−yr
xo

i−xr

)
− sin−1

(
Ren

i
‖1Pr−1Po

i ‖2

)
; i ∈ OA(tk)

λe
i = tan−1

(
yo

i−yr
xo

i−xr

)
+ sin−1

(
Ren

i
‖1Pr−1Po

i ‖2

)
; i ∈ OA(tk)

(34)
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The angle of the relative velocity vector 1Vr/o
i with respect to x axis of frame {1} is also

determined as follows.

βi = tan−1

(
1Vr/o

i · ey

1Vr/o
i x · ex

)
; i ∈ OA(tk) (35)

where ex and ey are unit vectors along x and y axes of frame {1} respectively. By defining
the collision cone and relative velocity for each obstacle in time tk, the collision avoidance
criterion in each time instant is simply to prevent the robot from moving with the relative
velocity vector inside the obstacle cone (Figure 2). The VO set associated with ith obstacle
at time tk is defined as follows.

VOi(tk) =
{

1Vr(tk) | λs
i ≤ βi ≤ λe

i , i ∈ OA(tk)
}

(36)

It is obvious that the signs and values of angles λs
i , λe

i and βi should be properly
specified in different quadrants such that the comparison in Equation (36) is meaningful.
Using Equation (36), the total VO set in each time instant could be defined as follows.

VO(tk) = ∪
i∈OA(tk)

VOi(tk) (37)

where ∪ is the operator of union of sets. In addition, the total set of robot’s relative velocity
vectors with respect to active obstacles in each time instant is also defined as follows.

Vr/o
t (tk) =

{
1Vr/o

i | i ∈ OA(tk)
}

(38)
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Therefore, the collision avoidance criterion in each time tk could be written in the
following form.

Vr/o
t (tk) ∩VO(tk) = ∅ (39)

where ∩ is the operator of subscribe of sets and ∅ denotes an empty set. The criterion
in Equation (39) is indeed a set of constraints on the robot’s velocity vector that should
be satisfied in each time step to prevent the robot from collision with obstacles. These
constraints are used to specify the collision free trajectory online as a part of control system.

3.2. Model Predictive Controller

MPC is a control technique in which the control input signals are calculated based on
the anticipated states of the system on a specified prediction horizon and solving online
the resulting open loop optimal control problem (OCP). This construction provides a
context to consider complicated constraints of the system online during the control process.
Therefore, considering the collision avoidance criterion formulated in the previous section,
a NMPC system is designed to move the robot towards the target position and orientation
among obstacles.

To design a NMPC for discretized mathematical model of the OMR in Equation (30),
the following cost function is defined.

VN

(
Xk, ŨN−1

)
=

N−1

∑
m=0
{C1(Xk+m − Xd, Uk+m)}+ C f (Xk+N − Xd) (40)

where C1 : R6 ×Φ→ R0+ is a positive definite stage cost, C f : R6 → R0+ is a positive

definite terminal cost, N is the prediction horizon, Xd =
[
qd,

.
qd
]T is the desired state,

ŨN is a sequence of N input vectors Ui ∈ Φ and VN(0, 0) = 0. Therefore, the position
and orientation of the OMR could be controlled by solving the following optimal control
problem (OCPN).

OCPN(tk) : min

ŨN

{
VN

(
Xk, ŨN

)
=

N−1
∑

m=0
{C1(Xk+m − Xd, Uk+m)}+ C f (Xk+N − Xd)

}

s.t :
1. Xk+1 = f(Xk, Uk)
2. Xk+m ∈ Ψk+m ⊂ R6

3. Xk=0 = X0 ∈ Ψ0
4. Xk+N ∈ Ψ f ⊂ Ψk+N
5. U0 = 0 ∈ Φ

(41)

where Ψk and Ψ f are state constraints set at time tk and terminal state constraints set
respectively. These sets could be determined based on the available physical constraints
and collision avoidance criterion from Equation (39).

The constraints in Equation (41) are related to the robot’s mathematical model and state
constraints imposed to guarantee the stability and collision avoidance in the workspace.
Constraint 1 guarantees that the predicted states satisfy the robot state space model. Con-
straint 2 is a set of state constraints imposed to avoid collision with obstacles and defined
workspace borders. Constraints 3 and 5 are associated with the initial values of states and
inputs, and Constraint 4 is a terminal constraint determined in detail through stability
analysis in the next section.

By solving OCPN in each time instant tk, a set of N optimal control inputs sequence is
obtained as follows:

ŨN
∗ =

{
U∗k , U∗k+2, . . . , U∗k+N−1

}
(42)
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The feedback control law is defined as the first element of this optimal inputs sequence
as follows, and the remaining optimal input vectors are used to form an initial guess to
solve OCPN(tk+1) at the next step.

