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Abstract: It has recently emerged that human chromosomes vary between one another in terms
of features that impact their behaviour during impaired chromosome segregation, leading to
non-random aneuploidy in the daughter cell population. During the process of chromosome
congression to the metaphase plate, chromosome movement is guided by kinesin-like proteins,
among which centromere-associated protein E (CENP-E) is important to transport chromosomes
along the microtubules of the mitotic spindle. It is known that the inhibition of CENP-E notably
impairs alignment for a subset of chromosomes, particularly those positioned close to the centrosome
at nuclear envelope breakdown (‘polar chromosomes’); it is, however, not clear whether chromosome
identity could influence this process. Since a popular strategy to model aneuploidy is to induce
congression defects (for example combining CENP-E inhibitors with mitotic checkpoint abrogation),
variance in congression efficiency between chromosomes might influence the landscape of aneuploidy
and subsequent cell fates. By combining immunofluorescence, live cell imaging and fluorescence in
situ hybridisation, we investigated the behaviour of polar chromosomes and their dependency upon
CENP-E-mediated congression in human cells. We observed a bias in congression efficiency related to
chromosome size, with larger chromosomes more sensitive to CENP-E inhibition. This bias is likely
due to two contributing factors; an initial propensity of larger chromosomes to be peripheral and thus
rely more upon CENP-E function to migrate to the metaphase plate, and additionally a bias between
specific chromosomes’ ability to congress from a polar state. These findings may help to explain the
persistence of a subset of chromosomes at the centrosome following CENP-E disruption, and also
have implications for the spectrum of aneuploidy generated following treatments to manipulate
CENP-E function.

Keywords: CENP-E; chromosome congression; aneuploidy; chromosome identity

1. Introduction

The ability to maintain chromosome segregation fidelity is a major feature of mitosis. During
prometaphase, chromosomes congress towards the spindle equator [1]. Although in mammalian
cells chromosomes can congress before becoming bioriented [2], kinesin-like proteins precisely
guide chromosome movement during the formation of the metaphase plate. Among them,
centromere-associated protein E (CENP-E) facilitates chromosome alignment by assisting their
motion towards plus ends of microtubule bundles of the mitotic spindle [2,3]. Moreover, CENP-E is
involved, together with other kinesins, in promoting end-on conversion of chromosome-microtubule
attachment [4]. Studies characterising the effects of impaired CENP-E function have shown efficient
alignment for most chromosomes, but with a subset remaining close to the poles [5,6], suggesting
a differential dependency on CENP-E between chromosomes [7]. One cause of this variance is
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that chromosomes positioned close to the centrosome or outside the interpolar axis at nuclear
envelope breakdown are particularly reliant on CENP-E function [5]. We were interested in discovering
whether chromosome identity could also influence these dependencies, given recent observations that
mammalian chromosomes non-randomly mis-segregate when the mitotic spindle is perturbed [8,9].
Errors in the process of chromosome segregation can lead to aneuploidy, a key hallmark of
cancer [10–12]. Indeed, CENP-E heterozygous mice have been shown to display increased aneuploidy
and tumour formation [13]. Moreover, common strategies to study aneuploidy in cellular models of
cancer also employ alteration of CENP-E function. For example, recent strategies to elevate aneuploidy
in diploid cells have used CENP-E inhibition coupled to inactivation of the mitotic checkpoint using
Mps1 inhibitors [14,15]. Given the open questions about the non-uniform behaviour of chromosomes
during impaired chromosome congression, and the unknown impact of CENP-E perturbation on
specific human chromosomes, we carefully explored the behaviour of uncongressed chromosomes
when CENP-E function is compromised, using live cell imaging and immunofluorescence. We show
that polar chromosomes comprise two groups, namely, that some chromosomes are subsequently able
to congress while others are terminally uncongressed. Differential ability to congress between these
groups is not dependent on microtubule attachment status, position relative to the centrosome, or time
spent in mitosis. Furthermore, to detect bias between chromosomes we applied fluorescence in situ
hybridisation (FISH) to quantify congression behaviour of each human chromosome. Interestingly,
chromosome identity influences the likelihood of remaining perpetually uncongressed following
CENP-E inhibition, with large chromosomes more likely to remain perpetually uncongressed.

