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Abstract: Recent electronic transport experiments using metallic contacts attached to proteins
identified some “stylized facts”, which contradict conventional wisdom that increasing either the
spatial distance between the electrodes or the temperature suppresses conductance exponentially.
These include nearly temperature-independent conductance over the protein in the 30 to 300 K range,
distance-independent conductance within a single protein in the 1 to 10 nm range and an anomalously
large conductance in the 0.1 to 10 nS range. In this paper, we develop a generalization of the low
temperature Landauer formula, which can account for the joint effects of tunneling and decoherence
and can explain these new experimental findings. We use novel approximations, which greatly
simplify the mathematical treatment and allow us to calculate the conductance in terms of a handful
macroscopic parameters, instead of the myriads of microscopic parameters describing the details of an
atomic level quantum chemical computation. The new approach makes it possible to get predictions
for the outcomes of new experiments without relying solely on high performance computing and can
distinguish important and unimportant details of the protein structures from the point of view of
transport properties.

Keywords: Landauer fromula; conductance of biomolecules; metallic contacts

1. Introduction

Electron transport measurements via metallic contacts attached to proteins show anomalous
properties relative to electron transfer in homologous structures [1,2]. Borrowing the concept of “stylized
facts” from economics [3], here we introduce three simplified presentations of empirical findings:

• Conductance measured between metallic electrodes attached well to large protein structure
is unexpectedly high. It falls into the nanoSiemens scale, even over distances of several
nanometers [4–6].

• The conductance does not show significant decay by increasing the distance of the electrodes [7–9].
• The conductance remains nearly constant when temperature is changed from tens of Kelvins to

ambient temperatures [10].

Bioelectronic measurements with metallic contacts chemically bound to molecules can be regarded
as molecular junctions, and the Landauer–Büttiker (LB) formula is one of the best theoretical tools to
describe quantum conductance at zero temperature in such systems [11]. It expresses the conductance
in terms of the scattering matrix elements between metallic leads. In the simplest case, only a single
scattering channel is open in a narrow lead and a single transmission T(EF) at the Fermi energy EF
determines the conductance

G =
2e2

h
T(EF), (1)
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where the unit of the quantum conductance 2e2/h ≈ 77,481 nS. At high temperatures, this formula is
not applicable and electron transfer is usually treated in semiclassical Marcus theory [12] (MT):

ket =
2π

h̄
|HAB|2

1√
4πλkBT

exp
(
− (λ + ∆G◦)2

4λkBT

)
, (2)

where the electron transfer rate ket is expressed in terms of the electronic coupling between the initial
and final states |HAB|, the reorganization energy λ, and the total Gibbs free energy change ∆G◦. Then,
Nitzan et al. showed [13–15] that the conductance of molecular junctions is proportional with the
electron transfer rate within the same approximation. As electronic states in biomolecules are highly
localized, the overlap between distant electronic states decays quickly, and both LB and MT yield
exponentially decaying conductance G ∼ exp(−βl), where l is the distance of the electrodes and 1/β

is ~1 Å. Temperature dependence is also exponential due to the Arrhenius factor in (2). Both LB
and MT are limiting cases only and the electron–vibrational (electron–phonon) interactions should be
treated more carefully in the intermediate regime. Recently, in [16] this derivation has been carried out
for a molecular junction modeled as a single electronic level coupled with a collection of normalized
vibrational modes. Using a generalized quantum master equation, it has been shown that LB and MT
can be viewed as two limiting cases of this more general expression.

The current impasse in interpreting experimental results is coming from the fact that charge
transport through molecular junctions is described either as a purely coherent or a purely classical
phenomenon. In recent years, it has become clear that decoherence plays an important role in
biological energy transfer processes [17,18], and these effects are not covered by the semiclassical
approximation [19]. In this paper, we show that decoherence due to strong coupling to vibrational
modes plays an important role in electron transport processes as well. We generalize the LB formula
for conditions relevant in bioelectronic systems operating at strong decoherence. We capture new
physics, which is absent in both limiting cases but plays a significant role when a metallic electrode
is attached to the molecule, and the chemical bonding is strong between the metal and the nearest
localized electronic state of the molecule while direct tunneling between the two distant localized
electronic states is exponentially suppressed.

Our starting point is the derivation of low temperature LB formula for molecules by Datta et al.
in [20,21] which we summarize here briefly. The molecule is coupled to a left and a right electrode.
The discrete levels of the molecule εn are non-resonantly coupled to the left and right electrodes with
coupling strengths ΓL

n and ΓR
n , respectively. The presence of contacts broadens the levels and can be

described with a Lorentzian density of states

dn(E) =
1

2π

Γn

(E− εn)2 + Γ2
n/4

, (3)

where Γn = ΓL
n + ΓR

n is the broadening due to the contacts. If the level εn was in equilibrium with the
left contact, then the number of electrons, NL

n , occupying the level would be given by

NL
n = 2

∫ +∞

−∞
dn(E) f (E, µL)dE, (4)

where µL is the chemical potential in the left lead, fe(E, µ) = (1+ e(E−µ)/kT)−1 is the Fermi distribution,
and the factor 2 stands for spin degeneracy (see also Figure 1).
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Figure 1. Schematic picture of the broadened energy levels of the molecule and the Fermi distributions
in the leads.

A similar expression is valid for NR
n when the molecule is in equilibrium with the right lead.

Under nonequilibrium conditions, the number of electrons Nn will be somewhere between NL
n and

NR
n , and we can write the net current at the left junction as

IL
n =

eΓL
n

h̄
(NL

n − Nn), (5)

where ΓL
n/h̄ is the escape rate from the level to the left lead. Similarly, for the right junction,

IR
n =

eΓR
n

h̄
(Nn − NR

n ). (6)

Steady state requires IL
n = IR

n , yielding Nn = (ΓL
n NL

n + ΓR
n NR

n )/(ΓL
n + ΓR

n ). The current through the
level is, then,

In = IL
n = IR

n =
e
h̄

ΓL
nΓR

n
ΓL

n + ΓR
n
(NL

n − NR
n ). (7)

Using the density of states the current trough the molecule can be written as

I = ∑
n

In = ∑
n

2e
h

∫ +∞

−∞

ΓL
nΓR

n
(E− εn)2 + (ΓL

n + ΓR
n )

2/4
( f (E, µL)− f (E, µR))dE. (8)

In the linear regime, and at low temperatures kT → 0, the chemical potential in the left and right
electrodes is µL/R = EF ± eU/2, the difference f (E, µL)− f (E, µR) ≈ δ(E− EF)eU, and then

I =
2e2

h
T(EF) ·U, (9)

where the transmission is given by the Breit–Wigner formula [11]

T(EF) = ∑
n

ΓL
nΓR

n
(EF − εn)2 + (ΓL

n + ΓR
n )

2/4
. (10)

The formula is valid when the Fermi energy EF is close to an eigenenergy of the isolated molecule,
and the level spacing of the isolated molecule is larger than ΓL

n + ΓR
n . When energy of the isolated

molecule, εn, is above the Fermi energy, EF, the expression

ΓL
nΓR

n
(EF − εn)2 + (ΓL

n + ΓR
n )

2/4
. (11)

describes electron transmission. An electron tunneling trough an unoccupied orbital of the molecule
from the left lead to the right one when electric field is switched on in that direction. When εn is
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below the Fermi energy, EF, the orbital is occupied and EF − εn is positive. This case describes hole
transport. A positively charged hole tunneling trough the molecule from the right to the left electrode
with negative tunneling energy εn − EF. This way, both processes contribute to the net current with
the same sign. In the next section, we generalize Datta’s result for finite temperatures.

