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Abstract: Modern industry benefits from the automation capabilities and flexibility of robots. Con-
sequently, the performance depends on the individual task, robot and trajectory, while application
periods of several years lead to a significant impact of the use phase on the resource efficiency. In this
work, simulation models predicting a robot’s energy consumption are extended by an estimation
of the reliability, enabling the consideration of maintenance to enhance the assessment of the appli-
cation’s life cycle costs. Furthermore, a life cycle assessment yields the greenhouse gas emissions
for the individual application. Potential benefits of the combination of motion simulation and cost
analysis are highlighted by the application to an exemplary system. For the selected application,
the consumed energy has a distinct impact on greenhouse gas emissions, while acquisition costs
govern life cycle costs. Low cycle times result in reduced costs per workpiece, however, for short
cycle times and higher payloads, the probability of required spare parts distinctly increases for two
critical robotic joints. Hence, the analysis of energy consumption and reliability, in combination
with maintenance, life cycle costing and life cycle assessment, can provide additional information to
improve the resource efficiency.

Keywords: industrial robotics; motion planning; resource efficiency; life cycle costs; greenhouse gas
emissions

1. Introduction

Rising energy prices and environmental awareness emphasize the importance of
resource efficiency for the manufacturing industry. Energy efficiency is a key success factor
for the reduction of operational resource consumption, both tangible such as corresponding
emissions and intangible such as costs, and is therefore a target of the Industry 4.0 initia-
tive [1,2]. In this context, methods and optimization strategies aimed at the reduction of
energy consumed by industrial robots are for example investigated in [3-6]. Corresponding
approaches propose the utilization of more efficient components and the integration of
energy storage mechanisms, enabling recuperation on the hardware level of the industrial
robot. Software approaches are manifold and include trajectory optimization for single
robots as well as operation scheduling which considers sequencing and synchronization of
different operations for a robotic cell or assembly line. The approaches are usually based
on a detailed model of the industrial robot and the corresponding actuators. Usually, the
energy efficiency is focused on the use phase, since the highest greenhouse gas emissions
occur in this phase [3,7,8]. However, to draw a full picture of the resource efficiency, the full
life cycle, including robot manufacturing, operation with actual tasks and robot motion,
maintenance and end of life, has to be considered. Only two relevant studies take the full
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life cycle of robot system into account using the method of life cycle assessment (LCA) [7,8].
However, the actual task and motion of the industrial robots is not considered in detail. In
addition, the service life and reliability of components are not part of these studies, even
though they may influence life cycle impacts. For example, an optimization of the robot po-
sition and the motion pattern performed in [9,10] resulted in a distinctly reduced gear wear
and increased service life, respectively. Correspondingly, a combined analysis fo energy
consumption and service life indicated a conflict of interest between energy efficiency and
lifetime depending on task and trajectory [11]. Similarly, an estimation of follow-up costs
in [12] implies that approximately 60% results from consumed energy, while maintenance
costs amount to 25%. In contrast, required spare parts account for 16.3% of the follow-up
costs while expenses for energy are specified with 9.8% in [13]. Consequently, it can be
expected that the specific task and motion may impact the production planning process
and the resulting resource efficiency as well.

Therefore, we propose a comprehensive assessment of the resource efficiency, taking
into account the energy consumption and the reliability of components in dependence of
the robot’s trajectory. Considering maintenance activities and integrating the estimation of
life cycle costs (LCC) as well as greenhouse gas (GHG) emissions allows one to evaluate the
impact on resource efficiency. The contributions of this paper are summarized as follows:

®  The dynamic model of a robot is extended to allow for the estimation of energy con-
sumption and the prediction of the reliability of selected components for a
given trajectory.

*  Corresponding simulation results are used to identify critical components and the con-
sideration of maintenance methods facilitates the estimation of required spare parts.

e Life cycle assessment and the life cycle costing are combined with the motion simula-
tion to determine LCC and GHG emissions.

¢  Theapplication to an exemplary robot, task and trajectory highlights the determination
of critical components while a parametric study yields the impact of payload and
cycle time on LCC and GHG emissions and demonstrates corresponding benefits for
the decision-making.

The remainder of this paper is organized as follows: A model-based simulation of a
robotic system is introduced in Section 2. The dynamic model of the robot is extended by an
estimation of the consumed energy as well as a prediction of the lifetime of the gear units.
The integration of maintenance, life cycle costing and LCA completes the proposed method
and allows the estimation of the resource efficiency. The proposed method is applied to and
analyzed for an exemplary task and system in Section 3. In addition, a parametric study
is performed and the influence of payload and cycle time on costs and GHG emissions is
investigated. Finally, Section 4 concludes the paper and proposes future research topics.

