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Abstract: The cyclooxygenase-2 (COX-2) enzyme is considered to be an important target for developing
novel anti-inflammatory agents. Selective COX-2 inhibitors offer the advantage of lower adverse
effects that are commonly associated with non-selective COX inhibitors. In this work, a novel series of
methyl 3-(substituted benzoyl)-7-substituted-2-phenylindolizine-1-carboxylates was synthesized and
evaluated for COX-2 inhibitory activity. Compound 4e was identified as the most active compound
of the series with an IC50 of 6.71 µM, which is comparable to the IC50 of indomethacin, a marketed
non-steroidal anti-inflammatory drug (NSAID). Molecular modeling and crystallographic studies
were conducted to further characterize the compounds and gain better understanding of the binding
interactions between the compounds and the residues at the active site of the COX-2 enzyme.
The pharmacokinetic properties and potential toxic effects were predicted for all the synthesized
compounds, which indicated good drug-like properties. Thus, these synthesized compounds can be
considered as potential lead compounds for developing effective anti-inflammatory therapeutic agents.
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1. Introduction

The non-steroidal anti-inflammatory drugs (NSAIDs) are considered to be one of the most
frequently prescribed medications for the treatment of inflammation, pain, and fever [1]. The
anti-inflammatory effects produced by the NSAIDs occur as a result of inhibition of the cyclooxygenase
(COX) enzyme. This enzyme is involved in the synthesis of prostaglandin G2 (PGG2) from arachidonic
acid, which is required for the inflammation process to take place [2,3]. There are mainly two important
isoforms of the COX enzyme. The first one is the COX-1 isoform, which represents the constitute isoform
that is distributed normally in certain tissues of the body such as the kidney and the gastrointestinal
tract (GIT), this isoform carries out physiological functions such as gastric protection and maintenance
of renal homeostasis [4–6]. The other isoform is the COX-2, which is the inducible isoform that is only
expressed during exposure to certain substances such as cytokines, which are produced during injury.
The use of non-selective COX inhibitors, which inhibit both the COX-1 and COX-2 isoforms usually,
results in undesirable adverse effects, mainly involving the GIT. These adverse effects are caused by the
inhibition of the COX-1 isoform, which is responsible for GIT protection. For instance, GIT ulceration is
a common side effect of non-selective NSAIDs, which results mainly from the inhibition of the COX-1
isoform [7,8]. In order to develop anti-inflammatory agents that have an improved safety profile and
reduced side effects, the discovery of selective COX-2 inhibitors is required, as these inhibitors will be
devoid of the side effects observed from COX-1 isoform inhibition.

Compounds based on the indolizine scaffold (Figure 1) have been reported to possess a wide
spectrum of biological activities. For instance, they have been shown to be able to bind to phospholipase
A2, histamine receptors, and calcium channels, which are well-known drug targets [9,10]. In addition,
indolizine derivatives were reported to have potential anti-inflammatory and anti-cancer effects [11–13].
Figure 1 shows the similar structures of the marketed COX-2 inhibitor indomethacin and the scaffold
of the indolizine derivatives.
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Figure 1. Commercially available COX-2 enzyme inhibitor (indomethacin) and the proposed
methyl 3-(substituted benzoyl)-7-substituted-2-phenylindolizine-1-carboxylate analogues for COX-2
inhibition activity.

In continuation of our effort to identify potential COX-2 inhibitors [14,15], in the present study,
the anti-inflammatory activity of a series of phenylindolizine derivatives was evaluated by assessing
the ability of the compounds to inhibit the COX-2 enzyme. In addition, molecular modeling studies
were carried out to gain better insights into the structural requirements for achieving the high activity.
The pharmacokinetic properties and toxicity of the synthesized compounds were predicted to evaluate
their potential as lead compounds for developing anti-inflammatory agents.
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2. Materials and Methods