2. Derivation of a Landauer Formula for Bioelectronics

The derivation of the LB formula in the Breit–Wigner approximation is an especially suitable
starting point for a generalization to include vibronic effects. When such effects are present, the electron
(or hole), which tunnels into an orbital of the molecule, is able to transit to another orbital of the
molecule, as the energy difference between the orbitals can be taken away (or supplied) by the
interaction with the vibrational modes. Note that even at zero temperature the electron can hop to
lower energy, so vibronic effects modify the LB formula even in that case. The steady state condition
IL
n = IR

n should be modified to account for hoping in and out of an orbital. Electrons can hop
between the (nearly unoccupied) electronic states above the Fermi energy while holes can hop between
the (nearly occupied) states below it. Accordingly, we should treat electrons and holes separately.
For brevity, we derive the results for electrons in detail and then give the analogous expressions
for holes.

Quantum master equations are the most convenient way to describe the transition between
electronic states. They are in general non-Markovian, but for practical purposes, can be approximated
with Markovian equations, such as the Redfield equation [22]. The reduced density matrix elements of
the molecule in the energy basis $nm then satisfy a linear equation

∂t$nm =
i
h̄
(εm − εn + iΓn/2 + iΓm/2)$nm + ∑

kl
Rnmkl$kl + Jnδnm, (12)

where Jn is the external current, εn + iΓn/2 is the broadened level, and Rnmkl is the Bloch–Redfield
tensor describing transitions due to the couplings to the phononic vibrations. The tetradic matrix Rmnkl
is the transfer rate from $kl to $mn and can be expressed as

Rmnkl = Γlmnk + Γ∗knml − δml ∑
p

Γnppk − δnk ∑
q

Γ∗mqql , (13)

where
Γmnkl =

1
h̄2

∫ ∞

0
dτe−i(εk−ε l)τ/h̄〈V nm(τ)V kl(0)〉b,

are Fourier–Laplace transforms of the correlation functions of the matrix elements, V ij, of the
system-bath coupling operator between system eigenstates i and j, and the brackets represent a
trace over the thermalized bath. We note that in this level of description, the electron and hole states do
not mix. Electrons can hop on states above, whereas holes exists below the Fermi energy. Consequently,
there are two separate Redfield equations: one for the electrons and one for the holes. The four indices
of Rnmkl and the two indices of $nm should be either all electron or hole states.

We normalize this equation such a way that the diagonal elements of the density matrix can
correspond to the occupations $nn = Nn introduced in the previous section. In this case, the external
(material) current becomes

Jn =
ΓL

n
h̄

$L
n +

ΓR
n

h̄
$R

n , (14)

where

$L/R
n = 2

∫ +∞

−∞
dn(E) f (E, µL/R)dE, (15)

is the occupation of the levels when the molecule is in equilibrium with the left/right lead.
In absence of an electric field (U = 0), the system is in equilibrium and µL/R = EF. The Fermi

energy is between the HOMO and the LUMO energies εN/2 = εHOMO < EF < εN/2+1 = εLUMO.
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The number of electrons N in the molecule is given by the sum of occupancies N = ∑∞
n=1 2 fe(εn, EF).

This can be written also as

N/2

∑
n=1

(1− f (εn, EF)) =
∞

∑
n=N/2+1

fe(εn, EF), (16)

and with the Fermi distribution for holes fh(E, µ) = 1 − fe(E, µ) = (1 + e(µ−E)/kT)−1, it can be
simplified to

N/2

∑
n=1

fh(εn, EF) =
∞

∑
n=N/2+1

fe(εn, EF), (17)

meaning that the number of holes below the Fermi energy is the same as the electrons above it and
the molecule is charge neutral. An important aspect of bioelectronic systems is that they have highly
localized electronic states and a large HOMO–LUMO gap (∼eV) in accordance with standard Density
Functional Theory (DFT) calculations [23]. Based on this, we can assume that e(EF−εn)/kT � 1 for
electronic states and also e(εn−EF)/kT � 1 for hole states, and we can replace the Fermi distribution
with the Boltzmann distribution in both cases, fe(E, µ) = e−(E−µ)/kT and fh(E, µ) = e−(µ−E)/kT .
Accordingly, the equilibrium occupancy for electrons is given by the Boltzmann distribution

$L/R
n =

{
2e−(εn−EF)/kT for electrons,

2e−(EF−εn)/kT for holes.
(18)

Using (17) in the Boltzmann approximation, we can introduce the partition function

Z(T) =
N/2

∑
n=1

e−(EF−εn)/kT =
∞

∑
n=N/2+1

e−(εn−EF)/kT ,

which is the same for electrons and holes.
In the absence of an electric field, the steady-state solution of the Redfield Equation (12) is also the

Boltzmann distribution

$nn =

{
2e−(εn−EF)/kT for electrons,

2e−(EF−εn)/kT for holes.
(19)

Then in equilibrium each term vanishes separately in

I = e ∑
n

ΓL
n

h̄
($L

n − $nn) = 0, (20)

and there is no electric current.
When the electric field is switched on (U 6= 0) the system is out of equilibrium. In the linear

regime, we can expand the deviation from the equilibrium

$L/R
n = 2

∫ +∞

−∞
dEdn(E)[ f (E, EF)∓ f ′(E, EF)eU/2 + ...] ≈ $L/R

n ± Dn(EF, T)eU, (21)

where

Dn(EF, T) = −
∫ +∞

−∞
f ′(E, EF)dn(E)dE. (22)

We can introduce the deviation of the density matrix elements from their equilibrium value $′nm =

$nm − $nm, and, using (12) and (14), we can write the steady-state equation

− ΓL
n − ΓR

n
h̄

Dn(EF, T)eUδnm =
i
h̄
(εm − εn + iΓn/2 + iΓm/2)$′nm + ∑

kl
Rnmkl$

′
kl , (23)
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where we grouped the external current to the left hand side. The current through the molecule is

I = e ∑
n

ΓL
n

h̄
(Dn(EF, T)eU − $′nn). (24)

To get the general solution of (23), we can introduce the tetradic matrix Lnmkl = (i/h̄)(εm − εn +

iΓn/2 + iΓm/2)δnkδml + Rnmkl and can write

− ΓL
n − ΓR

n
h̄

Dn(EF, T)eUδnm = ∑
kl

Lnmkl$
′
kl . (25)

The solution of this equation can be given in terms of the inverse matrix

$′nm = −∑
k

L−1
nmkk

ΓL
k − ΓR

k
h̄

Dk(EF, T)eU, (26)

where the inverse satisfies the relation ∑pq LnmpqL−1
pqkl = δnkδml . Substituting this solution into (24),

we get the generalized Landauer–Büttiker formula

I =
e2U

h̄ ∑
n

Dn(EF, T)

[
ΓL

n +
1
h̄ ∑

k
ΓL

k L−1
kknn(Γ

L
n − ΓR

n )

]
. (27)

This formula can be brought (see Appendix A) to a form, which reflects the left–right symmetry,

G =
e2

2h̄ ∑
n

Dn(EF, T)

[
ΓL

n + ΓR
n +

1
h̄ ∑

k
(ΓL

k − ΓR
k )L−1

kknn(Γ
L
n − ΓR

n )

]
, (28)

which is our main result. We note that L−1
kknn = 0, unless both k and n are electron or hole states;

consequently, the conductance can be split to an electron and a hole part G = Ge + Gh, where

Ge =
e2

2h̄

∞

∑
n=N/2+1

Dn(EF, T)

[
ΓL

n + ΓR
n +

1
h̄

∞

∑
k=N/2+1

(ΓL
k − ΓR

k )L−1
kknn(Γ

L
n − ΓR

n )

]
, (29)

and

Gh =
e2

2h̄

N/2

∑
n=1

Dn(EF, T)

[
ΓL

n + ΓR
n +

1
h̄

N/2

∑
k=1

(ΓL
k − ΓR

k )L−1
kknn(Γ

L
n − ΓR

n )

]
, (30)

just like in the zero temperature LB formula discussed before.