Uk = κ(Xk − Xd)= U∗k (43)

Therefore, the closed loop system could be written using the feedback law in the
following form:

Xk+1 = f(Xk, κ(Xk − Xd)) ; Xk=0 = X0 ∈ Ψk (44)

The state constraints set Ψk at each time tk are composed of some constraints on the
robot’s position and velocity and should be determined based on the physical restrictions of
environment, obstacle’s positions and obstacle’s velocities. The constraints on position are
indeed associated with the boundaries of the robot workspace which in turn are functions
of the robot’s position at each time 1Pr(tk) = (xk, yk). Mathematically:

1Pr(tk + j∆) ∈ Sk+j∆ ⊂ R2 ; j = 1 . . . N (45)

where Sk is a closed region in frame {1} defined as:

Sk =

{
(xk, yk) ∈ R2 |

xmin
(1Pr(tk)

)
≤ xk ≤ xmax

(1Pr(tk)
)

and ymin
(1Pr(tk)

)
≤ yk ≤ ymax

(1Pr(tk)
) } (46)

where xmin(·), xmax(·), ymin(·) and ymax(·) are differentiable functions of the robot’s po-
sition vector. It is obvious that for a rectangular workspace with boundaries parallel to
the axes of frame {1}, these functions are simplified to constant values. To specify the state
constraints associated with the collision avoidance criterion, suppose that system’s state
at time tk is Xk =

[
qk,

.
qk
]T and the locations and velocities of the active obstacles are

calculated using robot’s sensors. The locations of the active obstacles during the prediction
horizon are calculated as follows.

1Po
i (tk + j∆) = 1Po

i (tk) + j∆1Vo
i ; i ∈ OA(tk) , j = 1 . . . N (47)

Using Equation (47), angles λs
i , λe

i and βi are calculated at time tk + j∆ ; j = 1 . . . N
(Equations (34) and (35)) and the total velocity obstacles set could also be determined at
each time using Equation (37). Therefore, the state constraints originated from collision
avoidance criterion in Equation (39) is as follows.

Vr/o
t (tk + j∆) ∩VO(tk + j∆) = ∅ ; j = 1 . . . N (48)

Finally, the state constraints set could be defined in the following form.

Ψk+j =

 Xk+j∆ =
[
qk+j∆,

.
qk+j∆

]
T |

1Pr(tk + j∆) ∈ Sk+j∆ and Vr/o
t (tk + j∆) ∩VO(tk + j∆) = ∅

 ; j = 1 . . . N (49)

This constraints set is indeed a set of 4N + N × Nk(OA) nonlinear constraints on
robot’s position and velocity vector during the prediction horizon, where Nk(OA) is the
number of active obstacles at time tk. These constraints guarantee that the robot remain
inside the defined workspace during its motion and avoid collision with obstacles.

The structure of the designed control system and obstacle avoidance strategy is
demonstrated in the following diagram. Figure 3 illustrates how the optimization problem
and constraints are defined in each time step and the first element of the optimal control
sequence is exerted to the real robot.
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3.3. Stability and Performance Analysis

The parameters and functions used to design the feedback control system in
Equation (43) should be specified in which the convergence of the state variables to desired
values and the acceptable performance of the obstacle avoidance strategy are guaranteed.
Since the feedback control input is calculated based on the position and velocity of active
obstacles, it is also assumed that the position and velocity of obstacles at time tk are such
that it is possible for the robot to remain inside the workspace boundaries (constraints in
Equation (45)) and move towards the target position in t ≥ tk without collision. The first
part of this assumption could be written mathematically as follows:

∀ Xk ∈ Ψk ∃ Uk ∈ Φ s.t Xk+1 = f(Xk, Uk) ∈ Ψk+1 (50)

The second part of the assumption is associated with the possibility of moving towards
the desired position without collision with obstacle and could be written mathematically
as follows.

