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Abstract: Accurately predicting essential genes is important in many aspects of biology, 

medicine and bioengineering. In previous research, we have developed a machine learning 

based integrative algorithm to predict essential genes in bacterial species. This algorithm 

lends itself to two approaches for predicting essential genes: learning the traits from known 

essential genes in the target organism, or transferring essential gene annotations from a 

closely related model organism. However, for an understudied microbe, each approach has 

its potential limitations. The first is constricted by the often small number of known essential 

genes. The second is limited by the availability of model organisms and by evolutionary 

distance. In this study, we aim to determine the optimal strategy for predicting essential 

genes by examining four microbes with well-characterized essential genes. Our results 

suggest that, unless the known essential genes are few, learning from the known essential 

genes in the target organism usually outperforms transferring essential gene annotations 
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from a related model organism. In fact, the required number of known essential genes is 

surprisingly small to make accurate predictions. In prokaryotes, when the number of 

known essential genes is greater than 2% of total genes, this approach already comes close 

to its optimal performance. In eukaryotes, achieving the same best performance requires 

over 4% of total genes, reflecting the increased complexity of eukaryotic organisms. 

Combining the two approaches resulted in an increased performance when the known 

essential genes are few. Our investigation thus provides key information on accurately 

predicting essential genes and will greatly facilitate annotations of microbial genomes. 

Keywords: essential genes; machine learning; annotation 

 

1. Introduction 

Essential genes are defined as those that, when disrupted, confer a lethal phenotype to microorganisms 

under defined conditions. As such, the essentiality of a gene is the indispensability of this gene’s product 

to the survival of a microorganism. A complete understanding of gene essentiality is important in multiple 

facets of biology, medicine and bioengineering. For example, because of the lethal consequences of 

their disruption, essential genes are often attractive targets of antibiotics [1]. Essential genes of  

an organism also constitute its minimal gene set, a key concept in the emerging field of synthetic 

biology [2,3]. Furthermore, studying gene essentiality is a crucial step toward unraveling the complex 

relationship between genotype and phenotype [4], a fundamental question in genetics.  

Systematic genome-wide interrogations of essential genes have been conducted by single gene 

knockouts [5–8], transposon mutagenesis [9–15], or antisense RNA inhibitions [16,17]. Although the 

efficiency of gene deletion has improved, performing large-scale experiments to knock out each gene 

encoded in an organism’s genome, usually in the magnitude of thousands, is still a daunting task. The 

work of experimentally identifying essential genes in an organism is even more formidable than was 

once thought as researchers have found that growth conditions can significantly alter the spectrum of 

essentiality in bacteria [18–22] and yeast [23]. Therefore, computational methods for predicting essential 

genes become an appealing option for circumventing the expense and difficulty of experimental screens. 

A computational prediction is especially useful when the organism is either unculturable, such as 

Pneumocystis carinii, or difficult to perform gene disruption on, such as Aspergillus fumigatus. 

In our previous research, we developed a machine-learning based algorithm that predicts essential 

genes by integrating diverse types of information encoded in a microorganism’s genome that are 

potentially associated with gene essentiality [24]. We tested this algorithm in four bacterial species 

whose essential genes have been well characterized: Escherichia coli (EC), Pseudomonas aeruginosa 

(PA), Acinetobacter baylyi (AB) and Bacillus subtilis (BS). Ten-fold cross-validations in each organism 

showed a high predictive accuracy (AUC: ~0.9). We also reported that gene essentiality can be reliably 

transferred using features trained and tested in a distantly related microorganism (AUC: 0.69–0.89). 

Cross-organism predictions significantly outperformed homology mapping.  

Our algorithm thus significantly extended our ability to predict essential genes beyond orthologs by 

providing two alternative approaches: We can learn the characteristics underlying the subset of known 
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essential genes in one organism and predict the essentiality of the rest of the genes in the same 

organism. Alternatively, we can transfer the gene essentiality from its most closely related model 

organisms where a complete set of essential genes is available. However, to determine the essential 

gene set in an understudied microbe, both approaches have potential limitations. The first approach is 

limited by the often low number of known essential genes, while the second approach is limited by the 

availability of model organisms and the evolutionary distance to the target organism. Although our 

previous work demonstrated that both approaches are capable of producing accurate predictions, 

further study is needed to determine the most suitable situation each approach can be employed. 

The current study represents a significant progress since our previous work by aiming to determine an 

optimal strategy for predicting essential genes in an understudied microbe by examining these potential 

limitations with regard to the above-mentioned approaches and a third approach that combines the two 

approaches. We performed our investigations on two pairs of microbes with well-characterized essential 

genes: two prokaryotes, Escherichia coli K-12 (EC) and Acinetobacter baylyi ADP1 (AB) and two 

eukaryotes, Saccharomyces cerevisiae S288c (SC) and Neurospora crassa OR74A (NC). We withheld 

different fractions of known essential genes in each organism and evaluated the predictive 

performance. Through these simulations, we were able to reveal the conditions under which each 

approach is most suitable for predicting essential genes in a microbe with respect to the size of known 

essential genes. The results obtained from our study will greatly facilitate the annotations of microbial 

genomes and provide valuable information to synthetic biology.  

2. Experimental 

2.1. Data Sources 

E. coli K-12 sequence data were downloaded from Comprehensive Microbial Resource (CMR) 

database at http://cmr.jcvi.org. It contains 4289 protein sequences in total [25]. The essential genes of 

E. coli K-12 were downloaded from the PEC database [7]. The Kato dataset contains 302 essential 

genes from gene deletion experiments.  