2. Extending a Motion Simulation with Cost Estimation and Emission Prediction

The aim of this work is the prediction of LCC and GHG emissions for a selected
robot, task and trajectory. In the following, this will be presented for an exemplary robot
performing a pick-and-place operation. Thereby, a workpiece is transported from one
box to another as depicted in Figure 1 and the task can be characterized by the payload,
the duration and the planned motion. The exemplary robot UR5 (Universal Robots A/S,
Odense S, Denmark) is selected to perform the task. In order to estimate the LCC and
perform the LCA based on a simulation of the robot’s motion, the consumed resources
during the operation have to be determined. The selected task requires a robot, which has
to be produced by the manufacturer and acquired by the user. While the task is performed,
energy is consumed and damage accumulates in components of the robot. As a result,
maintenance and spare parts may be required. Corresponding energy and maintenance
costs are derived from models as described in the following.
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Figure 1. Exemplary task analyzed in this study: the configuration for picking up and for placing a
sphere as the workpiece is presented in the left and right, respectively. The trace is depicted in yellow.

2.1. Robot Modeling

The energy consumption of an industrial robot can be modeled based on the system
dynamics, while considering mechanical and electrical characteristics of the actuators.
The system dynamics are represented by the equations of motion which can be expressed
according to:

M(q)i+C(q,9)4+G(q) +us=u, 1

where ¢ is the vector of joint coordinates, M(q) describes the inertia matrix, C(g,4)q
considers coriolis and centripetal torques, while G(g) includes gravitational loads. The
robot is driven by the torque vector u, while additional external forces or torques are not
considered in this paper. Mechanical losses in the joints are considered by the friction torque
uy. The equations of motion can be evaluated by the recursive Newton—Euler algorithm
based on mechanical parameters. Corresponding kinematic and mass properties are
provided by the robot manufacturer and are summarized in Table Al. Different payloads
are additionally implemented as a point mass 1 at the position r; with respect to the flange
of the robot. Thus, the adapted mass 716 and center of gravity 76 of link 6 are determined
according to:

Mete + Mty

Mg = Mg + my; P =
6 6 1% M,

@)

The characteristics of the joint actuators can be considered based on the components
utilized in the robot. The reducers used in the UR5 are strain wave gears and belong
to the HFUS-2SH (Harmonic Drive AG, Limburg an der Lahn, Germany) family [14].
Based on the diameter of the robot joints, the size of the reducer can be estimated and
the corresponding parameters used in this work are summarized in Table A2. To the
best of the authors’” knowledge, detailed information about the motors is not publicly
available. Thus, alternative motors that can be integrated with the reducers are selected
to parameterize the electro-mechanical model of the motor. Furthermore, the rotational
inertia includes the inertia of corresponding motor brakes. The corresponding parameters
are listed in Table A3.

2.2. Energy Consumption Estimation

One relevant mechanical characteristic of the actuators related to the system dynamics
is the reduced inertia, which is included in M(q). It is assumed that the weight of the
actuators is included in the weights of the links provided by the manufacturer, thus, the
reduced rotational inertia has to be considered additionally. Furthermore, mechanical
losses are considered in the drive train. A simple model describing the corresponding joint
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friction considers Coulomb and viscous friction with the coefficients B, and B, respectively,
and is given by [15]:

us = Besgn (4) + Bug. 3)

While more complex friction models, e.g., presented in [16,17], consider possible
nonlinear and time-dependent effects such as load-dependency, more complex models
are difficult to parameterize without an experimental evaluation. For the Coulomb and
viscous friction model, the corresponding parameters are estimated based on the no-load
running torque of the reducers as specified in the datasheet of the manufacturer [18] and
the result is summarized in Table A4.

Modeling the electrical characteristics of the actuators allows one to determine the
electrical energy consumption. Robotic joints are thereby often driven by geared brushless
direct-current (DC) motors or geared permanent magnet synchronous machines. High
torque requirements result in large reduction ratios ig, thus the motors are usually operated
without field weakening. Hence, a simplified lumped parametric model of a DC motor can
be utilized to describe the motor characteristics. Accordingly, the motor current I can be
calculated from the corresponding joint torque to

where k, is the torque constant. Based on the terminal resistance R, inductance L and speed
constant ky, the resulting motor voltage U can be calculated by the following equation:

U = LI+ RI + kyigq. 5)

Assuming that the utilized drive system does not allow recuperation, the electrical
energy consumed during one cycle with the duration ¢, can be determined by integration
of the electric power for each joint. The consumption of a serial manipulator with i joints as
a whole is the sum of the 7 individual motors’ consumption. In addition, power required
to keep the motor safety brakes open, as well as power consumed by peripherals and the
controller, is considered by a constant consumption Py [19,20] and yields the following
equation to calculate the energy consumption of the system:

noopte
E = Pyt + Z/O U, 1| dit. ©)
i=1

2.3. Lifetime Modeling and Reliability Estimation

The lifetime of a robot is often related to the reducers in each joint as critical compo-
nents [21-23]. Corresponding failure mechanisms can be manifold and may depend on
several characteristics, such as topology, tooth geometry and environmental conditions. In
the URS, strain wave gears are utilized and the corresponding mean operating life L; 59,
which represents the operating time corresponding to 50% reliability, of a single strain wave
gear is determined in [18,23], based on the average life of the wave generator bearing. The
mean life expectancy is calculated based on the rated service life L,, which is provided by
the manufacturer for a rated speed §;, a rated torque u, and the actual load T, according to:

. C
Lso = L, 1. )
The corresponding load T is determined by:
te
7= [Flgug| . ®)
0

Thereby, c describes the exponential relation of the stress-life curve for corresponding
endurance curves [23]. According to information of the manufacturer [18], the rated torque
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u, and the torque u, ; are specified with respect to the output of the reducer. Thus, the
equations of motion in Equation (1) are adapted, so that the friction torque and the rotor
inertia of the motors J;;, do not impact the load. Accordingly, u, is calculated by:

(M(9) = Jwi2 )i + C(a,8)4 + G(q) = to. ©)

Instead of the lifetime, various maintenance approaches are based on the reliability
of components or a system [24,25]. Ideally, the reliability is determined from lifetime
tests, which are often time consuming and expensive. Lifetime tests of strain wave gears
are presented for example in [26-28], however, these are focused on space applications
and the evaluation of characteristics in vacuum and therefore differ from the investigated
application and actual reducers used in the UR5. As the service life of strain wave gears is
based on the wave generator bearing according to the manufacturer [18], the life adjustment
factors for reliability for bearings given in ISO 281 [29] are used in the following to estimate
the reliability of the reducers in the UR5. Therefore, the life adjustment factors are used to
scale the life expectancy Lsg to determine operating times with lower failure probabilities.
Furthermore, the manufacturer states that L1g ~ %L50. Thus, a curve fit for the reliability
R(t) depending on the operating time f can be performed based on a suitable cumulative
distribution. Based on the available data, a two parametric Weibull distribution was
selected, which is defined according to:

R(t) = exp (— (}\Ifg,o)k> (10)

and is described by the scale parameter ALsg, as well as the shape parameter k [24]. The
utilized data and the resulting fit are presented in Figure 2 and yield A = 1.33 and k = 1.27.

1.0 7 X  from datasheet
@ life adjustment factors for reliability from 1SO 281
0.9 1 — R(t) with A = 1.33,k = 1.27
>
£ 0.8
=
.©
& 0.7 4
0.6
0.5

0.0 0.2 0.4 0.6 0.8 1.0
Time, as fraction of Lxg

Figure 2. Curve fit of failure probability for the strain wave gear based on life adjustment factors for
reliability from ISO 281.

Combining Equations (7) and (8) with Equation (10) links the reliability of the reducer
with the actual trajectory and operating time and yields the following expression:

tef - k
t o |qug|dt>

ALygyus (1)

R(t,te,4,u) = exp —<

Based on the reliability of individual components R;(t), the system’s reliability R ()
can be determined based on its configuration. As the URS5 is a serial manipulator, the
reliability of series configurations can be expressed by [24]:
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Rs(t) = HRi(t). (12)

Note that only considering the reducers for the system’s reliability as components is a
simplification which can be used for the comparison of different trajectories.

2.4. Application of Maintenance Methods

Based on the reliability of each reducer calculated with Equation (11), maintenance
strategies can be determined and evaluated for a specific trajectory instead of using char-
acteristics such as a general mean time between failures. Several policies with different
complexities exist in literature, e.g., age-dependent, periodic or condition-based. The eval-
uation can, for example, be performed analytically, with the Markov method or with the
the Monte Carlo method [24,25]. As the focus of this paper is on highlighting the potential
of combining the simulation of trajectories with procedures calculating the environmental
impact and the economic costs, only corrective maintenance is selected to be performed
during a planned, maximum operating duration ¢, as an example in the following. Thereby,
the modular joint of the UR5 is completely replaced as soon as an error occurs. This results
in a perfect repair of the joint but an imperfect repair of the system [25]. Furthermore,
assuming that replacement parts are in storage and the duration of the repair is negligible
compared to the operating duration, the availability of the system is simplified to be always
100%. More complex methods and strategies for optimal maintenance can, for example, be
found in [25].

A Monte Carlo simulation is performed to determine the number of replacements for
each joint due to its simple implementation for available probability distributions. The
corresponding procedure, adapted from [25], is:

(a) for a given trajectory, evaluate R;(t) for each joint i from Equation (11) and determine
the corresponding probability distribution function

(b) based on this, draw random failure times ¢ ¥ for each joint i, until )¢ ¢ > to and collect
the number of draws d;

(c) repeat (b) for all samples

For all samples, the number of draws for each joint yields the probability of the
number of required repairs and allows further consideration in the LCC and LCA.

2.5. Life Cycle Costing

Following the procedure of [12], acquisition costs, as well as follow up costs arising
from energy consumption and maintenance, are considered. Thus, based on the consumed
energy calculated with Equation (6) and the number of repairs d;, the costs arising during
to can be calculated for each sample of the Monte Carlo simulation according to:
to 1
C=2¢Cq+ CeEtf + 2 Cm,idiy (13)

¢ =1

with the acquisition costs c;, the electricity price c, and the maintenance costs by means of
spare parts for the individual joints c,, ;. As the impact of cycle time and payload of the
robot is the focus of this work, only directly related costs are considered in this study, e.g.,
wages for operators, transport or disposal are not included. However, the cost estimation
can be extended and adapted to individual production processes and use cases if the costs
are known.