∀ Xk ∈ Ψk ∃ m ∈ N and {Uk, . . . , Uk+m} ∈ Φ s.t Xk+j = f
(

Xk+j−1, Uk+j−1

)
∈ Ψk+j

and C f (Xk+m − Xd)− C f (Xk − Xd) < 0 ; (j = 1 . . . m)
(51)

Condition in Equation (51) means that at each time tk, the robot may stop at its
position or move in opposite direction of desired position to avoid collision with obstacles,
but it can eventually moves towards the goal at time tk+m that the position of obstacles
change. Owing to the robot capability for omnidirectional locomotion, satisfaction of (51)
is guaranteed for bounded speed of obstacles, existence of a route toward the target after
the time tk+m and proper choice of control system parameters. Considering (50) and (51),
the stage and terminal cost functions C1(·, ·) and C f (·) are selected as functions of X− Xd
in the following forms:

C1(X− Xd, U) = (X− Xd)
TQ1(X− Xd) + UTQuU

C f (X− Xd) = (X− Xd)
TQ f (X− Xd)

(52)
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where Q1 (6× 6), Q f (6× 6) and Qu (4× 4) are diagonal matrixes defined as follows:

Q1 = diag(w1, w2, w3, w4, w5, w6)

Q f = ζ f Q1

Qu = ζuI4

(53)

where I4 is an identity matrix and wi , (i = 1...6), ζ f and ζu are non-negative values.
These values should be determined such that the closed loop system in Equation (44) is
stable. It is clear that terminal cost C f (·) is defined as a function of state errors such that
assumption in Equation (51) could be satisfied by moving the robot toward the goal. Now,
suppose that OA(tk) = ∅ and Ψ f = Ψk+N , omnidirectional capability of the robot implies
that condition in Equations (50) and (51) are satisfied for m = 1. Therefore, Ψ f is a control
invariant set and:

σ = C1(Xk, Uk) + C f (Xk)− C f (Xk+1) = C1(Xk, Uk) + C f (Xk)− C f (f(Xk, Uk)) ≤

wmax‖Xk − Xd‖2 + 4ζuu2
max + ζ f wmax

(
‖Xk+1 − Xd‖2 − ‖Xk − Xd‖2

) (54)

where wmax = max(w1, . . . , w6). Considering that ‖Xk+1 − Xd‖2 − ‖Xk − Xd‖2 < 0
(assumption (51)), σ ≤ 0 if the following is held.

ζ f ≥
wmax‖Xk − Xd‖2 + 4ζuu2

max

wmax

(
‖Xk+1 − Xd‖2 − ‖Xk − Xd‖2

) (55)

Since ‖Xk+1−Xd‖2−‖Xk −Xd‖2 → 0 as robot moves towards the desired state (X→ Xd),
for a large value of ζ f , C f is a control Lyapunov function (CLF) on Ψ f − ε where ε is a
small neighborhood of the desired state. Using a sufficiently large value for ζ f , ε is suffi-
ciently small and cost function VN monotonically decreases during the robot’s motion [37].
Therefore, the robot’s state variables converge to small vicinity of the desired state (ε) as
t→ ∞ .

If OA(tk) 6= ∅, the state constraints (49) guarantees that the robot moves without
collision with obstacles. Therefore, if assumption in Equation (51) is held, the robot either
moves among the obstacles toward the goal or the cost function in Equation (40) may
have a local optima in opposite direction of the goal, but after some time (m ≥ 1) that
obstacles move and the related velocity constraints removed, the robot can continue its
motion towards the target position according to the above analysis.

Therefore, the above analysis shows that if the layout and velocity of obstacles satisfy
the conditions in Equations (50) and (51) by proper choice of control system parameters,
the designed control system moves the robot on collision free trajectory and stabilizes it in
the desired configuration.

3.4. Control System Parameters Setup

The parameters of the control system should be specified in such a way that satisfac-
tion of Equations (50) and (51) convergence of the state errors to zero and the acceptable
performance of the collision avoidance strategy are guaranteed. As analyzed mathemati-
cally in Equations (52)–(55), parameters ζ f and ζu affect the stability of the control system
and convergence of errors to zero in the vicinity of the target position. Parameter ζu is
added in the cost function in Equation (40) to guarantee that the control inputs tend to zero
and the robot completely stops in the desired configuration. Indeed, its value is important
merely when the robot is in the neighborhood of the desired state and the state errors are
very small. Therefore, the value of ζu could be simply selected as ζu = 1. In addition,
based on Equation (55), ζ f should be a large positive number to guarantee stability and
convergence of the state errors to a small vicinity of the desired state.
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Parameter δ should be determined such that if the robot and an obstacle move toward
each other at their maximum speeds, the robot is far enough away from the obstacle to
avoid collision when the obstacle is detected by the robot’s sensors for the first time. The
maneuver that the robot could perform in such situation is to reduce its speed to zero with
maximum acceleration and then move in opposite direction with maximum acceleration to
reach the maximum allowable speed of the obstacles. Therefore, parameter δ should be
greater than the distance that the robot and the obstacle move toward each other during
this maneuver’s time (tm). More precisely:

δ ≥
(

dr
stop + vo

maxtm + Rsa f e

)
· n ; n ≥ 1 (56)

where vo
max is the maximum allowable speed of obstacles and dr

stop denotes the distance
that the robot travels before stop. Integer n in Equation (56) is indeed a safety factor
and its value could be specified considering the maximum real sensors rang. While the
smaller values of n and δ leads to ignore the effects of far obstacles and may increase the
maneuverability of the robot, the larger value of δ may increase the safety of the robot
maneuvers. However, using the larger value of δ imposes more restrictions on the robot
motion and could reduce the maneuverability of the robot in some circumstances.