2. Materials and Methods

2.1. Cell Culture and Fluorescent Protein Expression

Immortalised retinal pigment epithelium-hTert (RPE1) cells were from ATCC (UK). Stable
expression of H2B-RFP in hTERT-RPE1 cells was achieved by transfection with lentiviral construct
H2B-RFP (LV-RFP was a gift from Elaine Fuchs; Addgene plasmid # 26001; http://n2t.net/addgene:
26001; RRID:Addgene_26001). Cells were grown in DMEM Nutrient Mixture F12 Ham (Sigma-Aldrich
Company Ltd., Gillingham, UK) supplemented with 10% FBS (ThermoFisher Scientific, UK) and 100 U
Penicillin/Streptomycin (Sigma Aldrich) at 37 ◦C and 5% CO2. These cells also carried a variable
penetrance of trisomy 12, as previously observed [8]. Routine test results from mycoplasma were
negative and RPE1 cells were subjected to STR (short tandem repeats) profiling to verify their identity
using the cell line authentication service from Public Health England in November 2017.

2.2. Drug Treatment

Motor activity of CENP-E was inhibited by GSK923295 (Cayman Chemical, Michigan, USA)
dissolved in growth medium and used at a final concentration of 20 nM. AuroraB was inhibited
by ZM447439 (Cambridge Bioscience, Cambridge, UK) dissolved in DMSO and used at a final
concentration of 1 µM. Mitotic centromere-associated kinesin (MCAK) was upregulated by UMK57 (a
kind gift from Benjamin Kwok and Duane Compton [16] (the full characterisation of UMK57 will be
published elsewhere)).

2.3. Immunofluorescence

Cells grown on coverslips were fixed in freshly-prepared PTEMF (0.2% Triton X-100, 0.02 M PIPES
(pH 6.8), 0.01 M EGTA, 1 mM MgCl2, 4% formaldehyde) for 10 min at room temperature. For cold
treatment assays cells were placed on ice for 10 min before fixation. After blocking with 3% BSA,
cells were incubated with primary antibodies: α-tubulin at 1:600 (Abcam abID#6046, Cambridge, UK),
Centrin3 at 1:500 (Abcam abID#54531), CREST at 1:400 (Antibodies Incorporated, #15-234-0001, Davis,
CA), CENP-A at 1:400 (Abcam abID#13939), BubR1 at 1:500 (Cambridge Bioscience), Mad2 at 1:500
(Bethyl Lab, A300–300A). Secondary antibodies used were goat anti-mouse AlexaFluor488 (A11017,
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Invitrogen, UK), goat anti-rabbit AF594, AF488 (A11012, A11008, Invitrogen), and goat anti-human
AF647 (109-606-088-JIR, Stratechor A21445, Invitrogen). DNA was stained for 6 min with DAPI (Roche,
UK) and coverslips mounted in Vectashield (Vector H-1000, Vector Laboratories, Peterborough, UK).

2.4. Fluorescence In Situ Hybridisation

Cells were grown on glass slides or on coverslips, fixed in cold methanol/acetic acid (3:1),
then put through an ethanol dehydration series and air dried. Cells and specific centromere probe
(CEP), subtelomere specific probes or breakapart probes (Cytocell, UK) were denatured for 2 min at
75 ◦C then incubated overnight at 37 ◦C. The following day, slides were washed with 0.25X SSC at
72 ◦C followed by a brief wash in 2X SSC, 0.05% Tween. DNA was stained for 6 min with DAPI (Roche)
and coverslips mounted in Vectashield (Vector H-1000, Vector Laboratories).

2.5. Microscopy

Images were acquired using an Olympus DeltaVision RT microscope (Applied Precision, LLC,
USA) equipped with a Coolsnap HQ camera. Three-dimensional image stacks were acquired in
0.2 µm steps, using Olympus 100X (1.4 numerical aperture) or 60X UPlanSApo oil immersion
objectives. Deconvolution of image stacks was performed with SoftWorxExplorer (Applied Precision,
LLC). H2B-RFP-labelled RPE1 cells were live imaged in four well imaging dishes (Greiner Bio-one,
UK). The 20-µm z-stacks (10 images) were acquired using an Olympus 40X 1.3 numerical aperture
UPlanSApo oil immersion objective every 3 min for 8 h using a DeltaVision microscope in a temperature
and CO2-controlled chamber. Analysis was performed using Softworx Explorer.

2.6. Preparation of Illustration

Contrast and brightness of the final images were linearly adjusted in Photoshop (Adobe Photoshop
CC 2018, USA) and the figures assembled in Illustrator (Adobe Illustrator CC 2018, USA). Graphs were
prepared in Prism 5.4 (GraphPad Software, San Diego, CA) and imported in Illustrator.