2.6. Life Cycle Assessment

Life cycle assessment, a method standardized by ISO 14040/14044 [30,31], is used to
assess the GHG emissions over the life cycle of the exemplary robot system. The goal of the
LCA is the investigation of the GHG emissions of different trajectories during the operation
phase towards the emissions of the robot system. The scope of the LCA encompasses the
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manipulator and the controller. For a pick-and-place operation, the workpiece is considered
by the impact on energy consumption and reliability. The functional unit as reference unit
is defined as one robot system continuously operated for f,. Accordingly, the modeled
life cycle of the robot system, the so-called product system in LCA, includes the following
phases: (1) production phase of the controller and the robot including the emissions of the
supply chain of the included materials and the simplified manufacturing of the robot’s
components (2) the operation phase including the actual tasks and motion of the robot
and (3) various maintenance actions and spare parts necessary during t,. Analogous to the
estimation of LCC, the GHG emissions can be calculated for each sample according to:

to L

e=e,+ eeEt— + Y ewidi, (14)

¢ =1

with the emissions e, during the production phase and the emission factor for the electricity
mix e, considering the impact of energy consumed during the operation of the robot. The
manufacturing of additional spare parts required for corrective maintenance is represented
by e,, ;. The disposal phase is disregarded for two reasons. First, the GHG emissions are
expected to be negligible compared to the rest of the life cycle; second, a detailed recycling
process of the robot system is not known so far.

3. Exemplary Application and Potentials of the Method

In this section, the presented models are used to estimate the LCC and GHG emissions
for an exemplary pick-and-place operation as depicted in Figure 1. The task itself can be
partitioned into two phases: the first phase consists of picking up the workpiece at the
initial position p; and transporting it to the final position p4. Two intermediate locations,
p2 and p3, are defined to avoid collisions with the obstacles. The second phase utilizes the
same points in reverse. The location, orientation and configuration of the selected points
for the task are given in Table 1. Both phases are defined to have the same duration and
take into account 1s per phase for opening or closing the tool, while the robot holds the
corresponding position. Thus, the duration of the motion in each phase can be derived
from the total duration of one cycle f.. For the multi-point trajectory, the duration of the
motion is partitioned proportional to the maximum distance traveled in joint space into
three individual intervals. A trajectory is generated in joint space via a piecewise spline
of 5th degree to plan the motions of the robot, yielding smooth acceleration and velocity
profiles. Angular acceleration and velocity are set to be zero at the start and end of the
individual motions, respectively.

Table 1. Locations, Orientations and Configurations of the Task.

Point Location (w.r.t. Robot Base) in m Euler Angles (rpy) in rad
p1 [0.4,—0.4,0.05] [t/2,0, — ]
P2 (0.4, —0.4,0.225] [71/2,0, —]
p3 [0.4,0.4,0.45] [7t/2,0,7t/2]
Pa [0.7,0.4,0.4] [7t/2,0,7t/2]
Point Joint Angles in rad
121 [2.16, —1.25,1.84, —2.17, —1.57,2.16]
P2 [2.16, —1.4,1.56, —1.73, —1.57,2.16]
p3 [4.04, —1.42,1.83, —3.55, —2.47,3.14]
Pa [3.66, —0.96,1.3, —3.49, —2.09, 3.14]

As the workpiece is placed at py, the payload in the first phase consists of the gripper
and the workpiece, while only the weight of the gripper is considered as the payload
during the second phase. Thus, the dynamic model of the robot is updated between the
two phases. Therefore, the exemplary gripper 2F-85 (Robotiq Inc., Lévis, QC, Canada)
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is applied with an approximated weight of 1kg, while the center of mass is located at a
distance of 0.058 m in z-direction with respect to the flange coordinate system. The center
of gravity of the workpiece is assumed to be shifted an additional 0.14 m in z-direction. By
adapting Equation (2), the corresponding mass and center of gravity of the payload can
be calculated from the mass and center of gravity of tool and workpiece. The simulation
software RoboDK (RoboDK Inc., Montreal, QC, Canada) is used to implement the task,
determine the inverse kinematics and visualize the motion. The system dynamics are
evaluated using a recursive Newton—Euler algorithm to directly provide the motor torque
u and the torque related to the useful life of the reducers u,.

For the evaluation, it is assumed that the robot perfectly follows the planned trajec-
tory, and potentially occurring oscillations or vibrations are negligible. In addition, the
degradation of the robot’s components during the useful life is assumed to not impact
the performance, i.e., the energy consumed during one cycle remains constant. Further-
more, it is assumed that the effect of the environment, e.g., temperature or dust, as well as
the consequence of events such as collisions or emergency stops during the operation, is
not considered.