Parameter Rsa f e is the radius of a safe region around the robot introduced to guar-
antee the safety of the robot motion. While state constraints in Equation (49) guarantee
that the robot doesn’t collide with any obstacles at each discrete time and state (tk and
Xk (k = 1 . . . N)), the robot’s motion is not restricted by these constraints during each
sampling interval (between the times tk and tk+1) and the robot may collide with close
obstacles during these times. Since due to the impact of constraints in Equation (49) the
distance of the robot from all active obstacles is greater than Rsa f e at each Xk (k = 1 . . . N),
the value of Rsa f e should be selected as the maximum distance that the robot could travel
during each sampling period which is equal to Rsa f e = vr

max · ∆. In this equation, vr
max

denotes the maximum robot’s speed achieved after some time that the robot moves on
straight line with maximum equal motor torques (u1 = u2 = u3 = u4 = ±umax).

Parameters w1 to w6 also affect the performance of the control system and collision
avoidance algorithm. These parameters are weights coefficients for state variable errors
that define the priority of each state to be converged to its desired value. Consequently,
since the value of the orientation angle θ and the linear and angular velocity of the robot
should be controlled merely at the desired position and are not important during the
robot’s motion, their associated weights are defined as follows:

w1 = w2 = w0

w3 =


w0 ‖1Pr − Pd‖ < d1

fw
(
‖1Pr − Pd‖

)
d1 ≤ ‖1Pr − Pd‖ ≤ d2

0 ‖1Pr − Pd‖ > d2
w4 = w5 = w6 = w3

(57)

where w0 is a constant final weights value, d1 and d2 are radius of two small circular
region around the desired position, Pd denotes target position and fw(·) is a scalar function
that should be continuous and two time differentiable at d1 and d2. The geometrical
interpretation of Equation (57) is illustrated in Figure 4 in which the weight of position
error is constant value w0 and the weights of other state variables increase from their initial
value 0 to their final value w0 when the robot enters into a small neighborhood of the
desired position.
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It is obvious that the length of prediction horizon (N) could also have influence on the
performance of the designed controller and collision avoidance algorithm. Since increasing
the length of prediction horizon increases the computational time and cost significantly,
the prediction horizon should be selected as the smallest value that leads to acceptable
performance of the control system. Therefore, this value could be specified through trial
and error and by evaluating the performance of the control system for different small
values of N.

4. Simulation Results and Discussion

To evaluate the effectiveness of the designed controller and collision avoidance al-
gorithm two simulation experiments are conducted using MATLAB software. In these
simulations, the robot moves from its initial position and orientation among the obsta-
cles and stops at the desired state using the designed control system. The simulation is
performed using the values L = 0.15 m, H = 0.1 m, Rw = 0.07 m, Rr = 0.01 m, φ = 45◦,
umax = 1 N·m and µ f = 0.05 N·m·s for the robot geometrical and physical parameters and
following values for masses and moment of inertia matrixes of the robot parts.

m1 = 4 kg

m2 = m3 = m4 = m5 = 1 kg

m6 = m7 = m8 = m9 = 0.2 kg

I1 zz = 0.17 kgm2

I2 = I3 = I4 = I5 = diag
(
13× 10−4, 25× 10−4, 13× 10−4)

I6 = I7 = I8 = I9 = diag
(
3× 10−5, 10−5, 3× 10−5)

(58)

The control input vector could be calculated by solving optimal control problem in
Equation (41) in each time step. To simplify the optimization problem and to relax the con-
straints related to the mathematical model of the robot, recursive discretization method [38]
is used to introduce the state space model in the cost function and to reduce the numbers
of nonlinear constraints. In recursive discretization method, each future state vector is
calculated recursively using the previous state vector and the associated control input, and
the value of the cost function is determined using the calculated states and the inputs. To
solve the resulting constrained optimization problem, sequential quadratic programming
(SQP) method is used here. This method is provided by MATLAB optimization toolbox
(fmincon function) and it is used to solve the optimization problem in Equation (41) in
each step. The control system parameters are also selected based on (55) to (57) and other
criteria discussed in the previous section as ∆ = 0.1 s, N = 7, Rrobot =