2.1. General

All chemicals reported here were obtained from Sigma-Aldrich Co. (St. Louis, MO, USA), while
the solvents were obtained from MilliporeSigma (Burlington, MA, USA). Thin-layer chromatography
(TLC) was employed to observe chemical reactions, and this process was performed on silica gel
(Sigma-Aldrich Co., St. Louis (HQ), MO, USA), on aluminum foil; n-hexane and ethyl acetate (4:6)
were used as the solvent. The reactions were visualized under an ultraviolet (UV)-light/iodine
chamber. A Büchi melting point B-545 apparatus was used to measure the melting points (Büchi,
Labortechnik, Flawil, Switzerland). Infrared (IR) spectra were recorded on a Shimadzu IRAffinity-1S
Fourier-transform infrared (FT-IR) spectrometer (Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho,
Nakagyo-ku, Kyoto 604-8511, Japan. Further, 1H and 13C-nuclear magnetic resonance (NMR) spectra
were recorded using Bruker AVANCE III 400 MHz (Bruker Corporation, Billerica, MA, USA) with
CDCl3 (solvent). Chemical shifts (δ) were indicated in ppm, with tetramethylsilane (TMS) as a reference;
coupling constants (J) were recorded (Hz). The splitting pattern was documented as follows: s, singlet;
d, doublet; q, quartet; and m, multiplet. Liquid chromatography–mass spectrometry (LC-MS) (Agilent
1100 series, (Agilent Technologies Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA,
USA) was used to measure the mass spectra, in conjunction with MSD and 0.1% aqueous trifluoroacetic
acid in an acetonitrile system on the C18-BDS column. Elemental analysis was conducted using a
FLASH EA 1112 CHN analyzer (Thermo Finnigan LLC, New York, NY, USA).

2.2. General Procedure for the Synthesis of Methyl 3-(Substituted
Benzoyl)-7-Substituted-2-Phenylindolizine-1-Carboxylate Analogues (4a–g)

As indicated in Scheme 1, a mixture of 4-methyl/cyano pyridine (1.00 mmol), 4-substituedphenacyl
bromide (1.00 mmol), and methyl phenylpropiolate (1.00 mmol) was added to 4 mL acetonitrile and
triethylamine (1.00 mmol) in 10 mL of microwave tube under nitrogen atmosphere. The reaction
mixture was irradiated at 100 ◦C in a microwave initiator up to 5 min. The reaction completion was
monitored on TLC. After reaction completion, the reaction medium was evaporated under reduced
pressure, the crude product obtained was diluted with water, the aqueous layer was extracted twice
with ethyl acetate and the organic layer was washed with brine solution. The organic layer was
evaporated under reduced pressure, and the product obtained was purified by column chromatography
using 60–120 mesh silica gel with hexane and ethyl acetate solvent system to afford 76%–89% yield of
methyl 3-(substituted benzoyl)-7-substituted-2-phenylindolizine-1-carboxylates.
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Methyl 3-Benzoyl-7-Methyl-2-Phenylindolizine-1-Carboxylate (4a). Appearance: yellow crystalline
compound, Yield: 87%, melting point: 173–174 ◦C, FT-IR (KBr, cm−1): 2945.10, 1708.81 (C=O),
1591.16 (C=O), 1444.58, 1413.72, 1217.00, 1168.78, 1080.06, 821.62, 703.97, 563.18; 1H-NMR (400 MHz) δ
= 9.56 (d, J = 7.2 Hz, 1H), 8.25 (s, 1H), 7.36–7.34 (d, J = 7.6 Hz, 2H), 7.16–7.09 (m, 3H), 7.03–7.00 (m,
5H), 6.92–6.90 (m, 1H), 3.70 (s, 3H), 2.53 (s, 3H); 13C-NMR (100 MHz) δ = 188.13, 164.95, 140.77, 139.68,
139.49, 138.87, 133.94, 131.44, 131.15, 130.82, 129.10, 127.65, 127.35, 127.08, 126.75, 122.08, 118.44, 117.39,
103.42, 50.77, 21.64; LC-MS (ESI, Positive): m/z: [M + H]+: 370; Anal. calculated for: C24H19NO3;
C, 78.03; H, 5.18; N, 3.79; Found: C, 78.07; H, 5.19; N, 3.89.

Methyl 3-(4-Fluorobenzoyl)-7-Methyl-2-Phenylindolizine-1-Carboxylate (4b). Appearance: yellow
crystalline compound, Yield: 85%, melting point: 167–168 ◦C, FT-IR (KBr, cm−1): 2972.10, 1685.67
(C=O), 1602.74 (C=O), 1379.01, 1217.00, 1118.64, 867.91, 783.05, 605.61, 522.67; 1H-NMR (400 MHz)
δ = 9.53 (d, J = 7.2 Hz, 1H), 8.25 (s, 1H), 7.37–7.34 (m, 2H), 7.10–7.02 (m, 5H), 6.92–6.91 (d, J = 7.2Hz,
1H), 6.70–6.66 (t, J = 8.4Hz, 2H), 3.68 (s, 3H), 2.55 (s, 3H); 13C-NMR (100 MHz) δ = 186.54, 165.33, 164.88,
162.83, 140.71, 139.76, 139.03, 135.72, 135.69, 133.86, 131.52, 131.34, 131.16, 127.61, 127.25, 126.89, 121.87,
118.49, 117.48, 114.53, 114.31, 103.48, 50.81, 21.64; LC-MS (ESI, Positive): m/z: [M + H]+: 388; Anal.
calculated for: C24H18FNO3; C, 74.41; H, 4.68; N, 3.62; Found: C, 74.43; H, 4.67; N, 3.63.

