Supplementary Information

mode exhibits improved sensitivity, particularly at lower civilir concentrations.								
	A(2',3'-cAMP)/	A(3',5'-cAMP)/	A(2',3'-cGMP)/	A(3',5'-cGMP)/				
	A(IS81)	A(IS81)	A(IS81)	A(IS81)				
Positive ion: 2.5 µM	3.07	2.15	1.87	3.35				
Negative ion: 2.5 µM	1.52	1.90	1.99	1.27				
Positive ion: 1 µM	1.65	1.03	1.24	1.78				
Negative ion: 1 µM	0.68	0.82	0.93	0.56				
Positive ion: 0.5 µM	0.82	0.51	0.60	0.86				
Negative ion: 0.5 µM	0.35	0.43	0.48	0.27				

Table S1. Comparison of ionization methods for LC-MS/MS analysis of cNMPs. Data for four cNMPs (ratios of peak areas of cNMP to internal standard) are listed. Positive ion mode exhibits improved sensitivity, particularly at lower cNMP concentrations.

Table S2. Thermal stability test (μ M). Samples dissolved in water were treated at 60 °C for 10 min.

-	2',3'-	3',5'-	2',3'-	3',5'-	2',3'-	3',5'-	3',5'-	8-Br-
	cAMP	cAMP	cCMP	cCMP	cGMP	cGMP	cIMP	cAMP
Sample conc.	46.4	50.3	48.6	60.8	40.5	54.7	30.3	45.8
Conc. after	50.4	19 1	60	70.6	25.2	62 7	42.1	50.4
treating with heat	39.4	40.1	09	/0.0	55.2	02.7	42.1	50.4
% to reference sample	128%	95.6%	141%	116%	87%	114%	138%	110%

Table S3. Deaminase activity test (pmol/g wet tissue), concentrations are reported as mean \pm range (each sample was analyzed twice on LC-MS/MS). Liver A and B were from one liver. 40 pmol of 3',5'-cAMP was added to liver B.

	3',5'-cAMP	2',3'-cIMP	3',5'-cIMP
Liver A	3.90 ± 0.82	1.85 ± 0.19	1.76 ± 0.02
Liver B	1844.14 ± 106.63	2.34 ± 0.17	2.28 ± 0.40

Table S4. Comparison of extraction efficiency of the internal standard (IS; 8-Br-cAMP) at different addition times. A rat brain was homogenized, split into two equal parts, and IS was added either to crude lysate (Figure 2, step 2) or following centrifugation (Figure 2, step 4). 3',5'-cAMP was quantified to provide a reference. No significant difference in peak areas was detected.

Sample	Internal Standard	3',5'-cAMP
IS addition to crude lysate	$123,\!458\pm 6715$	$272,637 \pm 12635$
IS addition post-heating	$140,722 \pm 7070$	$267,800 \pm 13043$

Table S5. Intra-run precision and accuracy data in tabulated form. Extractions and measurements were performed in rat brains (see Figure 5).

	Measured (pmol)	Precision (RSD in %)	Accuracy (%)
3',5'-cCMP (60 pmol)	63.3 ± 7.4	11.7%	105.4%
3',5'-cCMP (60 pmol)	70.8 ± 16.6	23.5%	117.9%