3. Electron Transfer

The present formalism allows us to calculate the electron transfer along the same lines.
For specificity, the left electrode plays the role of donor and the right electrode the acceptor site.
The electron charge on the donor and acceptor sites follows the Fermi distribution, which can be
approximated by the Boltzmann distribution due to the large HOMO–LUMO gap. The electron-hole
picture is useful here as well. Electrons traversing the molecule via almost unoccupied orbitals above
the Fermi energy contribute to the electron part, whereas transfer via almost fully occupied orbitals
below the Fermi level can be regarded as hole transport. Introducing $D for the total density on the
left electrode and $A for the right electrode, the left and right densities become $L/R

n = $D/A pB
n , where

pB
n =

{
2e−(εn−EF)/kT/Z for electrons,

2e−(EF−εn)/kT/Z for holes.
(31)
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Then, given the external current

Jn =
ΓL

n
h̄

$L
n +

ΓR
n

h̄
$R

n , (32)

we have to solve the Redfield equation

− Jnδnm = ∑
kl

Lnmkl$kl , (33)

to get the total material current

J = ∑
n

ΓL
n

h̄
($L

n − $nn), (34)

which leads to

J =
1
h̄

$D ∑
n

pB
n ΓL

n

[
1 +

1
h̄ ∑

k
ΓL

k L−1
kknn

]
+

1
h̄

$A ∑
n

pB
n ΓL

n

[
1
h̄ ∑

k
ΓR

k L−1
kknn

]
. (35)

Electrons can escape from the acceptor site with escape rate κ = J/$A and the electron transfer rate
is the ratio of the material current and the density at the donor site kET = J/$D. We can express the
transfer rate with the escape rate

kET =
∑n pB

n ΓL
n

[
1 + 1

h̄ ∑k ΓL
k L−1

kknn

]
/h̄

1 + (1/κ)∑n pB
n ΓL

n

[
1 + 1

h̄ ∑k ΓL
k L−1

kknn

]
/h̄

, (36)

where we used the result of Appendix A to show that

∑
n

pB
n ΓL

n

[
1
h̄ ∑

k
ΓR

k L−1
kknn

]
= −∑

n
pB

n ΓL
n

[
1 +

1
h̄ ∑

k
ΓL

k L−1
kknn

]
. (37)

4. Weak Contacts

The strength of the contacts relative to the thermal energy plays a crucial role in the conductance
properties of these systems. When the contacts are weak, the electrons and holes can enter the molecule
from the lead via thermal excitation. In this case, the conductance is intimately related to electron
transfer, as it has been shown in [14,15,24]. Here, we derive an exact formula between electron transfer
and electron conductance.

When the contacts are weak compared to the thermal energy, Γn � kT, the density of states
consists of delta peaks dn(E) ≈ δ(E − εn), the Fermi distribution is well approximated with the
Boltzmann, and we get

Dn(EF, T) ≈ −
∫ +∞

−∞
f ′(E, EF)δ(E− εn)dE = − f ′(εn, EF) ≈

{
e−(εn−EF)/kT/kT for electrons,

e−(EF−εn)/kT/kT for holes.
(38)

This can be written in the more compact form using the normalized Boltzmann distribution
Dn(EF, T) = (Z(T)/2kT)pB

n . Substituting this into (27), and using the sum rule derived in Appendix D,
we can eliminate Γn and get the form

G =
e2Z(T)

kTh̄ ∑
n

pB
n ΓL

n

[
1 +

1
h̄ ∑

k
ΓL

k L−1
kknn

]
. (39)
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The sum in this expression appears in (36) also, so that the electron transfer rate can be expressed with
the conductance directly:

kET =
(kT/e2Z(T))G

1 + (kT/e2Z(T))G/κ
. (40)

When the escape from the acceptor is strong, we can neglect 1/κ and the conductance is proportional
with the electron transfer rate

G =
e2

kT
Z(T) · kET . (41)

In biomolecules where the HOMO–LUMO gap ∆HL = ELUMO − EHOMO is large compared to the
thermal energy, kT, the partition sum is dominated by the gap Z(T) ≈ e−(ELUMO−EF)/kT ≈ e−∆HL/2kT

and the conductance is

G =
e2

kT
e−∆HL/2kTkET , (42)

where e−∆HL/2kT ∼ 10−40, making these systems practically insulators. In the case of bridged molecular
systems considered by Nitzan in [24], the partition function is Z ≈ e−∆E/kT , where ∆E = EB − EF is
the difference between the Fermi energy of the metallic leads and the average energy of the bridged
system, and we recover Nitzan’s formula

G =
e2

kT
e−∆E/kTkET . (43)

Finally, in the case of a coherent one-dimensional bridged molecule system, where the gap is zero
∆E = 0, as considered in [13], we can use the classical partition function of a free particle in a
one-dimensional box:

Z =
∫ LM

0

∫ +∞

−∞

dxdp
h

e−p2/2mkT =
LM
√

2πmkT
h

, (44)

where LM is the length of the molecule and m is the effective mass of the electron in the molecule.
In this case, we get the formula

G =
2e2

h
LM

√
πm
2kT

kET , (45)

which is slightly different from the heuristically derived result in [13]: G = 2e2

h LM

√
m

2EF
kET .

This difference occurs because in [13], it is assumed that the electron traverses the molecule with
effective velocity vF =

√
2EF/m and energy EF; whereas, in reality, the electron transfer happens at

the thermal energy scale kT and with effective velocity vT =
√

2kT/m. The two expressions differ in a
factor of vF/vT ≈ 5 only, which is hard to verify experimentally.

5. Strong Contacts

In the opposite case, when the contacts are strong, electrons and holes enter the molecule via
tunneling. This is a new regime not covered by the previous studies, and we show that the relation
between electron transfer rate and the conductance breaks down.