Methyl 3-(4-Chlorobenzoyl)-7-Methyl-2-Phenylindolizine-1-Carboxylate (4c). Appearance: yellow
crystalline compound, Yield: 89%, melting point: 154–155 ◦C, FT-IR (KBr, cm−1): 2945.10, 1708.81
(C=O), 1593.09 (C=O), 1415.65, 1290.29, 1217.00, 918.05, 821.62, 707.83, 563.18; 1H-NMR (400 MHz)
δ = 9.58 (d, J = 7.2 Hz, 1H), 8.26 (s, 1H), 7.26–7.24 (d, J = 8.0 Hz, 2H), 7.10–7.02 (m, 5H), 6.98–6.92
(m, 3H), 3.70 (s, 3H), 2.54 (s, 3H); 13C-NMR (100 MHz) δ = 186.63, 164.83, 141.02, 139.84, 139.24, 137.94,
136.78, 133.80, 131.13, 130.36, 127.71, 127.57, 127.20, 126.93, 121.83, 118.51, 117.59, 103.65, 50.82, 21.65;
LC-MS (ESI, Positive): m/z: ([M + H]+: 404; Anal. calculated for: C24H18ClNO3; C, 71.38; H, 4.49; N,
3.47; Found: C, 71.33; H, 4.45; N, 3.52.

Methyl 3-(4-Bromobenzoyl)-7-Methyl-2-Phenylindolizine-1-Carboxylate (4d). Appearance: brown
crystalline compound, Yield: 85%, melting point: 137–138 ◦C, FT-IR (KBr, cm−1): 2975.96, 1689.53
(C=O), 1614.31 (C=O), 1421.44, 1217.00, 1178.43, 1108.99, 798.47, 757.97, 636.47, 595.96; 1H-NMR
(400 MHz) δ = 9.59 (d, J = 7.2 Hz, 1H), 8.25 (s, 1H), 7.18–7.16 (m, 2H), 7.13–7.02 (m, 7H), 6.94–6.92
(d, J = 7.2 Hz, 1H), 3.69 (s, 3H), 2.53 (s, 3H); 13C-NMR (100 MHz) δ = 186.72, 164.82, 141.10, 139.85,
139.28, 138.39, 133.78, 131.12, 130.53, 130.46, 127.74, 127.17, 126.95, 125.33, 121.80, 118.50, 117.62, 103.70,
50.82, 21.66; LC-MS (ESI, Positive): m/z: [M + H] +: 448; Anal. calculated for: C24H18BrNO3; C, 64.30;
H, 4.05; N, 3.12; Found: C, 64.35; H, 4.06; N, 3.06.

Methyl 7-Cyano-3-(4-Cyanobenzoyl)-2-Phenylindolizine-1-Carboxylate (4e). Appearance: yellow
amorphous compound, Yield: 76%, melting point: 235–236 ◦C, FT-IR (KBr, cm−1): 2950, 2223
(CN), 1718 (C=O), 1627 (C=O), 1375, 1226.64, 1080.06, 925.77, 702.04, 549.67; 1H-NMR (400 MHz) δ =

9.55 (d J = 7.2 Hz, 1H), 8.02 (s, 1H), 7.86–7.84 (d, J = 6.54 Hz, 2H), 7.79–7.77 (d, J = 6.54 Hz, 2H), 7.53–7.31
(m, 5H), 7.10–7.05 (m, 1H), 3.76 (s, 3H); 13C-NMR (400 MHz) δ = 184.77, 164.30, 143.63, 133.21, 132.24,
131.35, 131.09, 130.49, 129.89, 129.28, 128.99, 128.60, 127.83, 127.38, 125.50, 121.83, 121.70, 117.83, 115.51,
114.96,107.36, 52.05; LC-MS (ESI, Positive): m/z: [M + H] +: 406; Anal calculated for: C25H15N3O3: C,
74.07, H, 3.73, N, 10.36: Found: C, 73.99, H, 3.68, N, 10.42.