√
L2 + H2 = 0.1803,

w0 = 1, d1 = 0.05, d2 = 0.3, ζu = 1 and ζ f = 108. Furthermore, function fw(·) could
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be determined as a fifth-order polynomial based on six constraints fw(d1) = w0 and
fw(d2) = f ′w(d1) = f ′w(d2) = f ′′ w(d1) = f ′′ w(d2) = 0. To calculate the maximum achiev-
able speed of the robot vr

max, differential equations of motion of the robot in Equation (29)
are solved for maximum allowable motors’ torque (U = [1, 1, 1, 1]T N.m) and θ0 = 0. As
demonstrated in Figure 5, the robot’s speed has an upper bound at (vr

max = 1.4 m
s ), due to

the effects of viscous friction between the wheels and shafts. Therefore, the radius of the
safe region is determined as Rsa f e = vr

max · ∆ = 0.14 m.
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To calculate the values of parameters dr
stop and tm, the robot motion is simulated in

a decelerating maneuver described in Section 3.4. Since dr
stop is defined as the maximum

distance that the robot travels to reduce its speed from vr
max to zero, the decelerating maneu-

ver in lateral motion is considered in which the robot moves with minimum acceleration.
Therefore, the differential equations of motion are solved for U = [1,−1,−1, 1]T N.m
and initial state X0 = [0, 0, 0, 0, Vr

max, 0]T which is related to decelerating lateral mo-
tion of the robot. The variations of the position and velocity of the robot are shown in
Figure 6. Suppose that the maximum allowable speed of obstacles is vo

max = 0.5 m
s , the

value of dr
stop is the robot’s position when its velocity reduces to zero, and the value of tm is

the time needed for the robot to reach to the maximum velocity of the obstacles in opposite
direction (−vo

max).
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The parameters dr
stop and tm could be calculated from Figure 6 and according to their

definition in Section 3.4 as dr
stop = 0.39 s and tm = 0.39 s . Therefore, using Equation (56),

δ ≥ 0.5n, and considering n = 2 and δ = 1 m, the performance of the control system is
assessed in two following examples.

Example 1. The robot starts its motion from initial configuration X0 = [3, 3, π
4 , 0, 0, 0]T to the

desired stateXd = [0, 0, π
2 + π

6 , 0, 0, 0]T inside a rectangular region. The robot’s workspace is
defined as follows and the initial positions, velocities and radiuses of obstacles are also specified as
shown in Table 1.

Table 1. Obstacles specification in Example 1.

Obstacle Num. 1 2 3 4

RO
i 0.2 0.2 0.15 0.15

1Po
i (1.5, 1.5) (2.5, 0.6) (0.8, 2.5) (2.25, 1)

1Vo
i (0, 0) (−0.5, 0) (0, −0.27) (0, 0.4)

Sk =

{
(xk, yk) ∈ R2

∣∣∣∣ −0.2 + R∗ ≤ xk ≤ 3.4− R∗ and
− 0.2 + R∗ ≤ yk ≤ 3.4− R∗

}
; R∗ = Rrobot + Rsa f e (59)

The position and orientation errors of the robot are demonstrated in Figure 7. It is clear
that the position and orientation errors converge to zero and the robot is well stabilized
in the desired position and orientation using feedback control law in Equation (43). To
evaluate the performance of the designed control system in planning the robot’s trajec-
tory and avoiding collision with obstacles the distances between the robot and obstacles
(‖1Pr − 1Po

i ‖ − Ro
i − Rrobot) during the robot’s motion are illustrated in Figure 8. The fig-

ure shows that the robot preserves the safe distance with all the obstacles in the period
of its motion. It is also to be noted that since the proposed collision avoidance strategy
is formulated to be combined with discrete NMPC, the distances of the robot from the
obstacles are not necessarily larger than Rsa f e during the robot’s motion. Indeed, using
velocity constraints in Equation (48), the robot does not collide with any obstacle, if the
velocity vector of the robot remains outside of the velocity obstacle set for all t > tk. Since
the robot velocity is not constant, radius Rsa f e is added to the radius of obstacles to ensure
collision with any obstacles not occurs during each sampling interval. This is why the
value of Rsa f e is determined as the maximum distance that the robot could travel during
each sampling interval (Rsa f e = vr

max · ∆).
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The initial position, velocity and radius of obstacles are selected according to Table 2. 

Figure 8. The robot’s distance from the obstacles during its motion in Example 1.