3.1. Estimation of Life Cycle Costs and Greenhouse Gas Emissions for Individual Components

As a basis for the estimation of LCC and the GHG emissions, information of the
acquisition and production phase of the robot as well as corresponding spare parts is
required. Corresponding information is not publicly available to the best of the authors’
knowledge. Therefore, the robot is analyzed and the modular structure is segmented
into one different drive module D; per joint and structures S; of each link L;, as depicted
in Figure 3. Thereby, one drive module consists of a motor, motor brake, gear unit and
sensors of each joint as well as the corresponding encasement. Based on the diameter of the
robot, a larger module D; is used for D;_3 and a smaller one D; is applied for Dy_¢. The
remaining components of each link are apportioned to S1_3 and S¢. Based on the weight of
each link and the corresponding components presented in Tables A1-A3, the weight of the
drive modules is estimated. The remaining mass of each link is allocated to the appropriate
structural elements. The resulting allocation is depicted in Figure 3. In addition, the weight
of the controller of 15 kg is considered in the LCA. Thereby, the estimated mass of each drive
module and segment is only used for the LCA. The dynamic simulation is based on the
mass properties of the robot in Table A1 provided by the manufacturer and extended by the
rotational inertia of the assumed reducers and motors, as presented in Tables A2 and A3.

T De=1.22 kg ) S6=0.19 kg
Ds=1.22 kg D4=1.22 kg
Ls S3=1.28 kg
D3=3.70 kg |
S9=1.29 kg
L, D2=370kg| S\ 3ID1=3.70 kg

=7 S;=1.41kg
Figure 3. Segments and their estimated mass for the UR5.

For the modeling of the GHG emissions resulting from the raw material extraction
and processing as well as for the country-specific electricity mix, the background database
ecoinvent (cutoff model, version 3.7) [32] is integrated into the modeling. It is assumed
that the operation phase of the robot system takes place in Germany and thus the German
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electricity mix is considered. The final product system and the compilation of the life cycle
GHG emissions per functional unit is carried out using the software openLCA version
1.10.2. [33]. In the life cycle inventory, the data collection of the modeled product system
is carried out. For the production phase, the materials of each component in the drive
module, structural element and the controller are estimated and respective data sets are
generated. In the life cycle impact assessment, the GHG emissions over the modeled life
cycle are compiled using the midpoint impact category Global Warming Potential 100
years according to the impact method IPCC 2013 [34]. The results of the assessment for the
production of robot and spare parts are presented in Table 2 based on kg CO,-equivalents
(eq.) and can be used in conjunction with Equation (14) to estimate the environmental
impact of the exemplary application.

Table 2. Estimated GHG emissions for the manufacturing of the robot.

Component COsz-eq. in kg CO»-eq. in % of Total
D[ 52.1 (E,n,1,3) 11.3
D; 21.9 (ey4—6) 47
Structure 91.1 19.7
Control Box 149.3 32.3
Robot 462.2 (ep) 100
Emission factor for the electricity mix: 0.5459 kg /kWh CO;-eq. (e.)

The costs related to the acquisition and spare parts may vary distinctly depending on
the type of robot, additional peripherals or safety equipment, as well as, for example, due
to economies of scale. In the following, costs for the acquisition and spare parts are based
on assumptions and only serve the clarification of the method. Corresponding estimated
values are presented in Table 3. The energy cost rate is taken from [35] for non-household
consumers, excluding VAT and other recoverable taxes and levies. Based on the values
in Table 3, Equation (13) can be used to estimate the LCC for the exemplary application.

Table 3. Overview of the items of expenses.

Acquisition Spare Part D; Spare Part D, Electricity Pricing

35,000 € (c,) 1.500€ (Cy13) 1.000€ (cps_o) 0.186€/kWh (c,)

3.2. Evaluation of an Exemplary Task

In the following, the task with a duration of {, = 6s and mass of the workpiece
my = 2kg is analyzed in detail. Evaluating the trajectory in combination with a constant
power consumption of Py = 100 W yields an estimated energy consumption of 6913 kWh
after ¢, = 36,000 h of continuous operation. Analyzing the contribution presented in the
top of Figure 4 displays that approximately 50% of the cumulative energy consumption
originates from the constant power consumption Py. Investigating only the impact of
the trajectory indicates that joint 1 contributes the most to the total amount, while joints
five and six require the least amount. In contrast, the load due to the motion results in
decreased reliability of joint two and four, whereby joint four exhibits the lowest reliability
as depicted in the bottom of Figure 4. The high load on joint four results from a motion
of 1.82rad to change the orientation between p; and p3. In contrast to the motion of
1.88 rad between p; and p3 of joint one, the fourth joint is subjected to gravitational loads.
Thus, the corresponding load calculated by Equation (8) yields a high strain as a result
of the planned trajectory. Hence, based on the analysis of the trajectory, a characteristic
distribution of consumed energy and reliability and corresponding critical joints can be
determined, allowing one to examine measures to improve resource efficiency. Furthermore,
estimating the reliability of each joint may provide a decision support for the selection of a
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feasible operation time, as well as the number and type of spare parts for a specific task
and trajectory.