	21 21 A MD	21.51 A.M.D.		21.51 CMD		21.51 (3)(3)		21.51 DAD
	2°,3°-CAMP	3',5'-CAMP	2',3'-cCMP	5',5'-cCMP	2', 3'-cG MP	3',5'-cGMP	2°,3°-CIMP	3°,5°-cIMP
	0.52	102.00 - 010.25		Brain	210	0.51	0.00 . 0.50	
Rat 1	8.73	497.03 ± 243.75	N/D	N/D	N/D	2.71	0.90 ± 0.52	N/D
Rat 2	N/D	162.61 ± 31.21	2.50*	N/D	6.48 ± 1.19	5.22 ± 1.79	N/D	N/D
Rat 3	11.50	351.00 ± 24.84	2.63	0.67 ± 0.09	17.49 ± 11.86	22.09 ± 4.82	N/D	N/D
Rat 4	N/D	458.28 ± 67.80	N/D	3.75 ± 0.01	22.09 ± 0.63	11.12 ± 4.05	0.17 ± 0.37	N/D
Ave brain	10.11 ± 1.96	367.23 ± 149.75	2.57 ± 0.07	2.21 ± 1.54	15.35 ± 8.02	10.29 ± 8.62	0.54 ± 0.37	N/D
				Heart				
	2',3'-cAMP	3',5'-cAMP	2',3'-cCMP	3',5'-cCMP	2',3'-cGMP	3',5'-cGMP	2',3'-cIMP	3',5'-cIMP
Rat 1	N/D	849.05 ± 10.44	8.73	N/D	4.17	N/D	N/D	N/D
Rat 2	N/D	$442.14\ \pm 46.57$	4.57 ± 0.27	$3.60\ \pm 0.04$	13.63 ± 6.16	$7.61\ \pm 3.04$	BQL	N/D
Rat 3	N/D	365.55 ± 43.38	4.22	3.62 ± 0.10	7.27 ± 4.04	6.58 ± 1.98	N/D	N/D
Rat 4	28.35	887.34 ± 156.06	N/D	10.96 ± 0.75	28.06 ± 7.03	15.98 ± 12.12	BQL	N/D
Rat 5	7.30	439.40 ± 69.43	N/D	9.49 ± 1.12	20.90 ± 4.48	11.16 ± 4.60	0.07 ± 0.03	2.86
Female	32.84 ± 29.36	443.07 ± 62.82	N/D	3.76 ± 4.06	5.63 ± 0.03	N/D	N/D	N/D
rat 1								
Ave heart	22.83 ± 13.63	571.09 ±232.33	5.84 ±2.51	6.29 ± 3.63	13.30 ± 9.52	10.33 ± 4.25	0.07	2.86
				Lung				
Rat 1	15.67 ± 20.89	515.52 ± 48.28	291.44 ± 425.18	N/D	6.67 ± 3.74	5.98	N/D	N/D
Rat 2	N/D	212.66 ± 4.98		18.89 ± 0.81	4.74 ± 1.42	3.28 ± 0.61	N/D	N/D
Rat 3	N/D	914.96 ± 130.83	7.35 ± 1.47	9.60 ± 0.97	25.42 ± 1.46	25.49 ± 12.15	N/D	N/D
Rat 6	19.58 ± 2.42	554.21 ± 50.42	68.73 ± 6.94	0.78	N/D	12.24	N/D	N/D
Rat 7	17.42	227.84 ± 114.58	N/D	1.45	N/D	N/D	N/D	N/D
Female	20.21 + 2.07	(07.20 + 10(.00	2.04	1 (0 + 1 00	27.72 + 2.64	N/D	N/D	N/D
rat 2	29.21 ± 2.97	607.29 ± 106.08	2.04	1.69 ± 1.00	21.13 ± 2.04	N/D	N/D	N/D
Ave lung	$20.48{\pm}~6.04$	505.58 ± 262.05	92.39 ± 136.11	6.48 ± 7.81	16.14± 12.11	11.75 ± 9.90	N/D	N/D
				Kidney				
Rat 1	20.31 ± 11.65	417.72 ± 13.15	187.15 ± 24.26	N/D	12.66	N/D	N/D	3.05 ± 1.83
Rat 2	28.60 ± 11.02	646.05 ± 143.88	14.80 ± 11.99	36.68 ± 6.37	11.61	N/D	BQL	N/D
Rat 3	21.88 ± 12.04	647.25 ± 372.78	6.58 ± 0.66	7.45	N/D	N/D	N/D	N/D
Rat 4	17.96 ± 7.53	452.31 ± 190.19	3.94 ± 1.97	12.06	2.38	0.02	BQL	4.16
Rat 6	46.08 ± 11.72	305.35 ± 59.38	N/D	N/D	3.81 ± 1.22	N/D	N/D	4.16
Rat 7	56.20 ± 4.84	513.95 ± 63.81	438.16 ± 262.27	N/D	10.99 ± 0.19	N/D	N/D	N/D
Female								
rat 2	72.68 ± 48.38	445.49 ± 43.87	10.88 ± 5.03	1.22	9.64 ± 2.00	8.50 ± 6.14	N/D	N/D
Ave	37.67 ± 21.06	489.73 ± 124.08	110.25 ± 175.77	14.35 ± 15.53	8.51 ± 4.33	4.26 ± 6.00	BQL-N/D	3.79 ± 0.64