3. Results

3.1. A Subset of Chromosomes Remains Perpetually Uncongressed after CENP-E Inhibition

We examined chromosome congression defects in RPE1 cells following small molecule inhibition
of CENP-E with GSK923295 [17]. Treatment of cells for 5 h with 20 nM centromere-associated protein E
inhibitor (CENP-Ei) resulted in a high proportion of cells with a clear metaphase plate, but with several
uncongressed chromosomes in the vicinity of the centrosomes (Figure 1a,b) as previously observed
using inhibition or depletion of CENP-E [2,4,6]. To gain more information about the behaviour of
chromosome congression under impaired CENP-E function we performed live cell imaging of RPE1
cells stably expressing H2B-RFP (Figure 1c). As expected, the control cells efficiently congressed all
chromosomes in 13 ± 3 min following nuclear envelope breakdown (NEBD) and underwent anaphase
in 26 ± 3 min (Figure 1d). By contrast, cells treated with CENP-E inhibitor significantly delayed
congression (Figure 1c) and thus delayed or failed anaphase onset (Figure 1d). Cells treated with
CENP-E inhibitor displayed a distinctive series of chromosome congression behaviours (Figure 1e):
Phase I; a rapid initial congression phase that produced a recognisable metaphase plate with in the
first 38 ± 12 min of NEBD. Phase II; a subsequent slower, but progressive phase of congression
at the rate of ~1 chromosome per hour that lasted until 240 min post-NEBD. Phase III; a paused
phase, where the majority of cells that had not yet congressed all chromosomes and entered anaphase
remained arrested in prometaphase with 2.56 ± 0.8 chromosomes for the remainder of the movie. For a
small subset of cells that could be followed for longer than 300 min post NEBD, we observed the onset
of cohesion fatigue, as previously observed under conditions of prolonged metaphase arrest [8,18],
where chromosomes were seen scattering from the metaphase plate (Figure 1c) (see Figure A1 for
individual cell congression profiles).
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Figure 1. Inhibition of centromere-associated protein E (CENP-E) results in faulty metaphase plate
formation and leads to a multi-phase chromosome congression pattern followed by cohesion fatigue.
(a) Example of immunofluorescence image of retinal pigment epithelium-hTert (RPE1) cells treated
for 5 h with centromere-associated protein E inhibitor (CENP-Ei), stained with CENP-A antibody to
mark centromeres (red). (b) Congression error rate and average number of uncongressed chromosomes
per erroneous metaphase. Mean and standard deviation (S.D.) from three independent experiments
is shown. Total number of cells analysed: 138 for DMSO treatment, 236 for CENP-Ei treated. Total
number of uncongressed chromosomes: 507. (c–e) Live-cell imaging of RPE-1 cells stably expressing
H2B-RFP. Movies started immediately after drug addition, cells were imaged every 3 min for 8 h in total.
(c) Representative frames of live cell imaging of RPE-1 cells stably expressing H2B-RFP. Top panels:
Control (DMSO) cell going into a normal mitosis. Bottom panels: CENP-Ei treated cell undergoing
faulty chromosome congression. (d) Cumulative frequency from nuclear envelope breakdown (NEBD)
to anaphase onset of cells treated with CENP-Ei (red line), compared to control (DMSO) cells (blue
line). Timing has been normalised to NEBD (min 0). (e) Mean (black dots) and S.D. (grey shade) of
uncongressed chromosome number over time in cells treated with CENP-Ei. The top coloured lines
reflect three different phases of congression: I) metaphase plate formation, II) progressive chromosome
congression, III) pause phase. See also Figure A1 for individual cell plots. Data in (d) and (e) is
from cells imaged for ≥300 min post-NEBD, or undergoing anaphase within 300 min, from three
independent experiments (15 cells arrested in prometaphase and 21 cells going into anaphase in total).