When the thermal energy is small compared to the strengths of the contacts, kT � Γn, the density
of states is smooth and the thermal distribution is approximately − f ′(E, EF) ≈ δ(E− EF), so that

Dn(EF, T) =
∫ +∞

−∞
dn(E)δ(E− EF)dE =

1
2π

Γn

(EF − εn)2 + Γ2
n/4

. (46)

Substituting this into (29) and (30), we get the electron

Ge =
e2

2h

∞

∑
n=N/2+1

Γn

(EF − εn)2 + Γ2
n/4

[
ΓL

n + ΓR
n +

1
h̄

∞

∑
k=N/2+1

(ΓL
k − ΓR

k )L−1
kknn(Γ

L
n − ΓR

n )

]
, (47)
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and the hole conductance

Gh =
e2

2h

N/2

∑
n=1

Γn

(EF − εn)2 + Γ2
n/4

[
ΓL

n + ΓR
n +

1
h̄

N/2

∑
k=1

(ΓL
k − ΓR

k )L−1
kknn(Γ

L
n − ΓR

n )

]
. (48)

In this case, tunneling populates the levels and the relation with the Boltzmann distribution breaks
down. It is no longer possible to connect electron transfer and conductance with a simple formula.

The other equally crucial factor in the conductance of these systems is the strength of the coupling
to the environment through the vibrational degrees of freedom, which is encoded in the matrix
L−1

kknn. In general, calculating this quantity is complicated, as the microscopic details of the couplings
between the electron and vibration degrees of freedom can play an important role. To gain insight,
we consider the two limiting cases: when the coupling to the vibrations is negligible (coherent case)
and, the opposite case, when coupling to the environment dominates (full decoherence). Surprisingly,
in the latter case, the details of the coupling drop out and the conductance depends on the contact
strengths and the energy spectrum of the molecule as we show next.

In the coherent case, when the Redfield tensor elements describing the coupling to the heath bath
are small (|R| � Γ/h̄), we can neglect them, and the inverse operator matrix elements become

L−1
nnmm = − h̄δnm

ΓL
n + ΓR

n
. (49)

Substituting this into (29) and (30), we get the electron

Ge =
2e2

h

∞

∑
n=N/2+1

Dn(EF, T)
ΓL

nΓR
n

ΓL
n + ΓR

n
, (50)

and hole conductance.

Gh =
2e2

h

N/2

∑
n=1

Dn(EF, T)
ΓL

nΓR
n

ΓL
n + ΓR

n
. (51)

In case of strong contacts and (|R|h̄, kT � Γ), we can substitute this and recover the Landauer–Büttiker
formula in the Breit–Wigner approximation:

G = Ge + Gh =
2e2

h ∑
n

ΓL
nΓR

n
(EF − εn)2 + (ΓL

n + ΓR
n )

2/4
. (52)

5.1. Strong and Weak Contact Mixed

It is an important experimental situation [5,6], when one of the contacts is strong and the other one
is weak. In some cases, the strongly coupled electrode forms a covalent bond with a specific atom of
the molecule, whereas the other electrode is coupled nonspecifically with weak coupling. Interestingly,
to meet the condition of the strong contact case kT � Γn = ΓL

n + ΓR
n it is sufficient if only one of the

contacts is strong. For example, if the left contact is strong kT � ΓL
n and the right contact is weak,

we can neglect ΓR
n in (47) and (48) and arrive at the expression for the electron

Ge =
e2

2h

∞

∑
n=N/2+1

ΓL
n

(EF − εn)2 + (ΓL
n)

2/4

[
ΓL

n +
1
h̄

∞

∑
k=N/2+1

ΓL
k L−1

kknnΓL
n

]
, (53)

and for the hole conductance

Gh =
e2

2h

N/2

∑
n=1

ΓL
n

(EF − εn)2 + (ΓL
n)

2/4

[
ΓL

n +
1
h̄

N/2

∑
k=1

ΓL
k L−1

kknnΓL
n

]
. (54)
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This means that high conductance can arise not just between two strong contacts but also in the single
strong contact case. We discuss this possibility further in the next sections.

5.2. Strong Decoherence

When the Bloch–Redfield terms are small compared to the couplings to the leads, we can expect
just some moderate deviations from the LB formula. Interesting new physics arises in the opposite case
(Γ/h̄ ≤ |R|), when the electrons or holes arriving from the leads are strongly mixed in the molecule.
In absence of the coupling to the leads, the matrix

L0
nmkl = (i/h̄)(εm − εn)δnkδml + Rnmkl , (55)

describes the isolated molecule. The steady-state solution of the density matrix of this system is
the Boltzmann distribution. The normalized equilibrium density matrix is $0

nn = e−(εn−EF)/kT/Z(T)
for electrons and $0

nn = e−(EF−εn)/kT/Z(T) for holes. Relaxation time to the equilibrium τR = 1/λ1

is given by the inverse of the second largest eigenvalue −λ1$1
nm = ∑kl L0

nmkl$
1
kl of this operator.

In absence of vibronic effects, electrons or holes entering from the lead into the molecule would be
back-scattered, and the time they spend in one of the localized states εn of the molecule is h̄/Γn.
If the vibronic effects are strong, the relaxation time and the escape times can be in the same order
τR ∼ h̄/Γn, and electrons and holes can leave the localized states and get mixed inside of the molecule.
The environment assisted quantum charge transport inside of the molecule is similar to the transport
of excitons in light harvesting systems. We refer to [25] for details. To demonstrate the new physics,
here, we derive analytical formulas for the situation when strong mixing dominates (Γ/h̄� |R|) and
discuss the deviations from this limit when necessary.

The inverse operator can be calculated perturbatively in the limit of small coupling Γn → 0.
For the details of the calculation see Appendix B and the diagonal elements of (56) become

L−1
nnmm ≈ −

h̄$0
nn

∑p Γp$0
pp

, (56)

where all the indices should be either electrons or holes. Substituting this into (28) yields the
hole conductance

Gh =
e2

h

N/2

∑
n=1

Γn

(EF − εn)2 + Γ2
n/4

ΓR
n 〈ΓL

h (T)〉+ ΓL
n〈ΓR

h (T)〉
〈ΓL

h (T)〉+ 〈Γ
R
h (T)〉

, (57)

and electron conductance,

Ge =
e2

h

∞

∑
N/2+1

Γn

(EF − εn)2 + Γ2
n/4

ΓR
n 〈ΓL

e (T)〉+ ΓL
n〈ΓR

e (T)〉
〈ΓL

e (T)〉+ 〈ΓR
e (T)〉

, (58)

such that the total conductance is the sum of the two.

G = Gh + Ge. (59)

We introduced the weighted sums of the left and the right coupling strengths for electron

〈ΓL/R
e (T)〉 =

∞

∑
n=N/2+1

ΓL/R
n e−(εn−EF)/kT , (60)

and for the hole states

〈ΓL/R
h (T)〉 =

N/2

∑
n=1

ΓL/R
n e−(EF−εn)/kT . (61)
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We can carry out the summation and get the conductance in the vibration dominated regime

G =
e2

h

[
TR

h (EF)〈ΓL
h (T)〉+ TL

h (EF)〈ΓR
h (T)〉

〈ΓL
h (T)〉+ 〈Γ

R
h (T)〉

+
TR

e (EF)〈ΓL
e (T)〉+ TL

e (EF)〈ΓR
e (T)〉

〈ΓL
e (T)〉+ 〈ΓR

e (T)〉

]
, (62)

where we introduced the sums for holes

TL/R
h (EF) =

N/2

∑
n=1

ΓnΓL/R
n

(EF − εn)2 + Γ2
n/4

, (63)

and electrons

TL/R
e (EF) =

∞

∑
n=N/2+1

ΓnΓL/R
n

(EF − εn)2 + Γ2
n/4

. (64)

A remarkable property of this new conductance formula is that it is independent of the details of the
vibrational process and relies solely on the equilibrium distribution and the couplings to the leads.
The ratio

PL
h (T) =

〈ΓL
h (T)〉

〈ΓL
h (T)〉+ 〈Γ

R
h (T)〉

, (65)

in the expression of the conductance can be interpreted as the probability that a hole entering anywhere
into the molecule leaves it towards the left lead. The sum TR

h (EF) is the probability that a hole tunnels
into the molecule from the right lead. The product TR

h (EF)〈ΓL
h (β)〉 is the probability that a hole entering

from the right lead leaves the molecule trough the left lead. The four terms in the formula

G =
e2

h

[
TR

h (EF)PL
h (T) + TL

h (EF)PR
h (T) + TR

e (EF)PL
e (T) + TL

e (EF)PR
e (T)

]
, (66)

represent the four scenarios in which electrons and holes can generate current; it has a very modest
dependence on temperature and on the distance between the contacts as we show in the next sections.