Figure 9 shows the snapshot of the robot trajectory in the presence of obstacles in
which the inactive obstacles are shown by yellow color and the workspace boundaries
are demonstrated by black lines. The figure shows that the arrangement and motion
of the obstacles are such that the conditions in Equations (50) and (51) are satisfied and
there exist a trajectory in each time step that the robot could become much closer to the
target position.

Robotics 2021, 10, 48 20 of 29 
 

 

 

Figure 8. The robot’s distance from the obstacles during its motion. 

Figure 9 shows the snapshot of the robot trajectory in the presence of obstacles in 

which the inactive obstacles are shown by yellow color and the workspace boundaries are 

demonstrated by black lines. The figure shows that the arrangement and motion of the 

obstacles are such that the conditions in Equations (50) and (51) are satisfied and there 

exist a trajectory in each time step that the robot could become much closer to the target 

position. 

 

Figure 9. The snapshot of the robot trajectory among the obstacles in Example 1. 

Example 2. The robot’s initial configuration and the desired state are selected as 

 0 1,4.5, ,0,0,0X
T

  and 3.7,0.6, ,0,0,0
2

X

T

d

 
  
 

respectively. The robot’s work-

space is a region encircled by four following differentiable functions and could be defined mathe-

matically using (46). 

  22

1
1: 0 ; 2 : 5 ; 3 : 1

5

4 : 2.5 2.7 6

x y y x

y x

    

   

 (60) 

The initial position, velocity and radius of obstacles are selected according to Table 2. 

Figure 9. The snapshot of the robot trajectory among the obstacles in Example 1.

Example 2. The robot’s initial configuration and the desired state are selected as X0 = [1, 4.5, π, 0, 0, 0]T

and Xd =
[
3.7, 0.6, π

2 , 0, 0, 0
]T respectively. The robot’s workspace is a region encircled by four

following differentiable functions and could be defined mathematically using (46).

1 : x = 0 ; 2 : y = 5 ; 3 : y = − 1
5 x + 1

4 : y = 2.5 +
√(

2.72 − (x− 6)2
) (60)

The initial position, velocity and radius of obstacles are selected according to Table 2.
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Table 2. Obstacles specification in Example 2.

Obstacle Num. 1 2 3 4 5 6 7

RO
i 0.27 0.2 0.2 0.2 0.27 0.13 0.18

1Po
i (0.4, 3) (1, 3) (1.5, 3) (2, 3) (2.6, 3) (3.1,

1.1) (3.5, 4.5)
1Vo

i (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0.5) (−0.5, −0.38)

Figures 10–12 show the simulation results of this example using the above values
for the robot and control system parameters. It is clear from Figure 10 that the position
and orientation errors of the robot converge to a sufficiently small vicinity of zero as it is
explained in Section 3.3.
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Figure 11. The robot’s distance from the obstacles during its motion in Example 2.

The distance of the robot from each obstacle during the robot motion is demonstrated
in Figure 11, which shows the effectiveness of the developed control strategy in protecting
the robot from collision with obstacles.
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Figure 12. The snapshot of the robot trajectory among the obstacles in Example 2.

As illustrated in Figure 12, the snapshot of the robot trajectory shows that the robot
remains inside the defined workspace during its motion and does not violate the related
position constraints. Figure 12 demonstrates that the region between obstacle 5 and righter
border of the workspace is the only safe region which the robot can move towards the
target without collision with any obstacles. However, since this region is blocked by
obstacle 6, the control system stops the robot in a fragment of its motion and waits for
the path to be opened for the next robot movements. This maneuver is an example of
situations describe by assumption in Equation (51) and shows the effectiveness of the
motion planning algorithm in such complicated arrangement of obstacles.

In addition, the arrangement and velocity of obstacles in some step times may be
such that the cost function VN has a local minima point different with the desired state.
In these situations, the velocity constraints in Equation (48) push the robot to reach the
local minima point. However, since terminal cost function C f (·) is selected to be a CLF, the
robot continues its motion towards the goal after that the obstacles move away and the
minimum point of VN(.) is changed.

Figures 13 and 14 demonstrate the variation of the optimal value of the cost function
VN(·) (Equation (40)) in Examples 1 and 2 obtained by solving the nonlinear constrained
optimization problem in Equation (41) in each time step. It is obvious that the cost functions
decrease in both cases to reach their global minima at zero, which is associated with the
stabilization of the robot in desired position and orientation. However, the optimal value
functions have some optimums and there are some points that the optimal value of the
cost functions increases temporarily. These optimums are in fact the local minimums of
the cost function in Equation (40) considering the position and velocity constraints in
Equation (49) defined based on the workspace borders and collision avoidance criterion
at the corresponding times. As explained mathematically in Section 3.3 by conditions in
Equations (50) and (51), these local minima points are associated with the instants that the
control system has to move the robot in opposite direction of the target position to ensure
that the position and velocity constraints are not violated by the robot motion.
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Figure 14. Optimal cost function value in Example 2 during the robot’s motion.