Methyl 3-(4-Bromobenzoyl)-7-Cyano-2-Phenylindolizine-1-Carboxylate (4f). Appearance: brown crystalline
compound, Yield: 84%, melting point: 208–209 ◦C, FT-IR (KBr, cm−1): 2950.89, 2225.70 (CN), 1706.88
(C=O), 1608.52 (C=O), 1585.36, 1514.02, 1440.51, 1419.51, 1217.00, 1143.71, 1072.35, 918.05, 705.90,
543.89; 1H-NMR (400 MHz) δ = 9.49–9.48 (m, 1H), 8.84 (s, 1H), 7.44–7.42 (d, J = 7.2 Hz, 2H), 7.23–7.13
(m, 6H), 7.12–7.08 (m, 4H), 3.77 (s, 3H); 13C-NMR (400 MHz) δ = 187.29, 163.70, 140.61, 137.01, 136.29,
132.33, 131.81, 131.10, 130.90, 129.99, 128.42, 128.14, 127.93, 127.32, 126.79, 119.90, 117.35, 115.13, 114.42,
109.35, 107.39, 51.46; LC-MS (ESI, Positive): m/z: [M + H] +: 459.2; Anal calculated for: C24H15BrN2O3:
C, 62.76, H, 3.29, N, 6.10: Found: C, 62.75, H, 3.26, N, 6.12.
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Methyl 7-Cyano-3-(4-Methoxybenzoyl)-2-Phenylindolizine-1-Carboxylate (4g). Appearance: yellow
crystalline compound, Yield: 81%, melting point: 166–167 ◦C, FT-IR (KBr, cm−1): 2950.89, 2227.63,
1706.88 (C=O), 1600.81 (C=O), 1573.81, 1514.02, 1369.37, 1220.86, 1141.78, 1027.99, 802.33, 709.76, 615.25;
1H-NMR (400 MHz) δ = 9.21–9.20 (m, 1H), 8.81 (s, 1H), 7.44–7.42 (d, J = 7.2 Hz, 2H), 7.17–7.15 (m, 3H),
7.10–7.05 (m, 3H), 6.57–6.55 (d, J = 7.2 Hz, 2H), 3.78 (s, 3H), 3.72 (s, 3H); 13C-NMR (400 MHz) δ = 186.95,
163.92, 162.95, 139.14, 135.72, 132.61, 131.88, 131.14, 130.50, 130.13, 128.68, 127.75, 127.25, 126.37, 124.44,
117.63, 113.88, 113.77, 113.13, 108.34, 106.86, 55.56, 51.96; LC-MS (ESI, Positive): m/z: [M + H] +: 411;
Anal calculated for: C25H18N2O4: C, 73.16, H, 4.42, N, 6.83: Found: C, 73.08, H, 4.38, N, 6.90.

2.3. Crystallography

Single crystal of compound 4a was obtained from mixture of acetone and ethyl alcohol solvent
at 1:1 ratio by slow evaporation method at low temperature as block shape and brown in color.
Single-crystal X-ray diffraction data were collected on a Bruker KAPPA APEX II DUO diffractometer
using graphite-monochromated Mo-Kα radiation (χ = 0.71073 Å). Data collection was carried out at
173(2) K. Temperature was controlled by an Oxford Cryostream cooling system (Oxford Cryostat).
Cell refinement and data reduction were performed using the program SAINT [16]. The data were
scaled and absorption correction performed using SADABS [17]. The structure was solved by direct
methods using SHELXS-97 [17] and refined by full-matrix least-squares methods based on F2 using
SHELXL-2014 [17] and using the graphics interface program X-Seed [18,19]. Both the programs X-Seed
and POV-Ray [20] were used to prepare molecular graphic images. All non-hydrogen atoms were
refined anisotropically. All hydrogen atoms were placed in idealized positions and refined in riding
models with Uiso assigned 1.2 or 1.5 times Ueq of their parent atoms and the C–H bond distances were
constrained in the range from 0.95 Å to 0.99 Å. The structure was refined to R factor of 0.0462.

2.4. Pharmacology

2.4.1. COX-2 Inhibition Assay

In vitro, a COX-2 inhibition study of the designed methyl 3-(substituted benzoyl)-7-
substituted-2-phenylindolizine-1-carboxylate analogues (4a–g) was conducted; they were screened for
in vitro human recombinant COX-2 enzyme inhibitory activity as described previously [14].