3.2. Perpetually Polar Chromosomes Are Not Shielded by the Centrosomes

The rapid formation of the pseudo-metaphase plate even when CENP-E function is impaired
suggests that many chromosomes are able to rapidly bi-orient in the absence of lateral microtubule
motion, potentially because they are already positioned near the equator of the cell at the moment of
nuclear envelope breakdown. However, some chromosomes fail to align during this rapid congression
phase and remain at the poles (‘polar chromosomes’ [6]). It is known that initial position at NEBD
influences the propensity of chromosomes to fail initial congression and become polar [5]. However,
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we were interested in understanding why a subset of these polar chromosomes were then able to
congress-albeit at a reduced rate-during the progressive phase (phase II, Figure 1e), while others were
left stranded at the centrosomes indefinitely (‘perpetually polar chromosomes’). First, we considered
the possibility that persistent polar chromosomes were simply positioned behind the centrosomes,
preventing congression to the metaphase plate. To test this, we marked centrosomes using anti-centrin 3
antibodies, and compared the distribution of chromosome positions relative to the centrosomes (‘inner’
or ‘outer’ (Figure 2a,b)) at two timepoints following CENP-E inhibition. Since cells continually enter
mitosis during CENP-Ei treatment, we sub-categorised cells based on the number of uncongressed
chromosomes to more accurately assess chromosome position relative to time spent in CENP-Ei
(4–6 uncongressed chromosomes (early cells) or 1–3 uncongressed chromosomes (late cells); Figure 2c).
We reasoned that if a subset of chromosomes was shielded behind the pole, that these would
be refractory to early congression, and there should be a higher proportion of outer (shielded)
chromosomes with time. There was a slight increase in the percentage of outer chromosomes in
later (1–3 uncongressed chromosomes) cells at the 60 min timepoint. However, across all cells and both
timepoints, the majority of chromosomes were positioned inside or parallel to the centrioles (Figure 2d)
suggesting that centrosome shielding was unlikely to fully explain the failure of perpetually arrested
chromosomes to congress.Biomolecules 2019, 9 FOR PEER REVIEW  6 
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Figure 2. The position of uncongressed chromosomes (chr) does not fully explain their persistence
near the centrosomes. (a) Example immunofluorescence image of RPE1 cells treated for 2 h with
CENP-Ei, stained with CENP-A antibody to mark centromeres (red) and with Centrin3 (cen3) antibody
to mark centrosomes (green). In the example, two prometaphases are reported: the left panel shows
a prometaphase cell in an early stage (4–6 uncongressed chromosomes), the right panel shows a
prometaphase cell in a later stage (1–3 uncongressed chromosomes). A white dashed line, parallel to
the metaphase plate, has been used as a reference to categorise the uncongressed chromosomes (also
schematised in (b)). (b) Any centromeric signal that is touching the line or is located between the line
and the metaphase plate is classed as “inner”; any centromeric signal which is not touching the line
or is distal from the cen3 signal is classed as “outer”. (c) Distribution of prometaphase cells with 1–3,
4–6 or more than 6 uncongressed chromosomes at each time point (60 min and 120 min) (n = number
of cells analysed in each condition). (d) Quantification of position of uncongressed chromosomes in
early or late phase cells at 60 or 120 min of CENP-Ei treatment, two experiments (125 cells and 676
chromosomes analysed for 60 min treatment; 126 cells and 717 chromosomes analysed for 120 min
treatment). t-test on early vs late cells treated for 60 min, p = 0.3065. t-test on early vs late cells treated
for 120 min, p = 0.8987. ns: not significant.
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3.3. Kinetochore-Microtubule Dynamics Do Not Influence the Behaviour of Polar Chromosomes