3000
2000 -
1000 .
NN .
0.6 I I I_I[

Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 constant

Consumed Energy in kWh

o

—_
o

=]
©
1

Reliability in %
=) o

N o0

] ]

Figure 4. Overview of the energy consumption and reliability for each joint after 36,000 h of operation.

Based on the reliability of each joint, corrective maintenance is applied and the proba-
bilities of required replacements of the modular joints are determined by a Monte Carlo
simulation with 1 x 10° samples. Only considering events with a probability higher than 1%
results in the three cases presented in Table 4. With a probability of 81.6%, no repair is
required during 36,000 h. Thus, corresponding costs and GHG emissions consist of the
acquisition or manufacturing of the robot, as well as the total energy consumed. Evaluating
costs and emissions with Equations (13) and (14) yields costs of 36,289 € and CO;-eq. of
4237 kg. Furthermore, the Monte Carlo simulation yields probabilities of 3.4%, 10.8%, and
1.5% for the replacement of the joint modules D,, Dy and Ds, respectively. Thus, one
small joint module D; is replaced with a probability of 12.3%, based on the sum of the
probabilities of Dy and Ds. Correspondingly, costs and emissions increase by the values of
the components based on Tables 2 and 3.

Table 4. Overview of the LCC and GHG emissions after 36,000 h of operation.

Parts to Replace Probability in % Costs in € COz-eq. in kg
- 81.6 36,289 4237
Ds 12.3 37,289 4259
D, 34 37,789 4289

Based on the considered inputs into the cost functions, the composition of LCC
and GHG emissions can be analyzed. Accordingly, the corresponding distributions are
partitioned into acquisition or manufacturing, energy consumption and spare parts. In
conjunction with the probability of occurrence at the top, Figure 5 presents the resulting
composition of LCC in the middle and of GHG emissions in the bottom for each case. The
cumulative costs consist of 92% acquisition costs or more for all cases. Costs originating
from energy consumption and spare parts account for the remaining percentage depending
on each case. In contrast, the energy consumption during the operation contributes 88%
or more to the total GHG emissions, while the manufacturing of the robot and the spare
parts share the remaining portion. In combination with comparably low probabilities for
required replacements, the impact of required spare parts on LCC and GHG emissions is
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low. As estimated in Tables 2 and 3, the economic and ecological effects of D, are lower
than for D;, consequently, the corresponding impact on LCC and GHG emissions differs as
well.

iy
=}

Probability
o o
o t
1 1

I :
Dy

no replacement D
B acquisition [ energy consumption I spare parts
B 3.5% 3.4% 2.7% 3.4% 4.0%
B
» 20000 4 96.5% 93.9% 92.6%
8
|9
0 -
no replacement Dy Dy
I manufacturing [N energy consumption I spare parts
a0
X 4000 - 0.5% 1.2%

88.0%

2000

Q
@]

89.1% 88.6%

10.9% 10.9% 10.8%

no replacement Dy Dy

n
o
1 1

Figure 5. Composition of LCC and GHG emissions after 36,000 h of continuous operation.

Based on the composition, minimizing the energy consumption may provide little
reduction in the LCC, but may distinctly reduce the GHG emissions for the selected robot
and task. However, additional costs or emissions, e.g., resulting from unplanned downtime,
may shift the presented distribution. Furthermore, an increasing utilization of renewable
energy may decrease the contribution of energy consumption to the GHG emissions.

3.3. Evaluation of the Impact of Payload and Cycle Time

In Ref. [11], a parametric study indicated a distinct impact of the payload and the
duration of a single point-to-point motion on energy consumption and expected service
life. In the following, a similar study is performed for the selected task and is extended by
an analysis of costs and environmental impact. For the parametric study, the weight of the
workpiece 1y, is varied from 0 kg to 4 kg in increments of 0.2 kg. Thereby, a workpiece with
a weight of 4kg in combination with the gripper yields the maximum allowed payload
of the robot. For each resulting payload, the cycle time ¢, is varied from 6s to 12s in
increments of 0.4s. An overview of the varied parameters is given in Table 5.

Table 5. Overview of varied parameters in the parametric study.

Parameter Min Max Increment
my in kg 0 4 0.2
tcins 6 12 04

Evaluating each combination of workpiece weight and cycle time yields the impact
on consumed energy and reliability presented in Figure 6. During a fixed operating time,
a higher payload and a quicker motion increase energy consumption and reduce the
reliability. Furthermore, the impact of the duration on the consumed energy, especially for
short cycle times, is more distinct than the impact of the weight of the workpiece. Overall,
the parametric study indicates large variations depending on the weight of the workpiece
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and the duration of the motion. In addition, a low reliability of 0.3 for tasks with a high
payload after 36,000 h of continuous operation may lead to unplanned production stops
and may therefore not be reasonable.