2.4.2. Statistical Analysis

The one-way investigation of variance (ANOVA) was used to compare the in vitro
COX 2 inhibitory activity of the designed the methyl 3-(substituted benzoyl)-7-substituted-2-
phenylindolizine-1-carboxylate analogues (4a–g) with nonselective (indomethacin) and selective
(celecoxib) standard substances. The steps were followed as we described in our previous
communication [14].

2.5. Computational Studies

2.5.1. Molecular Docking

Computational modeling studies were conducted using Accelry’s Discovery Studio 4.0 client
program, in which the algorithm used was CHARMm force fields. The X-ray co-crystal of COX-2
enzyme and indomethacin (PDB: 4COX) was used to estimate the binding mode of indolizines. The
molecular interaction of indolizines and the enzyme was determined by following steps from our
recently reported docking protocol [14].

2.5.2. ADME Prediction

In this study, the pharmacokinetic properties of all the synthesized compounds were predicted
and analyzed. The SwissADME webserver was used for calculating and predicting various parameters
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related to the ADME properties of the compounds [21]. In particular, parameters related to the oral
absorption property such as the number of rotatable bonds, the octanol/water partition coefficient
(LogP), and the molecular weight were calculated. The ability of the compounds to cross the blood–brain
barrier (BBB) was predicted as compounds entering the central nervous system (CNS) might have
undesirable adverse effects that need proper considerations [22]. In addition, the probability of binding
to the p-glycoprotein (P-gp) was predicted. Since this protein is known to act as an efflux pump to
many xenobiotics, compounds that are substrate to this protein might be prone to resistance, hence
structural modifications might be required to prevent binding to P-gp [23,24].

2.5.3. Toxicity Prediction

In this study, the SwissADME web server and the DataWarrior software were used to predict
several toxic effects of the synthesized compounds [21,25]. The potential inhibition of some important
cytochrome P450 (CYP 450) isoforms by the compounds was predicted. Inhibition of CYP 450
isoforms needs to be taken into consideration since it may alter the metabolism of the other drugs
causing drug–drug interactions [26]. In addition, to further characterize the toxicity profiles of the
synthesized compounds, the mutagenicity, tumorigenicity, and reproductive toxicity were predicted
for all the compounds.

3. Results and Discussion

3.1. Chemistry

The synthetic route for the construction of target compounds, methyl 3-(substituted
benzoyl)-7-substituted-2-phenylindolizine-1-carboxylate analogues (4a–g) is illustrated in Scheme 1.
The treatment of 4-substituted pyridine, 4-substituedphenacyl bromide, and methyl phenylpropiolate
in presence of triethylamine and acetonitrile yielded the title compounds 4a–g at 76%–89% yield by
one-pot microwave-assisted synthetic approach. The purity of the compounds was confirmed by
HPLC, and it was found to be over 99%. The physicochemical characteristics of methyl 3-(substituted
benzoyl)-7-substituted-2-phenylindolizine-1-carboxylate analogues 4a–g are tabulated in Table 1.
The chemical structure of the products 4a–g was elucidated by FT-IR, NMR (1H and 13C), mass
spectrometry, and elemental analysis. The FT-IR spectra of the synthesized compounds exhibited
stretching absorption band in the range of 1685–1718 cm−1 for carbonyl group (C=O). The characteristic
cyano absorption peak for compounds 4e–g is found in the range of 2223–2227 cm−1. For compounds
4d and 4f carbon–bromine stretching vibration is observed in the range of 626.82–636.47 cm−1. For
compounds 4c and 4b, carbon–chlorine and carbon–fluorine stretching vibrations are observed at
707.85 and 1217.00 cm−1, respectively. 1H-NMR spectra revealed the appearance of a singlet for a
methyl group at the seventh position of the indolizine nucleus (4a–d) and a singlet for an ester methyl
group at the first position of the indolizine nucleus (4e–g) are observed in the ranges of 3.68–3.78 and
2.53–2.55 ppm, respectively. In case of para-methoxy derivative 4g, a singlet for methoxy is observed
at 3.72 ppm. The doublet peaks were commonly seen in all the derivatives 2a–g with J value at 7.12 Hz
as para substituents such as fluoro, chloro, bromo, methoxy, and cyano on phenyl ring at the third
position of the indolizine nucleus. In case of title compound 4b, the triplet peak was observed in
the range of 6.70–6.66 ppm with J value at 8.4 Hz. The 13C-NMR spectra revealed the appearance
of carbonyl carbon for compounds 4a–g in the range of 184.77–187.29 ppm. The title compounds
4a–g revealed ester alkyl carbon, which is at first position of the indolizine nucleus is found in the
range of 50.77–52.05 ppm. The title compounds 4e–d exhibited a peak for a methyl group, which is at
seventh position of the indolizine nucleus in the range of 21.64–21.66 ppm. The title compound 4g
revealed a peak at 55.56 ppm due to the methoxy group at para position of benzoyl group, which is
at third position of the indolizine nucleus. In LC-MS spectra of the compounds 4a–g the molecular
ion peaks were in good agreement with molecular mass of the compounds. The results of elemental
analysis were in good agreement with the calculated values of the proposed tile compounds 4a–g.
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The cLogP of the proposed tile compounds 4a–g was calculated using ChemDraw Professional 16.0
(PerkinElmer Informatics, Inc. 940 Winter Street Waltham, MA, USA) and the results were in the range
of 4.6463–7.0802.