It follows from the analyses presented in Section 3.4 that two parameters n and ∆ can
have major effects on the shape of the robot’s trajectory before it reaches the vicinity of the
target position. Parameter ∆ affects the maximum distance that the robot could travel in
each sampling period and has a direct relationship with the safe region Rsa f e. On the other
hand, parameter n affects the value of δ which in turn has a main effect on the number of
detected and active obstacles in each time instant. Therefore, increasing or decreasing the
values of these parameters could change the route that the control system selects in each
sampling time to move the robot toward the goal and prevent collision with obstacles.

To evaluate the effects of these parameters on the performance of the design control
system, solving Examples 1 and 2 are repeated using different values of ∆ and n. Figure 15
illustrates the snapshot of the robot’s motion in Example 1 for ∆ = 0.1 s and n = 4.

By increasing the value of δ, the far obstacles are also detected, which has significant
influences on the geometry of robot path toward the target position. Although increasing
the value of δ in Example 1 helps the control system to consider the effects of far obstacles
and find a safer path toward the goal, this may impose more restriction on the robot motion
and reduce the robot maneuverability in more crowded environments.

The simulation results of Example 2 for ∆ = 0.05 s and n = 1.4 is shown in Figure 16.
By reducing the value of ∆, the radius of the safe region decreases to Rsa f e = 0.07 m and
the robot could move closer to obstacles. Furthermore, using the smaller value for δ leads
to neglect the effects of far obstacles and reduce the number of velocity constraints on the
robot motion. Compared to the simulation results illustrated in Figure 12, Figure 16 shows
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that the only effects of closer obstacles are considered. Therefore, the robot gets closer to
obstacles before it changes its direction to avoid collision.
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Figure 16. The snapshot of the robot’s motion in Example 1 for ∆ = 0.05 s and δ = 0.6 m .

Figure 17 shows the simulation results of Example 1 for ∆ = 0.03 s and n = 1. Using
this value for ∆, the radius of the safe region is Rsa f e = 0.042 m and therefore the robot
could move in narrow passages and much closer to workspace borders. In addition,
using the minimum allowable value for δ, the robot travels longer distance on straight
line trajectory than shown in Figure 9, until it detects the obstacle 1 for the first time. In
comparison to Figures 9 and 15, Figure 17 shows that by using the smaller value for Rsa f e
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and δ, the control system chooses the narrow space between the obstacles 1 and 4 for the
robot’s motion and the robot travel on a shorter path to reach the goal.
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The effects of the parameters n and ∆ on the shape of the robot trajectory in the above
simulations results are summarized in Table 3. These effects are evaluated and compared
based on two quantitative and two qualitative metrics. The quantitative metrics are the
length of trajectory and the total time required for the robot to reach to the target position.
On the other hand, the qualitative metrics are using safer spaces for the robot’s motion
and the ability of moving in narrow spaces between obstacles. While the safer spaces
are defined as part of workspace with low density of obstacles, the ability of moving in
narrow spaces could be regarded as the capability of selecting narrower spaces between
the obstacles to move the robot on faster trajectory or on closer to straight line trajectory.

Table 3. The effects of parameters n and ∆ on the robot’s trajectory.