The inhibition of CENP-E is proposed to impair the conversion from lateral to end-on
kinetochore-microtubule attachment [4] and therefore uncongressed chromosomes are known to be
laterally attached [5,19,20]. However, we wondered if a subset of the perpetually polar chromosomes
might have formed syntelic attachments (both kinetochores (KTs) attached to microtubules (MTs)
emanating from the same centrosome) that could impair their congression. Indeed, polar chromosomes
frequently appeared positioned with both kinetochores oriented toward the centrosome (see Figure 2a).
To investigate whether syntelic attachments were present at polar chromosomes, we performed a brief
cold treatment to remove unstable spindle microtubules and allow observation of stable kinetochore
microtubule (KT-MT) attachments using tubulin and CENP-A. In contrast to the clear end-on (and
amphitelic) attachments observed at chromosomes within the metaphase plate (Figure 3b, left panel),
we never observed any end-on attachments at polar chromosomes, suggesting a lack of syntelic or
monotelic attachment. Additionally, we could often see polar chromosomes perpendicular to MTs
(Figure 3b, right panel). Next, we examined the mitotic checkpoint status of polar chromosomes using
antibodies to spindle assembly checkpoint proteins Mad2 and BubR1 which revealed that the vast
majority of KTs efficiently loaded Mad2 and BubR1 in agreement with a lack of end-on MT attachment
(Figure 3c,d). These analyses suggested that polar chromosomes were likely to be associated with
the microtubule lattice. To systematically rule out the presence of syntelic attachment that may have
evaded detection using imaging approaches we functionally modulated KT-MT dynamics during
the progressive congression phase. We reasoned that increasing KT-MT turnover would promote
release of syntelic attachments and rescue polar chromosomes, whilst decreasing turnover would
further impair polar chromosome congression. To do this, we first treated cells with CENP-E inhibitor
for 1 h, to allow cells to enter mitosis and establish a metaphase plate with a few uncongressed
chromosomes. Then we added either a potentiator of MCAK MT depolymerase (UMK57 [16]) or an
Aurora B inhibitor (ZM447439) to increase or decrease KT-MT turnover respectively during the final
hour of CENP-E inhibition (Figure 3e). Alone, UMK57 and ZM447439 treatments each resulted in
failure to efficiently form metaphase plates, confirming their ability to deregulate KT-MT dynamics as
expected (Figure 3f,g). However, neither UMK57 nor ZM447439 treatment changed the number of
polar chromosomes remaining after 2 h CENP-E inhibition (Figure 3h,i). Taken together, these data
suggest that the failure of polar chromosomes to congress is not due to rare syntelic or other end-on
MT attachments to the centrosomes.
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immunofluorescence image of prometaphase with uncongressed chromosomes after 10 min of cold
treatment to remove unstable spindle microtubules. Cells are stained with CENP-A antibody to
mark centromeres (red) and with α-tubulin antibody to mark spindle microtubules (green). (b)
Representative immunofluorescence images of cells treated for 2 h with CENP-Ei and subsequently
for 10 min with cold treatment. Zooms indicate kinetochore-microtubule attachments. Left panel
highlights a correctly aligned chromosome which is amphitelically attached to the mitotic spindle.
Right panel highlights a polar chromosome laterally attached to the mitotic spindle. (c) Representative
images showing two major markers of spindle assembly checkpoint (SAC) activation in CENP-Ei
treated cells (BubR1 and Mad2, green). (d) Percentage of uncongressed chromosomes that are Mad2 or
BubR1 positive, one experiment (122 cells analysed). (e) Schematic of experimental procedure designed
to investigate syntelic attachment of perpetually uncongressed chromosomes. (f) Representative
immunofluorescence images of cells treated with CENP-Ei, MCAK potentiator (UMK57) and Aurora
B inhibitor (ZM). (g) Percentage of erroneous metaphases obtained from single drug treatments.
Blue bars indicate metaphases with uncongressed chromosomes, green bars indicate an improper
alignment of chromosomes which results in abnormal metaphase shape. Mean and S.D. from three
independent experiments (at least 150 metaphase cells analysed in total per each condition) are shown.
(h) Representative immunofluorescence images of cells treated with combinations of drugs as indicated.
(i) Percentage of erroneous metaphases and number of uncongressed chromosomes per prometaphase
obtained from combination of drug treatments. Data show mean and S.D. from three independent
experiments (at least 150 metaphase cells analysed in total per condition). IF: immunofluorescence.
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3.4. Congression of Large Chromosomes Is Particularly Impaired by CENP-E inhibition