Table 1. Physicochemical characteristics of methyl 3-(substituted benzoyl)-7-substituted-2-
phenylindolizine-1-carboxylate analogues 4a–g.

Compound
Code

Mol Formula
(Mol Weight) R R1 Yield (%) a M.P. (◦C) CLogP b

4a C24H19NO3 (369) CH3 H 87 173–174 6.2094
4b C24H18FNO3 (387) CH3 F 85 167–168 6.3602
4c C24H18ClNO3 (403) CH3 Cl 89 154–155 6.9302
4d C24H18BrNO3 (447) CH3 Br 85 137–138 7.0802
4e C25H15N3O3 (405) CN CN 76 235–236 4.6463
4f C24H15BrN2O3 (458) CN Br 84 208–209 6.0300
4g C25H18N2O4 (410) CN OCH3 81 166–167 5.3301

a Yields calculated after being purified using the recrystallization method; ethanol was used as the solvent. b cLogP
of the compounds was calculated using ChemDraw Professional 16.

3.2. Crystallography

The parameters for crystal data collection and structure refinements, the bond lengths, angles, and
torsion angles are contained in CIF file which was deposited in the Cambridge Crystallographic Data
Centre (CCDC) [27] with CCDC number 1950516. The crystallographic details are listed in Table 2.
Intermolecular interactions, thermal ellipsoid diagram, and packing diagrams were generated using
CSD software ORTEP [28] and Mercury 3.8 [29].

Table 2. Single crystal data collection and refinement for title compounds 4a.

DATA Compound 4a

Formula C24H19 N O3
Formula weight 369.40
Temperature/K 153 (2)
Wavelength (Å) 0.71073
Crystal system monoclinic

Space group C 2/c
a (Å) 16.550 (4)
b (Å) 10.391 (2)
c (Å) 22.179 (4)
α (◦) 90
β (◦) 104.468 (4)
γ (◦) 90

V (Å3) 3693.1 (13)
Z’, Z 1, 8

Density (g cm−1) 1.329
µ (mm−1) 0.088

F (000) 1552
θ (min, max) 2.336, 25.413

hmin, max; kmin, max; lmin, max. −19, 19; −12, 12; −26, 26
No. of refl. 3375

No of unique ref./Obs. ref. 3375, 2340
No. parameters 255

Rall, Robs 0.0462, 0.0815
wRall, wRobs 0.113, 0.099

∆ρmin, max (eÅ−3) −0.272, 0.195
G.O.F. 1.020
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Figure 2 shows the thermal ellipsoid plot of 4a with atom labelling. Crystal structure of 4a forms
molecular sheet assembly through weak C–H···O and C–H···π hydrogen bonds (Table 3 and Figure 3).
The remaining molecules of this series of phenylindolizine are expected to have the same molecular
assembly as their conformations have the same molecular core moiety and functional groups.
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Table 3. Intermolecular interactions of compounds 4a.

D–X···A D–X (Å) X···A (Å) D···A (Å) <D–X···A (Å) Symmetry Code

C2–H2···O1 0.95 2.56 3.450 (3) 156 1/2 + x, 1/2 + y, z
C11–H11A···O3 0.98 2.53 3.383 (3) 146 x, −1 + y, z
C17–H17···Cg 0.98 2.83 3.678 149 1/2 − x, −1/2 + y, 1/2 − z

Cg = the centroid of six-membered ring C19/C20/C21/C22/C23/C24.
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3.3. Pharmacology