Finally, here we can also discuss the sub-case when the left electrode forms a strong specific bond
with the molecule while the other electrode is coupled weakly or nonspecifically. We can then neglect
TR

e (EF) and TR
h (EF) in (66) and get the simplified expression

G =
e2

h

[
TL

h (EF)PR
h (T) + TL

e (EF)PR
e (T)

]
. (67)

This means that electrons and holes can tunnel into the molecule via the strong left contact and some
of them can leave trough the weak contact with the equilibrium probabilities PR

e (T) and PR
h (T).

5.3. Temperature Dependence

The temperature dependence of the conductance is coming from the probabilities. In Appendix C,
we show that they are temperature-independent if kT � εHOMO − εHOMO−1 and kT � εLUMO+1 −
εLUMO, which is usually holds in proteins, where the level spacings are typically in the order of
0.1–1.0 eV and the experimental temperatures are in the kT = 0.00001 to 0.025 eV range. In certain
cases, due to the fluctuation of level spacing, sometimes εHOMO − εHOMO−1 or εLUMO+1 − εLUMO is
somewhat lower accidentally; therefore, we keep the temperature-dependent terms in leading order
to account for these effects. Using the probabilities derived in Appendix C, we get the following
expression for the temperature-independent part of the conductance,

G0 =
e2

h

[
TR

h (EF)ΓL
HOMO + TL

h (EF)ΓR
HOMO

ΓL
HOMO + ΓR

HOMO
+

TR
e (EF)ΓL

LUMO + TL
e (EF)ΓR

LUMO
ΓL

LUMO + ΓR
LUMO

]
, (68)
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and for the temperature dependence in leading order

GT =
e2

h
(TR

h (EF)− TL
h (EF))

ΓL
HOMOΓR

HOMO
(ΓL

HOMO + ΓR
HOMO)

2

[
ΓL

HOMO−1

ΓL
HOMO

−
ΓR

HOMO−1

ΓR
HOMO

]
e−(εHOMO−εHOMO−1)/kT

+
e2

h
(TR

e (EF)− TL
e (EF))

ΓL
LUMOΓR

LUMO
(ΓL

LUMO + ΓR
LUMO)

2

[
ΓL

LUMO+1

ΓL
LUMO

−
ΓR

LUMO+1

ΓR
LUMO

]
e−(εLUMO+1−εLUMO)/kT ,

and G = G0 + GT . The sign of the temperature-dependent part is determined by the combined
effect of the sign of ΓL

HOMO−1/ΓL
HOMO − ΓR

HOMO−1/ΓR
HOMO, ΓL

LUMO+1/ΓL
LUMO − ΓR

LUMO+1/ΓR
LUMO,

TR
h (EF)− TL

h (EF) and TR
e (EF)− TL

e (EF), which depends not just on whether the left or the right side
is coupled stronger, but also from the details of the couplings to the HOMO vs. HOMO-1 and LUMO
vs. LUMO-1.

5.4. Distance Dependence

Looking at Formula (66), we can realize that neither T nor P has a systematic dependence on
the distance of the electrodes when both electrodes are strong. The orbitals of large molecules are
localized. Assuming that the electrodes are far from each other, they are most strongly coupled to
some localized orbital of the molecule near the electrode. These orbitals do not overlap and direct
tunneling is negligible. The electrons are transported due to the strong vibrational effect. Due to the
strong mixing inside of the molecule, the electron moves ergodically inside and loses information
about its point of arrival. The exit direction (left or right) is determined solely by the escape rates
from the molecule. The probability that we find the electron on an orbital is given by the Boltzmann
distribution e−(EF−εn)/kT/Z(T), and the rate of exit from this state to the left electrode is the escape rate
multiplied with the probability (ΓL

n/h̄)e−(EF−εn)/kT/Z(T). The total rate of escape to the left electrode
is ∑n(ΓL

n/h̄)e−(EF−εn)/kT/Z(T), and the probability that the electron leaves the molecule trough the
left exit is the ratio of the total rate of exit to the left divided by the total rate of exit (left + right)
∑n(Γn/h̄)e−(EF−εn)/kT/Z(T). The result is independent of the distance of the electrodes. Looking at
one of the sums when the electrodes are far away from each other,

TL
h (EF) =

N/2

∑
n=1

ΓnΓL
n

(EF − εn)2 + Γ2
n/4

, (69)

we can realize that the strongest contributions come from large ΓL
n . However, in this case,

the corresponding ΓR
n is very small, as the left and the right electrodes can’t couple strongly to

the same localized state at the same time. Therefore, when we calculate this sum, we can drop the
terms related to the right electrode and get

TL
h (EF) ≈

N/2

∑
n=1

(ΓL
n)

2

(EF − εn)2 + (ΓL
n)

2/4
, (70)

which depends only on the couplings of the left electrode and is independent of the relative position of
the two electrodes. Similar arguments are true for the right electrode, and it is distance-independent
as well. In summary, none of the terms in Formula (66) show any systematic distance dependence.
We have to stress that distance independence is the consequence of the strong mixing approximation
used in the derivation of this formula. In reality, the charge carriers need time to travel between the
electrodes. This happens in a diffusive fashion, similarly to the case described in [25]. The net result is
that conductance decays with the distance, but the decay is slower than exponential, usually algebraic.
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The situation is somewhat different when one of the contacts is strong and the other is week.
Suppose that the strong contact is R and the weak contact is L. Then in (68) and (69), we can neglect
the left quantities TL

e (EF) and TL
h (EF) and the ΓL-s, compared to their right counterparts, and get

G0 =
e2

h

[
TR

h (EF)
ΓL

HOMO
ΓR

HOMO
+ TR

e (EF)
ΓL

HOMO
ΓR

HOMO

]
,

and for the temperature dependence, in leading order

GT =
e2

h
TR

h (EF)
ΓL

HOMO
ΓR

HOMO

[
ΓL

HOMO−1

ΓL
HOMO

−
ΓR

HOMO−1

ΓR
HOMO

]
e−(εHOMO−εHOMO−1)/kT

+
e2

h
TR

e (EF)
ΓL

LUMO
ΓR

LUMO

[
ΓL

LUMO+1

ΓL
LUMO

−
ΓR

LUMO+1

ΓR
LUMO

]
e−(εLUMO+1−εLUMO)/kT .