Example
No. Parameters Trajectory

Length
Time of
Motion

Use Safe
Spaces

Use Narrow
Spaces

1 ∆ = 0.1, n = 2 5.21 m 7 s × ×
2 ∆ = 0.1, n = 2 6.034 m 9 s

√
×

1 ∆ = 0.1, n = 4 4.71 m 6.5 s
√

×
2 ∆ = 0.05, n = 1.4 6.77 m 8.5 s × ×
1 ∆ = 0.03, n = 1 4.8 m 5 s ×

√

It is clear from Table 3 that by increasing the value of n the number of detected
obstacles increases and by considering the effects of far obstacles, the control system
could detect empty spaces in the workspace for the robot’s motion. On the other hand,
by decreasing the value of n, the control system neglects the effects of far obstacles and
consequently tries to move the robot faster toward the target. Furthermore, by decreasing
the value of ∆, the value of Rsa f e also decreases and the control system could select narrow
spaces between obstacles to move the robot toward the goal. As demonstrated by the data
presented in Table 3, the fastest trajectory is obtained using the minimum value of n and ∆.
These values are related to simulation results presented in Figure 17 in which the control
system not only neglect the effects of far obstacles in each sampling interval, but also use
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the narrow space between obstacles 1 and 4 for the robot motion. It is also clear from
Table 3 that the safer trajectories in Examples 1 and 2 are obtained using the larger value of
n. Nevertheless, increasing the value of n leads to increase the number of imposed velocity
constraints on the robot’s motion and may have negative effects in crowded environments.
Therefore, the appropriate values of n and ∆ could be selected based on the general layout
of obstacles and other important factors in each circumstances.

To assess the performance of the proposed control system and obstacle avoidance
strategy in comparison with other methods, the robot‘s motion between fixed and moving
obstacles is simulated for the Example 3 presented in [26]. The velocity and initial position
of the obstacles are specified based on the data provided in [26]. In addition, the maximum
allowable motors’ torque and the value of the viscous friction coefficient are specified
as umax = 0.211 N.m and µ f = 0.0238 in such a way that the maximum acceleration
and velocity of the robot are equal to the values reported in [26] (amax = 1.2 m

s2 and
vr

max = 0.62 m
s ). In addition, considering ∆ = 0.1, the value of parameters Rsa f e, tm and

dr
stop are calculated as 0.062 m, 1.57 s and 0.1374 m, respectively. Since the maximum

obstacle‘s speed in this example was 0.48 m
s , the minimum value of δ is calculated from

Equation (56) as δ ≥ 0.953 m. Using the initial and desired configuration of the robot,
similar to [26], as X0 = [0.65, 0.01, 0.697, 0, 0, 0]T and Xd = [2.8, 1.9, 0, 0, 0, 0]T , the snapshot
of the robot’s motion among the obstacles is obtained by the proposed method in this paper
and depicted in Figure 18.
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Figure 18 shows that the robot successfully reaches the target configuration without
collision with obstacles. Compared to the results of simulation provided in [26], the robot
selects a safer trajectory toward the goal without facing the obstacle 3. This is because the
NMPC system that choses the fastest route toward the target after the robot turns right to
escape from the obstacle 1. The simulation results presented in [26] demonstrate that the
robot restricted to move on straight line trajectory between the start and the target position,
and changed its direction once the obstacle detected. However, such a trajectory is not
necessarily the best and the safest one. In addition, it may be even impossible for the robot
to move on the trajectory calculated by this algorithm in complicated situations such as
Example 2 that the robot should stop in some positions and wait for the route to be opened.

5. Conclusions

In this paper, modeling, control and motion planning of a four wheel OMR has been
investigated in dynamic environments. The robot moves using four Mecanum wheels and
has the capability to rotate around itself and to move in every direction from every initial
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configuration. The kinematic model of the robot has been extracted and the differential
equations of motion of the robot have been derived using Kane’s method. To stabilize
the robot in desired position and orientation, NMPC system has been designed and the
problem of online trajectory planning of the robot in the presence of fixed and moving
obstacles has been considered.

To plan the robot trajectory in dynamic environments online, the VO approach has
been reformulated and introduced in the resulting optimization problem of NMPC system.
The parameters and ingredients of the control system and the online trajectory planning
algorithm have been specified through special stability and performance analysis of the
closed loop system. Some mathematical relationships and criteria have been stablished
between the control system parameters and the robot’s physical and dynamical parameters
to guarantee the effectiveness of the presented controller and motion planning algorithm.
The stability of the proposed method as well as the performance of the online collision
avoidance algorithm have been assessed through a series of computer simulations.

The results of simulations show that by selecting the values of the control system
parameters based on the criteria obtained through stability and performance analysis, the
proposed method has acceptable results in stabilizing the OMR in desired configuration
and online trajectory generation in dynamic environments. The simulation results also
demonstrate that using the designed controller, the robot is able to perform acceptable
maneuvers when the robot encircled by the obstacles in a small region and even when all
the possible paths towards the target are temporarily blocked. Furthermore, the results
show that by predicting the future state variables of the robot and future positions of active
obstacles in NMPC, the motion planning algorithm performs more efficiently when the
cost function has some local minima due to the special arrangement of the obstacles.

It is also worth mentioning that one of the main limitations of the proposed controller
is associated with the computational time of NMPC system which is an important factor in
real world implementation of the proposed method. This issue could be addressed using
new proposed reinforcement learning algorithm for prediction. Therefore, evaluating the
efficacy of the proposed method would be the subject of our future research.
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