COX-2 Inhibition

A series of methyl 3-(substituted benzoyl)-7-substituted-2-phenylindolizine-1-carboxylate
analogues 4a–g were evaluated for in-vitro COX-2 inhibition activity and it was found that all
the compounds displayed inhibitory effects at IC50 values between 6.71–41.59 (Table 4). From the
series, compound 4e emerged as the most promising COX-2 inhibitor with a cLogP value of 4.6463 and
having two cyano groups on indolizine and benzoyl moiety with IC50 of 6.71. However, compound 4g
exhibited moderate inhibitory activity at IC50 9.62, having a cyano group on the indolizine ring and
methoxy at the para position of the benzoyl ring, when compared to indomethacin standard. In the
case of compounds 4a, 4b, 4c, and 4d, methyl functional group on the indolizine nucleus did not favor
promising COX-2 inhibitory activity. The COX-2 inhibitory activity of the test compounds (4a–4d)
having a methyl group at seventh position of the indolizine nucleus was in the order 4b > 4d > 4c > 4a.
The COX-2 inhibitory activity of the compounds (4e–g) having a cyano group at seventh position of
the indolizine nucleus was in the order 4e > 4g > 4f.

Table 4. In vitro COX-2 inhibitory activity and docking results of methyl 3-(substituted benzoyl)-7-
substituted-2-phenylindolizine-1-carboxylate scaffolds 4a–g.

Entry R1 R2 IC50 (µM)a CDocker E.
(kcal/mol)

Hydrogen Bonding
(Interacting Atom, Å) Pi Interaction

4a CH3 H 41.59 ± 0.03 a
−31 ARG 120 (pi–cation)

4b CH3 F 27.08 ± 0.03 c,d −34 HIS 90 (F, 2.09) ARG 120 (pi–cation)
4c CH3 Cl 38.11 ± 0.03 b,d −33 ARG 120 (pi–cation)
4d CH3 Br 37.66 ± 0.03 d −32 ARG 120 (pi–cation)
4e CN CN 6.71 ± 0.03 b −35 HIS 90 (CN, 2.02)
4f CN Br 13.55 ± 0.03 b,d −34 HIS 90 (CN, 2.01)
4g CN OCH3 9.62 ± 0.03 c

−35 HIS 90 (CN, 2.07)
IND 6.84 ± 0.03 b,c −49 ARG 120 (anion–cation)

CLB 0.05 ± 0.03 b −43

HIS 90 (SO2, 3.05)
PHE 158 (SO2, 2.92)

GLN 192 (NH2, 2.69)
LEU 352 (NH2, 1.95)
ARG120 (CF3, 2.38)

ARG 120 (pi–cation)
PHE 158 (pi–sulfur)
ALA 527 (pi–amide)

a IC50 value is the compound concentration required to produce 50% inhibition of COX-2 enzyme, expressed as
means of three experimental determinations. IND: indomethacin; CLB: celecoxib. a–d Test compounds not sharing a
letter differ significantly (p < 0.05).

3.4. Computational Studies

3.4.1. Molecular Modeling

Two novel 2-phenylindolizine series, 7-methyl, and 7-cyano were investigated for COX-2 inhibitory
activity. The bioactivity study revealed that 7-cyanoindolines were more active than their congener
7-methylindolizines. To gain insights into the potency of the synthesized indolizines, the key
interactions between the compounds and COX-2 active site were examined through molecular docking
study and reported in Table 4. Molecular modeling analysis showed two distinct binding modes
for each series (Figure 4). The indolizino ring of 7-cyano series was pointed toward the residue HIS
90 participating in hydrogen bonding with cyano group at position 7 (compounds 4e–g, Figure 4),
whereas the indolizino ring of 7-methyl series was projected toward the amino acid ARG 120 by
interacting with the indolizino ring through pi–cation interaction (compounds 4b–d, Figure 4). The
different conformation in binding site between the two series may explain the observed COX-2 activity.
In the 7-methyl series, the hydrophobic interactions were mainly observed between the residues VAL
116, LEU 359, LEU 531 and methyl at position 7, and the amino acids HIS 90, ARG 513, ALA 516 and
chlorine (4c) and bromine (4d) at the benzoyl ring with the exception of 3-(4-fluorobenzoyl) indolizine
4b (Figure 4). The latter exhibited strong hydrogen bonding with the residue HIS 90 and fluorine. The