In this case, the ratio ΓL
HOMO/ΓR

HOMO and ΓL
HOMO/ΓR

HOMO can depend on the distance exponentially.
If lL

HOMO and lR
HOMO denote the distance of the left and right electrodes from the center of the localized

HOMO orbital, respectively, the couplings scale typically as LL
HOMO ∼ exp(−βlL

HOMO) and LR
HOMO ∼

exp(−βlR
HOMO). The ratio of the two depends on the difference of these distances

ΓL
HOMO

ΓR
HOMO

∼ exp(−β(lL
HOMO − lR

HOMO)).

Similar relationships can be derived for other ratios as well. The difference lL
HOMO − lR

HOMO measures
the asymmetry of the locations of the electrodes relative to the location of the HOMO.

5.5. Order of Magnitude

We can make a rough estimate of the conductance in a typical arrangement. The probabilities P
are in order of unity, and the typical value of T determines the order of magnitude. The magnitude of
|EF − εn| is bigger than half of the HOMO–LUMO gap and can be 5–10 eV typically. The couplings Γn

are in the 0.1 eV range. The ratios (Γn/|EF − εn|)2 are then typically 10−4− 10−6 and e2/h ≈ 38, 000 nS.
Thus, the resulting conductances should be typically in the 10.0 to 0.01 nS range.

5.6. Electron Transfer at Strong Decoherence

It is instructive to calculate the temperature dependence of the electron transfer rate in the strong
decoherence case. Using the same approximation yields

kET =
Z(T)

h̄

[
〈ΓL

e (T)〉〈ΓR
e (T)〉

〈ΓL
e (T)〉+ 〈ΓR

e (T)〉
+
〈ΓL

h (T)〉〈Γ
R
h (T)〉

〈ΓL
h (T)〉+ 〈Γ

R
h (T)〉

]
, (71)

where we took the large escape rate κ → ∞ limit in (36). As the HOMO–LUMO gap is much larger
than the thermal energy, we can again keep only the leading terms and get

kET ≈
e−∆HL/kT

h̄

[
ΓL

LUMOΓR
LUMO

ΓL
LUMO + ΓR

LUMO
+

ΓL
HOMOΓR

HOMO
ΓL

HOMO + ΓR
HOMO

]
, (72)

where ∆HL is the HOMO–LUMO gap. This expression shows that the electron transfer rate has an
Arrehnius-type temperature dependence. It contains the products ΓL

LUMOΓR
LUMO and ΓL

HOMOΓR
HOMO,

which describe tunneling trough the entire molecule and decay exponentially with the size of the
molecule. It is obvious that the electron transfer rate is not proportional with the conductance, which,
unlike the transfer rate, shows no exponential dependence on distance or temperature.
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6. Experiments

In this section, we show how the present theory explains some of the key experimental findings
of protein conductance in the presence of strongly coupled electrodes.

6.1. Temperature Dependence

In [26], it was found that the current through the system increases with the coupling strength if
metallic electrodes are attached to various Myoglobin structures. The change of the current with the
temperature decreases with increasing strength, and the current becomes temperature-independent
for small temperatures. In all cases, they found only mild temperature dependence, inconsistent with
the large HOMO–LUMO gap of Myoglobin. In Figure 2, we reproduced Figure 3 of the original article
with the formula

I = I0 + IT exp(−∆E/kT), (73)

where the parameter values are shown in Table 1. In Table 2, we show the calculated values of the
energies of molecular orbitals of Myoglobin. The observed temperature dependence is not consistent
with the large HOMO–LUMO gap and activation energy ∆E = (εLUMO − εHOMO)/2 = 0.222 6eV;
therefore, we can exclude all traditional explanations, which rely on the thermal excitation trough
the gap. On the other hand, (73) is fully consistent with Formula (68) and (69). According to our
formula, the conductance becomes temperature-independent for low temperatures, and the weak
temperature dependence is governed by the smallest of the HOMO and HOMO-1 energy difference
or LOMO and LOMO+1 energy difference. These are εLUMO+1 − εLUMO = 0.6133 eV and εHOMO −
εHOMO−1 = 0.0645 eV for Myoglobin. The HOMO and HOMO-1 difference dominates and ∆E =

εHOMO − εHOMO−1 reproduces the experimental results correctly. We note that in Myoglobin hole
transport dominates the temperature-dependent part, and that hole transport, in general, is often
disregarded in intuition-driven theoretical studies of electron transfer.
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 5  10  15  20  25

C
u
rr

e
n
t 

d
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n
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m
2
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1000/T [K-1]

Native m-Mb
apo Mb

Reconstituted m-Mb

Figure 2. Current density curves of experiment [26], reconstructed using (73). Start and end points
of curves visually extracted from original figure. For activation energy, the gap between HOMO and
HOMO-1 energies have been used, in accordance with (68).

Table 1. Parameter values reproducing the Myoglobin measurement results of [26].

I0 in A/cm2 IT in A/cm2

Native m-Mb 1.0× 10−7 1.1× 10−5

apo Mb 1.0× 10−8 6.6× 10−6

Reconstituted m-Mb 2.0× 10−6 2.7× 10−5
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Table 2. Myoglobin energies near the HOMO–LUMO gap. The energies have been calculated with
the semiempirical extended Hückel method implemented in the YaEHMOP package http://yaehmop.
sourceforge.net. Myoglobin structure taken from RCSB PDB https://www.rcsb.org/structure/1MYF.

Energy in eV

LUMO+1 −8.9052
LUMO −9.5185
HOMO −9.9637
HOMO-1 −10.0282

Our second example is the measurement of Cytochrome C in [27]. We reproduced two
measurement curves shown in Figure 1c of the original paper, and we show them in Figure 3.

-16

-15

-14

-13

-12

 5  10  15  20  25

ln
(J

 -0
.0

5
V

)

1000/T [K-1]

Electrostatic binding (WT)
Covalent binding (E104C)

Figure 3. Current density curves of [27] reconstructed using (73). Start and end points of curves
visually extracted from original figure. In case of covalent bonding, for activation energy, the gap
between LUMO and LUMO+1 energies is used in accordance with (68); whereas, for the electrostatic
bonding case, the experimentally found value has been used.

We used again the fit (73) and the parameters are in Table 3. For the electrostatic case, we used the
activation energy ∆E = 0.105 eV found experimentally [27]. In Table 4, we show the calculated orbital
energies of Cytochrome C. This experimentally found activation energy is in reasonable agreement with
the value calculated from the numerical HOMO–LUMO gap ∆E = (εLUMO − εHOMO)/2 = 0.161 eV.
According to our formula, the conductance becomes temperature-independent for low temperatures,
and the weak temperature dependence is governed by the smallest of the HOMO and HOMO-1 energy
difference or LUMO and LUMO+1 energy difference, which are εLUMO+1 − εLUMO = 0.0205 eV and
εHOMO − εHOMO−1 = 0.5336 eV for Cytochrome C. In this case, the LUMO and LUMO+1 difference
dominates and ∆E = εLUMO+1 − εLUMO reproduces the experimental results correctly. We note that in
Cytochrome C electron transport dominates the temperature-dependent part.

Table 3. Parameter values reproducing the Cytochrome C measurement results of [27] .