We next wondered if a systemic cellular process might be limiting the time available for
progressive chromosome congression. We rarely observed any congression events after 240 min
post-NEBD (see Figure 1e), suggesting that extended time in mitosis might ultimately lead to a
cellular state that precluded further chromosome congression. However, live cell analyses showed
that a proportion (56%) of CENP-Ei-treated cells did proceed to anaphase during this time (see
Figure 1d). In accordance with the efficient loading of mitotic checkpoint proteins Mad2 and BubR1
at polar chromosomes (see Figure 3c,d), we noted from live cell imaging that cells correctly aligned
all chromosomes before undergoing anaphase (see Figure 1) at least within the time resolution of
the time-lapse filming (3 min). To examine why some cells were able to congress all chromosomes
and progress into anaphase whereas some cells remained arrested in prometaphase, we compared
parameters between cells that did, or did not ultimately enter anaphase. There was no difference
in the number of uncongressed chromosomes at the start of the progressive congression phase
(Phase II; Figure 4a). Both classes of cells also proceeded in a similarly progressive and consistent
manner through this congression phase though we noted a small difference in the rate of congression
(Figure 4b,c). These similarities suggested that the factor influencing whether cells could congress
all their chromosomes and proceed to anaphase was not a systemic state related to the time cells had
spent in prometaphase, and was not a function of the initial number of polar chromosomes. Therefore,
we wondered instead whether the identity of the polar chromosomes might dictate whether they could
be congressed efficiently in the absence of CENP-E function. To test whether chromosome identity
could influence the likelihood of becoming terminally uncongressed, we treated cells with CENP-Ei
for 2 h then performed FISH with chromosome-specific probes against all chromosomes. Where
specific centromere probes were not available, we used sub-telomere-specific, or interstitial probes
(see Table 1 for details). We scored the frequency with which each chromosome was uncongressed
in cells where 3 or fewer chromosomes were uncongressed, to ensure we were analysing cells in the
‘paused’ phase (Phase III) of congression (Figure 4d). This analysis revealed a clear bias towards
large chromosomes remaining uncongressed; of the twelve largest chromosomes (chromosomes 1–11
and the X chromosome) eight remained uncongressed at higher than expected rates (expected: 4.3%
per chromosome), whereas eight of the eleven smaller chromosomes (chromosomes 12–22) were
affected less than expected rates (Figure 4e,f). We also noted interesting deviations from this pattern.
Chromosomes 5 and 9 were much less frequently affected than chromosomes of similar size. Notably,
chromosome 18 was more affected than expected, especially considering its small size.
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Figure 4. Larger chromosomes are more likely to remain perpetually uncongressed under CENP-E
inhibition. (a) Initial number of uncongressed chromosomes in cells that remain arrested in
prometaphase or undergo anaphase. Unpaired t-test, p = 1. (b) Comparison of uncongressed
chromosome number during time in cells arrested in prometaphase (left graph) and in cells going into
anaphase (right graph). (c) Overlay of the two populations of cells (mean) in (b). ****<0.0001, two-tailed
Mann Whitney test. CR: chromosome congression rate in phase II. (d) Distribution of prometaphase
cells with 1–3, 4–6 or more than 6 uncongressed chromosomes in fluorescence in situ hybridisation
(FISH) experiments of cells treated with CENP-Ei for 2 h. (e) Example FISH images of all human
chromosomes marked with centromere probes (CEP), subtelomere probes or breakapart probes. (f)
Percentage of uncongressed chromosomes that are indicated. Dark violet bars represent 3 experiments,
light violet bars represent 2 experiments, pale violet bars represent 1 experiment (at least 50 cells have
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been analysed for each experiment). Mean and S.D. are shown for data from 2 or 3 experiments, mean is
shown for data from 1 experiment. A red dashed line indicates the expected rates of uncongression for
each chromosome if each chromosome was equally affected (1/23 = 0.043). Bottom pane indicates the
number of prometaphases analysed for each chromosome. Note that we adjusted chromosome-specific
rates of congression for chromosome 12 to account for the observed trisomy rates for this chromosome.
(g) Percentage of uncongressed chromosomes that are indicated in early prometaphase stage (4–6
chromosomes, black bars) or late prometaphase stage (1–3 chromosomes, grey bars); t-test for
chromosome 1, p = 0.87; t-test for chromosome 2, p = 0.49; t-test for chromosome 4, p = 0.34; t-test for
chromosome, 6 p = 0.27; t-test for chromosome, 8 p = 0.58; t-test for chromosome 18, p = 0.35; t-test for
chromosome 7, p = 0.89; t-test for chromosome 17, p = 0.17; t-test for chromosome 20, p = 0.038. Mean
and S.D. are shown for data from two or three independent experiments. Bottom pane indicates the
number of prometaphases analysed for each chromosome in early (4–6 uncongressed chromosomes)
and late (1–3 chromosomes) cells. Data from late cells are reproduced from (f) for comparison.

Table 1. Details of fluorescence in situ hybridisation (FISH) probes.

Chromosome Probe Chromosome Region Probe Code

1 centromeric 1q12 LPE 001R/G
2 centromeric 2p11.1-q11.1 LPE 001R/G
3 centromeric 3p11.1-q11.1 LPE 001R/G
4 centromeric 4p11.1-q11.1 LPE 001R/G
5 telomeric 5qtel LPT 05QG/R
6 centromeric 6p11.1-q11.1 LPE 001R/G
7 centromeric 7p11.1-q11.1 LPE 001R/G
8 centromeric 8p11.1-q11.1 LPE 001R/G
9 centromeric 9q12 LPE 001R/G
10 centromeric 10p11.1-q11.1 LPE 001R/G
11 centromeric 11p11.1-q11.1 LPE 001R/G
12 centromeric 12p11.1-q11.1 LPE 001R/G
13 telomeric 13qtel LPT13QG/R
14 TCL1 breakapart 14q.32.13-q32.2 LPH 046-S
15 centromeric 15p11.1-q11.1 LPE 001R/G
16 centromeric 16p11.1-q11.1 LPE 001R/G
17 centromeric 17p11.1-q11.1 LPE 001R/G
18 centromeric 18p11.1-q11.1 LPE 001R/G
19 telomeric 19qtel LPT 19QG/R
20 centromeric 20p11.1-q11.1 LPE 001R/G
21 AML breakapart 21q22.12 LPH 027-S
22 telomeric 22qtel LPT 22QG/R
X centromeric Xp11.1-q11.1 LPE 001R/G