Biomolecules 2019, 9, 661 10 of 14

7-cyanoindolizines 4e–g displayed strong H-bond with the residue HIS 90 and the cyano group at
position 7 conferring greater inhibitory activity over the 7-methylindolizines 4a–d. Another interesting
binding feature between the two series is the involvement of the amino acid ARG 120 in pi–cation
interaction observed for only the 7-methylindolizine series. The lack of selectivity between COX-2 and
COX-1 inhibitors is due to the ion pair or/and hydrogen bonding interaction with ARG 120 [30–32].
The non-involvement of such interaction with the 7-cyanoindolizines 4e–g may exert greater selectivity
over 7-methylindolizines 4a–d.
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3.4.2. ADME Prediction

The prediction of the pharmacokinetic properties of lead compounds at an early stage of the drug
design and development process can greatly assist in the proper selection of compounds for further
development [33]. In fact, a relatively high number of compounds fail to make it to the market because
of pharmacokinetic related issues that appear in later stages of the drug design and development
process [33,34]. The results of the pharmacokinetic parameters prediction are listed in Table 5. In
general, most of the compounds were predicted to have favorable pharmacokinetic properties. In
terms of oral absorption, all the compounds fulfill the conditions of Lipinski’s rule of five criteria. The
number of rotatable bonds for all the compounds is less than seven rotatable bonds, indicating a high
probability of being orally bioavailable [35]. Also, The GI absorption was predicted to be high for all
the compounds. Compounds 4a, 4b, 4c, and 4d were predicted to be BBB permeant, which means they
have the ability to cross the BBB and enter the CNS while the remaining compounds were predicted to
lack the ability to cross the BBB. All the compounds were predicted to have low probability of being
P-gp substrates, which means there is low possibility of developing resistance by P-gp efflux.

Table 5. The predicted pharmacokinetic properties of all the synthesized compounds.

Compound ID 4a 4b 4c 4d 4e 4f 4g

Rotatable bonds 5 5 5 5 5 5 6
Molecular weight 369.41 387.4 403.86 448.31 405.4 459.29 410.42
H-bond acceptors 3 4 3 3 5 4 5

H-bond donors 0 0 0 0 0 0 0
MLOGP 3.43 3.8 3.91 4.01 1.86 3.11 2.2

GI absorption High High High High High High High
BBB permeant Yes Yes Yes Yes No No No
P-gp substrate No No No No No No No

Lipinski violations 0 0 0 0 0 0 0

3.4.3. Toxicity Prediction

The prediction of potential toxic effects of the compounds at an early stage of the drug design and
development process is important in a similar manner to ADME prediction. The results of toxicity
prediction are shown in Table 6. In general, the compounds were predicted to have a good safety
profile. In terms of mutagenicity, tumorigenicity, and reproductive toxicity, all the compounds were
predicted to be devoid of such major toxic effects. Also, none of the compounds was predicted to
have irritant effects. In terms of CYP 450 isoforms inhibition, all the compounds except compound
4f were predicted to be potential inhibitors of the CYP1A2 isoform. On the other hand, none of the
compounds was predicted to be a potential inhibitor of the CYP2D6 isoform. Compounds 4e and 4g
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were predicted to be CYP3A4 inhibitors. Thus, the compounds appear to have the ability to inhibit
the CYP1A2 isoform, which requires consideration during further development of the compounds to
avoid any possible drug–drug interactions resulting from CYP1A2 inhibition [26].

Table 6. The predicted toxic effects of all the synthesized compounds.

Compound ID 4a 4b 4c 4d 4e 4f 4g

Mutagenic none none none none none none none
Tumorigenic none none none none none none none

Reproductive Effective none none none none none none none
Irritant none none none none none none none

CYP1A2 inhibitor Yes Yes Yes Yes Yes No Yes
CYP2D6 inhibitor No No No No No No No
CYP3A4 inhibitor No No No No Yes Yes No

4. Conclusions

In this study, a series of a novel series of methyl 3-(substituted benzoyl)-7-substituted-2-
phenylindolizine-1-carboxylates was synthesized and assessed for COX-2 inhibition activity. All
the compounds exhibited moderate to good activity as COX-2 inhibitors. The most active compound
was compound 4e, which has an IC50 of 6.71 µM, similar to the IC50 of the marketed NSAID
indomethacin. Molecular docking was conducted to understand the binding interactions taking place
between the compounds and the amino acid residues in the active site of the COX-2 enzyme. The
ADME properties, as well as the potential toxic effects of the synthesized compounds, were predicted.
The results indicated a high probability for oral bioavailability for all the compounds. Also, none of
the compounds was predicted to have any major toxic effects. Thus, these novel COX-2 inhibitors have
the potential to be used as lead compounds for the development of improved COX-2 inhibitors.
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