<10}
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Figure 6. Consumed energy and reliability after 36,000 h of continuous operation depending on the
weight of the workpiece and the duration of one cycle.

For each task and trajectory in the parametric study, a Monte Carlo simulation is
performed to determine the number of required replacements for each joint. As the path
of the motion is not changed throughout the parametric study, it can be expected that
the critical components are D, and Dy, as discussed for the exemplary task examined
in Section 3.2. This is confirmed by the results of the Monte Carlo simulation presented
in Figure 7, displaying the probability of the number of required replacements during
36,000 h of continuous operation. Thereby, Figure 7 contains excerpts of the parametric
study for selected weights of the workpiece and cycle times. The task with a workpiece
weight of 2kg and duration of 6s is analyzed in Section 3.2, and similarly to the results
presented in Table 4, three cases exist: no replacements are necessary with a probability of
81.6% (blue), while Ds and D; are replaced once with a probability of 12.4% (orange) and
3.4% (green). For the tasks with a workpiece weight of 0 kg, events of required replacements
occur with probabilities less than 1% (gray) for cycle times of 8s, 10s and 12s. In contrast,
for high payloads, the probabilities and the number of relevant cases distinctly increase
as a consequence of the low reliability, as already presented in Figure 6. For a workpiece
weight of 4 kg, the Monte Carlo simulation additionally yields events where a component
is replaced more than one time or combinations of components have to be repaired.

Combining the consumed energy with the results from the Monte Carlo simulation
allows one to evaluate the impact of workpiece weight and cycle time on LCC and GHG
emissions. Thereby, the respective costs and emissions are plotted in Figure 8 for each
relevant case of the Monte Carlo simulation depicted in in Figure 6. Observing the LCC
in the left of Figure 8 displays a discrete increase in costs depending on the case and each
component’s cost. While the acquisition costs of 35,000 € still account for the largest matter
of expense, a high payload may distinctly increase the total costs depending on the number
of replacements. The increase in costs depending on payload and cycle time for the same
case, e.g., when no replacement is required, is comparably smaller and approximately
proportional to the consumed energy. In contrast, short cycle time results in distinctly
increased GHG emissions compared to the impact of different amounts of spare parts,
as depicted in the right side of Figure 8. This effect can be attributed to a rising energy
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consumption and its distinct impact on GHG emissions, as discussed for the exemplary

task in Section 3.2.
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Figure 7. Probability of the number of repairs, depending on the component of the robot during

36,000 h of continuous operation.
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Figure 8. LCC and GHG emissions after 36,000 h of continuous operation considering possible
repairs depending on the load of the workpiece and the duration of the cycle.

Based on the results presented above, increasing the cycle time would reduce costs
and environmental impact. However, this would also lower the productivity of the robotic
system. Thus, instead of cumulative costs and emissions, these quantities can be divided
by the total amount of workpieces that are transported during 36,000 h of continuous
operation. Accordingly, Figure 9 presents the evaluated costs and GHG emissions per
workpiece (pW). The costs per workpiece are below 0.005€, while the emissions are
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below 3.2 x 10~* kg CO,-eq. per workpiece for all tasks and cases. While the increased
energy consumption and replacements for short cycle times and high payloads increase
the cumulative costs and emissions, Figure 9 displays a distinct dependency of costs and
emissions per workpiece depending on the cycle time. Thus, the shortest cycle time yields
the lowest LCC and GHG emissions per workpiece for all tasks and cases. However,
this may be offset by reduced reliability for short cycle times and a resulting increased
probability of unplanned production stops.
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Figure 9. LCC and GHG emissions per workpiece (pW) after 36,000 h of continuous operation
considering possible repairs, depending on the load of the workpiece and the duration of the cycle.

To summarize, analyzing energy consumption and reliability in combination with
life cycle costing and LCA provides a decision support for the comparison of different
systems, tasks or the selection of optimal parameters. Furthermore, the results may differ
depending on the objective, as highlighted by the comparison of LCC and GHG emissions
with the corresponding impact per workpiece. Nevertheless, it has to be noted that several
assumptions and estimated parameters are required for the exemplary task and robot.
While this should not affect the general application of the method, the input data need to
be adapted for each individual application and results have to be analyzed accordingly.
In addition, the impact of the disposal should be considered to complete the life cycle.
For the selected task and the presented parametric study, the proposed method provides
decision support for the determination of the optimal cycle time. While the weight of the
workpiece is usually defined by the task and can not be changed easily, a low reliability for
high payloads may, for example, be avoided by the selection of different via-points for the
task, an adjusted trajectory or selecting an alternative robot. Correspondingly, various pa-
rameters can be adapted to improve the resource efficiency. However, for the application in
a production scenario, parameters may be additionally constrained by the production pro-
cess or depend on the integration with commercial industrial robots. Hence, based on the
presented model-based method, variations of relevant decision variables can be generated
and evaluated in simulation to assist in the planning stage of a production system.