Table S6. Measured concentrations of 8 cNMPs in various rat organs reported as mean \pm SD (pmol/g wet tissue). Each cNMP was calculated using 4–7 individual organs as replicates, and each sample was analyzed in 2–3 separate runs.

	2',3'-cAMP	3',5'-cAMP	2',3'-cCMP	3',5'-cCMP	2',3'-cGMP	3',5'-cGMP	2',3'-cIMP	3',5'-cIMP
				Spleen				
	2',3'-cAMP	3',5'-cAMP	2',3'-cCMP	3',5'-cCMP	2',3'-cGMP	3',5'-cGMP	2',3'-cIMP	3',5'-cIMP
Rat 1	21.80 ± 3.47	724.48 ± 14.16	114.56 ± 79.19	N/D	11.84	N/D	N/D	3.39
Rat 2	30.07 ± 15.39	339.83 ± 7.73	9.33 ± 2.07	5.74 ± 0.10	17.07 ± 5.51	6.47 ± 1.24	N/D	N/D
Rat 3	79.60 ± 32.62	1050.12 ± 290.46	191.18 ± 91.08	20.14 ± 4.66	47.20 ± 7.28	25.50 ± 5.48	BQL	N/D
Rat 4	11.52 ± 2.86	694.34 ± 84.05	N/D	7.43 ± 0.37	26.54 ± 3.39	17.98 ± 2.01	0.05 ± 0.01	N/D
Female	214.65 ±		$123.48 \pm$	14.01	N. (D)) I (D	N/D	3 X (D)
rat 1	109.03	604.31 ± 249.78	117.42	14.81	N/D	N/D	N/D	N/D
Ave					0.5. (() 1.5.50	16.65 - 0.50	0.05	
spleen	/1.53 ± 84.1/	682.62 ± 255.24	109.63 ± 75.11	$11.10 \pm /.8/$	25.66 ± 15.59	16.65 ± 9.59	0.05	3.39
				Liver				
Rat 8	N/D	144.31	15.62	N/D	N/D	N/D	1.7	N/D
Rat 9	N/D	195.03	64.70	N/D	N/D	N/D	N/D	1.25
Rat 10	12.63	617 ± 192.93	6.10 ± 1.54	46.96 ± 7.08	7.07 ± 1.39	N/D	2.5	7.95
Rat 11	6.23	84.97 ± 23.22	1.19 ± 0.17	2.48	N/D	N/D	N/D	2.39
Ave liver	9.43 ± 3.2	260.46 ± 242.26	21.90 ± 29.16	24.72 ± 22.24	7.07 ± 1.40	N/D	2.1 ± 0.4	3.86 ± 3.59

Table S6. Cont.

* Only one injection was evaluated for numbers without standard deviation; N/D-Not detected, concentration below LOD;

BQL-below quantification limit; detected, but level too low to quantify.

Figure S1. FT-MS of 3',5'-cAMP (**A**) and 2',3'-cAMP (**B**). While FT-MR analysis of cNMPs results in excellent sensitivity, the regioisomers yield identical mass spectra and cannot be distinguished.

Figure S3. MS/MS spectrum of extracted 2',3'-cGMP in rat heart.

Figure S4. High resolution MS (**A**) and MS/MS (**B**) spectra of authentic 2',3'-cIMP. 2',3'-cIMP calculated: 331.04515; observed: 331.04525. $[BH_2]^+$ calculated: 137.04635; observed: 136.91667.

 \bigcirc 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).