TCL1: T Cell Leukemia; AML: Acute Myeloid Leukemia.

Cells with 1–3 uncongressed chromosomes analysed in these FISH experiments are likely a mix of
cells destined to enter anaphase, and those destined to arrest with perpetually polar chromosomes.
Thus, the bias towards larger chromosomes remaining uncongressed likely reflects a combination of
two distinct variables; (i) the propensity for a given chromosome to be polar initially, and (ii) the ability
of specific chromosomes to congress from a polar starting position. To test the contribution of these
variables we analysed the uncongression bias in cells with 4–6 uncongressed chromosomes (‘early’
cells) and compared this to data collected from cells with 1–3 uncongressed chromosomes (‘late’ cells
(Figure 4f)). We specifically asked; for chromosomes that are uncongressed above a rate of 4.3% in late
cells (e.g.,1, 2, 4, 6, 8 and 18) what is the uncongression bias in ‘early’ versus ‘late’ cells? Interestingly we
see a clear general trend (although most comparisons do not reach statistical significance); bias is lower
in early cells, suggesting that initial positioning is not the only factor, and that these chromosomes
are additionally less able to congress from a polar position. Taken together these data suggest that
large chromosomes appear to be more likely to (i) become polar initially after NEBD and also (ii) fail to
congress from a polar position.
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4. Discussion

To date, it has been shown that CENP-E inhibition impairs chromosome congression, with a
characteristic subset of chromosomes that fail to initially congress, often as a result of being located
outside the interpolar microtubules at NEBD [5]. Here, we used live cell imaging to show that of the
initial polar chromosomes, there is a final set that fails to congress during prolonged prometaphase.
We show these perpetually polar chromosomes are generally not obviously shielded by centrosomes,
and are not attached to centrosomes in a syntelic manner. Analysis of chromosome identity revealed
a bias towards larger chromosomes becoming arrested at the centrosome, which appears to be
contributed to by both an initial propensity to become polar, coupled to a reduction in congression
efficiency from a polar state (Figure 4g). Chromosomes have been shown to exhibit non-random
nuclear distribution, with larger chromosomes tending to be at the periphery [21,22]. It is, therefore,
a strong possibility that the size bias may reflect the initial arrangement of chromosomes in the nucleus;
small chromosomes may be more likely to be positioned close to the site of the metaphase plate and be
more likely to encounter MTs at the correct geometry to form end-on attachments even in the absence
of CENP-Ei. In contrast, large chromosomes positioned at the periphery of the nucleus would be more
likely to become polar since the initial position relative to the centrosome is important in dictating the
dependency upon CENP-E for congression [9]. However, there is also evidence that chromosomes are
near randomly distributed at the onset of mitosis [23]. This suggests that the position of chromosomes
in the nucleus could be relevant for their increased dependency on CENP-E, but that other factors may
also be involved. Chromosomes can be excluded from central parts of the spindle by arm ejection
forces [5] which would be expected to affect large chromosomes more, therefore this could be another
contributing factor to the propensity of large chromosomes to become polar at NEBD. Additionally,
one notable class of chromosomes, the acrocentric chromosomes, that contain the ribosomal DNA and
are usually positioned close to nucleoli [24] are all in the ‘small’ chromosome category. It is possible
that their tethering to the nucleolus renders them more likely to be positioned close to the interior of
the nucleus and depend less on CENP-E for metaphase alignment.