4. Conclusions

The resource efficiency of industrial robots is a key aspect for the manufacturing
industry. While most approaches are focused on minimizing the energy consumption
during the use phase, the method presented in this work utilizes the dynamic model of the
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robot to additionally estimate the reliability of individual components of the robot. This
enables the combination of dynamic simulations in conjunction with maintenance methods
adapted to a specific application and supported by probabilistic distributions. In this work,
corrective maintenance is applied for the assumption that the affected modular joint of the
robot is replaced and corresponding probabilities of required replacements are determined
via a Monte Carlo simulation. Resulting costs for spare parts are directly considered in the
prediction of the LCC based on the amount and type of components replaced. The GHG
emissions of a robot performing a task are analyzed with an LCA, thereby the impact of
the robot’s manufacture is estimated based on the weights of the links and corresponding
components of the actuation system. The use phase is directly considered based on the
consumed energy and required spare parts for a specific task and trajectory.

The proposed method is applied to an exemplary robot performing a pick-and-place
operation. Analyzing the energy consumption yields a distinct impact of the energy con-
sumed by peripherals and the controller for the selected system, while the first joint exhibits
the second largest contribution. In contrast, the fourth joint is identified as a critical com-
ponent regarding the reliability. Thus, the motion of joint 1 should be adapted to reduce
energy consumption, while a manipulation of the motion of joint 4 could improve the
reliability and result in a more equally distribution of the reducers’ load. For the selected
robot, this may be especially beneficial for high payloads, as indicated by the results of
a parametric study. Thereby, the impact of varying workpiece weight and cycle time
is investigated regarding energy consumption and reliability, as well as LCC and GHG
emissions. The emissions are estimated based on an LCA, considering the manufacturing
of the individual components of the robot as well as spare parts and energy consumption.
The combination of motion simulation and LCA yields a distinct impact of the consumed
energy during the use phase on the GHG emission. Additionally, costs for spare parts
are identified as cost drivers for high payloads and short cycle times, as indicated by an
associated low reliability. A resulting increase of the cycle time reduces total costs and
emissions, while distinctly lowering the total amount of workpieces transported during a
fixed amount of operating hours. In contrast, short cycle times yield considerably reduced
costs and emissions per workpiece at the cost of decreased reliability.

Combining motion simulations, energy consumption estimation, and reliability pre-
diction with maintenance methods, life cycle costing, and LCA shows great potential to
enhance decision-making during production planning or virtual commissioning towards
improved resource efficiency. Data from life time tests and enhanced maintenance methods,
as well as more detailed estimation of LCC and GHG emissions, can be integrated to
improve the accuracy of the prediction. The estimation of a lifetime of components may
create possibilities for the re-use of the robot or components. Furthermore, analyzing
approaches to reduce energy investigated in literature, e.g., the utilization of compliant
elements and regenerative drives, in conjunction with an estimation of the reliability, LCC
and GHG emissions may provide further benefits. In addition, extending the strategies for
the minimization of the energy consumption to a multi-objective optimizations of task and
trajectory, considering that the components’ reliability may further improve the system’s
resource efficiency.
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Appendix A. UR5 Robot and Drive Train Parameters

Table A1. Mass properties and Denavit-Hartenberg Parameters of the UR5 [36].

Link/Joint Mass in kg Center of Mass in m 0 in rad
1 3.7 [0, —0.02561,0.00193] 0
2 8.393 [0.2125,0,0.011336)] 0
3 2.33 [0.15,0,0.0265] 0
4 1.219 [0, —0.0018,0.01634] 0
5 1.219 [0,0.0018,0.01634] 0
6 0.1879 [0,0,0.001159] 0
Link/Joint ainm dinm « in rad
1 0 0.089159 /2
2 —0.425 0 0
3 —0.39225 0 0
4 0 0.10915 /2
5 0 0.09465 —7/2
6 0 0.823 0

Table A2. Properties of the reducer, based on the family HFUS-2SH [18].

Joints Size ig Mass in kg Inertia in kg m?
1,2,3 25 100 1.44 1.07 x 104
4,56 14 100 0.45 9.1x10°°
Joints L,inh gr in rad/s u, in Nm c

1,2,3 3.5 x 10* 1.152 67 3

4,5,6 3.5 x 10* 1.152 7.8 3

Table A3. Properties of the motor with friction brake, based on the RDU family based on [37].

Joints Size Mass in kg (Estimated)  Inertiain kgm?  k,, in Nm/A
1,2,3 70 x 18-HW 0.71 9x 107 0.106
4,5,6 50 x 08-HW 0.24 2.5 x107° 0.057
Joints Size kp in V s/rad LinH Rin Q
1,2,3 70 x 18-HW 0.106 7.2 x107* 0.552

4,5,6 50 x 08-HW 0.057 8 x 1074 0.47
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Table A4. Estimated friction parameters of the reducer, based on the family HFUS-2SH [18].

Joints B. in N m (Estimated) B, in N ms/rad (Estimated)
1,2,3 20.32 11.94
4,5,6 3.37 2.0
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