I0 in A/cm2 IT in A/cm2 ∆E in eV

Covalent binding (E104C) 3.7× 10−6 5.3× 10−6 0.020
Electrostatic binding (WT) 1.1× 10−7 2.1× 10−4 0.105

http://yaehmop.sourceforge.net
http://yaehmop.sourceforge.net
https://www.rcsb.org/structure/1MYF
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Table 4. Cytochrome C energies near the HOMO–LUMO gap. The energies have been calculated with
the semiempirical extended Hückel method implemented in the YaEHMOP package http://yaehmop.
sourceforge.net. Cytochrome C structure taken from RCSB PDB https://www.rcsb.org/structure/
1HCR.

Energy in eV

LUMO+1 −9.9457
LUMO −9.9252
HOMO −9.6021
HOMO-1 −9.0685

6.2. Distance Dependence of Electron Transfer and Conductance

In [28], it was found that in certain peptide nuclear acid structures, both electron transfer rates
and conductance decays exponentially with the length of the structure, but the two exponents differ

considerably. Although electron transfer rates decay as e−βl , where βET ≈ 0.9Å
−1

, like in most
biological structures, the conductance decay is approximately two-thirds slower, βG ≈ 0.66βET .
The authors attributed this to a possible new power law scaling relation between the two G ∼ k0.66

ET in
place of the linear relation G ∼ kET . As we have seen, there is no such a simple relation between these
two quantities in general, but it is possible that the two quantities decay with different exponents.

Note that in the experiment, the contact connecting the PNA structure to the Au electrode is
weak. This has been concluded in [29] suggesting that charge transfer between PNA and the Au
substrate may be difficult due to the required amounts of energy to overcome the injection barriers.
The metal electrode used in the conductance measurement has been strong indicated by the high
values of measured conductance as well. Electron transfer rate in this situation is well described by (72)
and conductance by (67), which can be simplified further by keeping the leading term in case of a large
HOMO–LUMO gap

G =
e2

h

[
TL

h (EF)
ΓR

HOMO
ΓL

HOMO
+ TL

e (EF)
ΓR

LUMO
ΓL

LUMO

]
. (74)

The products of couplings show exponential dependence ΓL
LUMOΓR

LUMO ∼ ΓL
HOMOΓR

HOMO ∼ e−βET l ,
where l is the length of the molecule, as they describe tunneling across the molecule. The HOMO and
LUMO orbitals are somewhere midway in the molecule and they are located very close to each other.
It is then reasonable to assume that ΓL

HOMO ∼ ΓL
LUMO ∼ e−βET xl and ΓR

HOMO ∼ ΓR
LUMO ∼ e−βET(1−x)l ,

where xl and (1− x)l represent the distance of the left and right electrodes from the location of the
HOMO–LUMO orbitals, respectively. Inserting this into the conductance and assuming that TL

h (EF)

and TL
e (EF) do not change with the distance, as we discussed before, we can see that

G ∼ e−βET(1−2x)l . (75)

Assuming x ≈ 0.17 can explain the relation of exponents observed in the experiment. This suggests
that the HOMO and LUMO are closer to the metal contact, which is due to the Ferrocene redox center
attached to the end of the molecule in contact with the metal. This example clarifies that in case of
a strong and a weak contact distance dependence can still be observed. Only two strong contacts
guarantee distance independence.

6.3. Distribution of Conductance

In [6], the distribution of conductance between metallic contacts attached to various proteins has
been investigated. Here, we reconstruct the experiment where conductance was measured between
thiolated Lysines of a Streptavidin molecule. Streptavidin is the smallest protein used in [6], and it
is computationally feasible to calculate its electronic structure using semiempirical methods. For the
calculations, the structure https://www.rcsb.org/structure/3RY1 has been used. Biotine molecules

http://yaehmop.sourceforge.net
http://yaehmop.sourceforge.net
https://www.rcsb.org/structure/1HCR
https://www.rcsb.org/structure/1HCR
https://www.rcsb.org/structure/3RY1
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have been removed from the structure. The energies and orbitals have been calculated with the
semiempirical extended Hückel method implemented in the YaEHMOP package http://yaehmop.
sourceforge.net. Here, we attempt to reproduce the experimental result shown in Figure 2A (T-T),
in Figure 3A (lower part), and in Figure 4A of the original paper. Original data has been kindly
provided by the authors. We assume that the thiolated sites have been randomly coupled to the
substrate and to the STM tip. We select pairs of thiolated sites using geometric information so that
they lie on opposite sites of the molecule. We took all possible pairs with equal weight. For the
coupling strengths, the standard formula Γ = V|ΦM

k |
2 has been used, where V is the strength of the

coupling and |ΦM
k |

2 is the quantum mechanical probability to find the electron in orbital M on atom
k. We assumed that the strengths are random and Gaussian distributed. We also assumed that the
substrate is strongly coupled with an average coupling strength V = 0.4 eV with variance 0.35 eV,
whereas we assumed a weaker (but still strong) coupling to the STM tip with average coupling strength
V = 0.07 eV and variance 0.035 eV. These concrete values are the results of optimization carried out by
visually comparing the result of the calculation with the experimentally obtained data. In Figure 4,
we show the result of this calculation.
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Figure 4. Comparison of measurement data from Figure 4A of [6] (yellow points) and our simulation
(red line). Horizontal axis is logarithmic and conductance is in units of nS.

The number of parameters in simulating the experimental situation is enormous, and the details
of the structure of the protein and the quantum mechanical calculation contain a wide range of
approximations and errors. Nevertheless, it is obvious that (66) gives conductances in the correct order
of magnitude with physically realistic coupling strengths. Both the average and the variance, and the
general shape of the resulting distribution, are compatible with the experimental finding. Note that
the inputs of (66) are the energies and the wave functions of the molecule. The theory presented
here explains other aspects of this experiment such as the tip-substrate distance independence of the
conductance distribution.

7. Discussion

The generalization of the Landauer–Büttiker formula revealed that decoherence plays an
important role in the electron transport properties of proteins and other biological molecules.
Strong coupling to vibration modes and the resulting decoherence explain the high conductance
inside of these structures. When accessed via weak electrostatic links, these structures look like
insulators since electron transfer rate decaying with distance and temperature governs transport

http://yaehmop.sourceforge.net
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properties. When accessed via strong covalent or nearly covalent bonds, the same structures show
good conductance properties over long distances and at high temperatures. Beyond explaining novel
experiments, what is the biological role of these effects? In 1941, Nobel Prize winner biochemist Albert
Szent-Györgyi put forward [30] many examples of when electrons travel over large distances very fast
within a biomolecule or across the entire cell. Most of his problems are still open as Marcus theory
strongly suppresses long distance transport over energy barriers. Strong decoherence via coupling of
electronic and vibrational degrees of freedom can open up new possibilities to understand the special
electronic wiring of biological systems.