Since some, but not all, chromosomes congress during the progressive phase, and since some
cells are able to congress all chromosomes, whereas others are not, an additional bias towards large
chromosomes may be introduced during this phase. Indeed, the fact that cells that do, or do not,
ultimately congress all chromosomes and enter anaphase start with an identical average number
of polar chromosomes suggested a bias in the ability of some of these chromosomes to congress.
By contrast, if all chromosomes were equally able to congress, we would expect a correlation between
a low number of polar chromosomes, and the ability to enter anaphase (which we do not see).
This hypothesis is supported by FISH experiments comparing the bias in early and late cells that
suggests at least some bias is introduced independently of initial positioning near the centrosome.
What might explain the variance in the ability of specific chromosomes to congress from a polar
position? Kinetochore-bound dynein provides a force directing uncongressed chromosomes towards
microtubule minus ends [25,26], explaining the proximity of uncongressed chromosomes to the
centrosome in the absence of end on attachment. Chromokinesins provide the counterbalance force
(the polar ejection force) [27], and the balance between these forces could be important to determine
whether chromosomes are able to congress in the absence of CENP-E. Interestingly, although large
chromosomes should potentially benefit from a higher polar ejection force, the observed enrichment
of these chromosomes at centrosomes would support the previous observation that the force balance
is in fact tipped towards dynein winning [5]. It has been estimated that centromere strength during
end-on attachment should not need to compensate for chromosome size since spindle forces are
magnitudes higher than drag produced by chromosomes [28,29]. However, the forces involved in
dynein-mediated movements along MTs might be closer to the scale where chromosome size-related
viscous drag could be a factor. Large chromosomes may inherently load more dynein to compensate
for their size. Under normal conditions this is counterbalanced by CENP-E function, but following
CENP-E inhibition large chromosomes are vulnerable to congression failure. Interestingly, recent work
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has shown that chromosomes with larger centromeres depend less on CENP-E for congression in the
Indian Muntjak system [9]. This would suggest that even if large chromosomes do load more dynein,
that this might not translate directly into a ‘larger’ kinetochore per se (in terms of providing additional
MT binding sites).

There may be clues from the exceptions to the rule of large chromosomes remaining uncongressed.
What is it about chromosomes 5, 7 and 9 that mean they escape frequent congression failure? A cursory
analysis of basic chromosome biology does not reveal any obvious features of these chromosomes.
It could be that these chromosomes inhabit internal chromosome territories despite their large size.
Alternatively, there may be important functional differences between human chromosomes that are
currently unknown. In the other direction, why is chromosome 18 more vulnerable to congression
failure than other small chromosomes? Notably, chromosome 18 is thought to have the longest
centromeric region of all the human chromosome (5.4 MB); therefore, it is possible that it overloads
dynein relative to chromosome size, resulting in less efficient congression. However, chromosome 17
also has a large centromere (4.1 MB) but is rarely affected. Therefore, there does not appear to be a clear
correlation between centromere length as estimated from centromeric array lengths and propensity to
remain polar. However, it is not currently possible to make robust conclusions regarding contribution
to congression bias from differences in centromere length or size, since these parameters are not
currently well defined. Future studies will be required to functionally test centromeric differences that
could contribute to variance in congression ability.

It is noteworthy that chromosomes 1, 2 and 18 have previously been found to be more prone
to improper segregation during perturbation of mitosis using nocodazole washout [8]. It could be
that these chromosomes are vulnerable to defects in both chromosome congression and segregation,
although likely via distinct mechanisms. Taken together, a picture is now emerging of how individual
chromosome characteristics can influence multiple processes during mitosis [8,9]. Since defects in
mitosis can lead to aneuploidy, understanding the rates at which individual chromosomes can become
aneuploid under specific impairments of cell division may be important for interpreting aneuploidy
landscapes in cancer. In this regard, it is interesting that chromosome congression defects have been
observed in colorectal cancer [30] and ovarian cancer (our unpublished observations), although not
via deregulation of CENP-E function as far as we are aware.

5. Conclusions

In summary, by examining the behaviour of chromosomes most affected by CENP-E inhibition,
we found that large chromosomes are particularly vulnerable to congression failure. This is likely to
be due to a combination of factors, potentially including nuclear chromosome territories, in addition
to other, as yet unknown, features of chromosomes that impact the ability to congress from a polar
position. Further investigation of the specific features that render particular chromosomes more
dependent on CENP-E will likely provide further insights into fundamental mechanisms controlling
movement and accurate segregation of chromosomes during cell division.
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Figure A1. Individual cell behaviour under CENP-E inhibition. (a) Uncongressed chromosome
number over time in cells going into anaphase. (b) Uncongressed chromosome number over time
in cells arrested in phase II of congression (top two lines) and in cells affected by cohesion fatigue
(bottom two lines). (a,b) Live-cell imaging of RPE-1 cells stably expressing H2B-RFP. Movies started
immediately after drug addition, cells were imaged every 3 min for 8 h in total. Data shown is from
three independent experiments.
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