8. Materials and Methods

Electronic properties of medium-size proteins (Myoglobin, Cytochrome C and Streptavidin) have
been calculated with the semiempirical extended Hückel method implemented in the YaEHMOP
package http://yaehmop.sourceforge.net. Structures have been taken from RCSB PDB https://
www.rcsb.org. Computer codes for conductance calculations in Matlab and Phyton are provided
as Supplementary material.
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Appendix A

We start with the definition of the inverse operator

∑
pq

LnmpqL−1
pqkl = δnkδml , (A1)

and separate the operator to a coupling strength-dependent part plus the operator introduced in (55)

∑
pq
((−1/h̄)(Γn/2 + Γm/2)δnpδmq + L0

nmpq)L−1
pqkl = δnkδml . (A2)

We take the diagonal elements (n = m) and get

− Γn

h̄
L−1

nnkl + ∑
pq

L0
nnpqL−1

pqkl = δnkδnl . (A3)

We can sum up the left and right hand sides for n and get

−∑
n

Γn

h̄
L−1

nnkl + ∑
pq

∑
n

L0
nnpqL−1

pqkl = δkl . (A4)

Then, ∑n L0
nnkl = 0, due to the probability conservation law ∑n Rnnkl = 0, which can be be verified

using (13). Then, setting k = l, we get the sum rule

∑
n

Γn

h̄
L−1

nnkk = −1. (A5)
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Then, the expression (27) of the current can also be written as

I =
e2U

h̄ ∑
n

Dn(EF, T)

[
ΓL

n +
1
h̄ ∑

k
(Γk − ΓR

k )L−1
kknn(Γ

L
n − ΓR

n )

]
, (A6)

and, using the sum rule, we can carry out the summation for k for the first part and get

I =
e2U

h̄ ∑
n

Dn(EF, T)

[
ΓR

n −
1
h̄ ∑

k
ΓR

k L−1
kknn(Γ

L
n − ΓR

n )

]
. (A7)

This expression is the same as (27) just the L and R indices are interchanged. To get a formula manifestly
symmetric in these indices, we must add up (27) and (A7) and divide by two to get (28).

Appendix B

We can start from the operator

Lnmkl = (−1/h̄)(Γn/2 + Γm/2)δnkδml + L0
nmkl . (A8)

The first term containing Γ can be regarded as a perturbation to the second term. The unperturbed
system has a zero eigenvalue, as it corresponds to a closed system in equilibrium

∑
kl

L0
nmkl$

0
kl = 0, (A9)

where the right eigenvector is the equilibrium density matrix. As electrons and holes are not mixed,
we have two separate right eigenvectors, $0

nn = e−(εn−EF)/kT/Z(T) for electrons (and zeros for holes)
and $0

nn = e−(EF−εn)/kT/Z(T) for holes (and zeros for electrons), so there is an eigenvalue λ = 0 both
in the electron and in the hole sector. The left eigenvector corresponding to the zero eigenvalue is δnm

(assuming n and m are both electron or hole states), which we can verified by direct substitution:

∑
nm

δnmL0
nmkl = ∑

n
L0

nnkl = 0, (A10)

where we used the probability conservation law ∑n Rnnkl = 0, which can be be verified using (13). In the
first order of perturbation theory, the new eigenvalue replacing the zero eigenvalue λ = 0 becomes the
perturbation operator sandwiched between the left and the right unperturbed eigenvectors,

λ = ∑
nmkl

δnm(−1/h̄)(Γn/2 + Γm/2)δnkδml$
0
kl = −∑

n

Γn

h̄
$0

nn. (A11)

The eigenvalues of the inverse operator L−1
nmkl are the reciprocals or the eigenvalues of the operator.

As the perturbed eigenvalue is very small, its reciprocal will dominate the inverse operator in leading
order, and we can write it in terms of the corresponding left and right eigenvectors,

L−1
nmkl ≈ −

δnm$0
nnδkl

∑p
Γp
h̄ $0

pp

, (A12)

where all four indices and the summation should be done for electron and hole states separately.
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Appendix C

The left and right probabilities are dominated by the orbital close to the Fermi energy. The first
two most important contributions in case of holes come from the HOMO orbital and from HOMO-1
(the orbital below the HOMO)

PL
h =

ΓL
HOMOe−(EF−εHOMO)/kT + ΓL

HOMO−1e−(EF−εHOMO−1)/kT + ...

(ΓL
HOMO + ΓR

HOMO)e
−(EF−εHOMO)/kT + (ΓL

HOMO−1 + ΓR
HOMO−1)e

−(EF−εHOMO−1)/kT + ...
. (A13)

This can be written as

PL
h =

ΓL
HOMO

ΓL
HOMO+ΓR

HOMO

1+(ΓL
HOMO−1/ΓL

HOMO)e−(εHOMO−εHOMO−1)/kT+...

1+((ΓL
HOMO−1+ΓR

HOMO−1)/(Γ
L
HOMO+ΓR

HOMO))e−(εHOMO−εHOMO−1)/kT+...
, (A14)

and then we can expand in the small parameter e−(εHOMO−εHOMO−1)/kT and get in leading order and
group the terms

PL
h =

ΓL
HOMO

ΓL
HOMO+ΓR

HOMO
+

ΓL
HOMOΓR

HOMO
(ΓL

HOMO+ΓR
HOMO)2

[
ΓL

HOMO−1
ΓL

HOMO
− ΓR

HOMO−1
ΓR

HOMO

]
e−(εHOMO−εHOMO−1)/kT + ... . (A15)

The sign of the temperature-dependent part is determined by the ratios ΓL
HOMO−1/ΓL

HOMO and
ΓR

HOMO−1/ΓR
HOMO, which are the relative strengths of couplings of the left and right electrodes to the

HOMO and HOMO-1 orbitals, respectively,. By exchanging left and right, we can get the probability

PR
h =

ΓR
HOMO

ΓL
HOMO+ΓR

HOMO
− ΓL

HOMOΓR
HOMO

(ΓL
HOMO+ΓR

HOMO)2

[
ΓL

HOMO−1
ΓL

HOMO
− ΓR

HOMO−1
ΓR

HOMO

]
e−(εHOMO−εHOMO−1)/kT + ... . (A16)

Regarding electrons, the LUMO and LUMO+1 orbitals play the same role, and we can get the analogous
expression

PL
e =

ΓL
LUMO

ΓL
LUMO+ΓR

LUMO
+

ΓL
LUMOΓR

LUMO
(ΓL

LUMO+ΓR
LUMO)2

[
ΓL

LUMO+1
ΓL

LUMO
− ΓR

LUMO+1
ΓR

LUMO

]
e−(εLUMO+1−εLUMO)/kT + ..., (A17)

and

PR
e =

ΓR
LUMO

ΓL
LUMO+ΓR

LUMO
− ΓL

LUMOΓR
LUMO

(ΓL
LUMO+ΓR

LUMO)2

[
ΓL

LUMO+1
ΓL

LUMO
− ΓR

LUMO+1
ΓR

LUMO

]
e−(εLUMO+1−εLUMO)/kT + ... . (A18)

Appendix D

We start with the definition of the inverse operator

∑
pq

L−1
nmpqLpqkl = δnkδml , (A19)

and separate the operator to a coupling strength-dependent part plus the operator introduced in (55),

∑
pq

L−1
nmpq((−1/h̄)(Γk/2 + Γl/2)δpkδql + L0

pqkl) = δnkδml . (A20)

We take the diagonal elements (k = l) and get

− L−1
nmkk

Γk
h̄

+ ∑
pq

L−1
nmpqL0

pqkk = δnkδmk. (A21)
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We can multiply both sides with the Boltzmann distribution pB
k , sum up for k, and get

−∑
k

L−1
nmkk

Γk
h̄

pB
k + ∑

pq
L−1

nmpq ∑
k

Lpqkk pB
k = δnm pB

n (A22)

Then, ∑k L0
pqkk pB

k = 0, as the Boltzmann distribution is the steady-state solution. Then, setting m = n,
we get the sum rule

∑
k

L−1
nmkk

Γk
h̄

pB
k = −pB

n . (A23)
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