A. baylyi ADP1 sequences were collected from the Magnifying Genomes database 

(http://www.genoscope.cns.fr/agc/mage). Of a total of 3308 genes, 499 are essential genes from de 

Berardinis et al. [6] 

S. cerevisiae S288c sequences were downloaded from Saccharomyces Genome Database at: 

http://downloads.yeastgenome.org/sequence/genomic_sequence/. It contains 5885 ORFs. The essential 

gene list was downloaded from Giaever et al. [26]. This dataset contains 1049 essential genes from 

targeted mutagenesis experiments.  

N. crassa OR74A ORFs were downloaded from Neurospora crassa database at Broad Institute at 

http://www.broadinstitute.org/annotation/genome/neurospora/MultiDownloads.html. Dubious ORFs 

and pseudogenes were excluded from this list. The essential gene dataset was kindly provided by K. 

Borkovich at UC Riverside from the systematic genome deletion project in N. crassa. This list 

contains 7172 experimental verified essential/nonessential genes, and 1251 of them are essential genes. 

Gene expression data in these organisms were downloaded from NCBI GEO [27],  

ArrayExpress [28], and the gene-expression profiles of microarray data from Gasch et al. [29]. 

http://www.broadinstitute.org/annotation/genome/neurospora/MultiDownloads.html
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2.2. Genomic Features  

Based on our previous research, we considered three main types of features: (A) those intrinsic  

to a gene’s sequence (e.g., GC content, length); (B) those derived from genomic sequence  

(e.g., localization signals and codon adaptation measures); and (C) experimental functional genomics 

data (e.g., gene-expression microarray data) (Table 1). The detailed descriptions of these features and 

their biological implications can be found in the supplemental materials as well as in Deng et al. [24]. 

For example, domain enrichment score (DES) reflects the conservation of local domains rather than 

the entire gene, which is calculated by the ratio of the domain’s occurrence frequencies in essential 

genes vs. in total genes in a given organism. In another example, phylogenetic score (PHYS) measures 

the evolutionary conservation of a gene, which is calculated by counting the number of genomes that 

have orthologous hits. Such conservation has been shown to correlate well with the indispensability of 

a gene. These diverse types of features suggest that gene essentiality is likely determined not solely by 

the genomic sequence, but by multiple aspects of biology coinciding.  

Table 1. Thirty-five considered features. 

Feature Description Class * Data type Available ** 

Aromo Aromaticity score A Real EC/AB/SC/NC 

A3s Base composition A A Real EC/AB/SC/NC 

C3s Base composition C A Real EC/AB/SC/NC 

G3s Base composition G A Real EC/AB/SC/NC 

T3s Base composition T A Real EC/AB/SC/NC 

CAI Codon adaptation index A Real EC/AB/SC/NC 

CBI Codon bias index A Real EC/AB/SC/NC 

Fop Frequency of optimal codons A Real EC/AB/SC/NC 

Nc Effective number of codons A Real EC/AB/SC/NC 

L_sym Frequency of synonymous codons A Integer EC/AB/SC/NC 

L_aa Length amino acids A Integer EC/AB/SC/NC 

GC GC content A Real EC/AB/SC/NC 

GC3s GC content 3rd position of synonymous codons A Real EC/AB/SC/NC 

Gravy Hydrophobicity score A Real EC/AB/SC/NC 

Cytoplasm Subcellular localization: cytoplasm B Boolean EC/AB/SC/NC 

Extracellular Subcellular localization: Extracellular B Boolean EC/AB/SC/NC 

Inner Subcellular localization: Inner membrane B Boolean EC/AB 

Outer Subcellular localization: Outer membrane B Boolean EC/AB 

Periplasm Subcellular localization: Periplasm B Boolean EC/AB 

Golgi Subcellular localization: Golgi B Boolean SC/NC 

Nucleus Subcellular localization: Nucleus B Boolean SC/NC 

Mito Subcellular localization: Mitochondrion B Boolean SC/NC 

Plasma Subcellular localization: Plasma membrane B Boolean SC/NC 

Vacuole Subcellular localization: Vacuole B Boolean SC/NC 

Peroxisome Subcellular localization: Peroxisome B Boolean SC/NC 

ER Subcellular localization: Endoplasmic reticulum B Boolean SC/NC 
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Table 1. Cont. 

Feature Description Class * Data type Available ** 

ExpAA Expect number of Amino acids in helices B Real EC/AB/SC/NC 

First60 Expect number of AAs in helices in first 60 AAs B Real EC/AB/SC/NC 

PredHel Number of predicted TM helices B Integer EC/AB/SC/NC 

PHYS Phylogenetic score B Real EC/AB/SC/NC 

PA Paralogy  B Boolean EC/AB/SC/NC 

DES Domain enrichment score B Real EC/AB/SC/NC 

FLU Fluctuation C Real EC/SC/NC 

CEH Coexpression network hubs C Boolean EC/SC/NC 

CEB Coexpression network bottlenecks C Boolean EC/SC/NC 

*—Class A: Sequence-based intrinsic features; Class B: Sequence-derived intrinsic features; Class C: 

Context-dependent features; **—Features used in the training and testing in each organism are in bold. 

We evaluated these features based on their predictive power following a procedure described in 

Deng et al. [24]. To briefly summarize, we performed a logistic regression analysis and ranked all 

features according to the cover length of log-odds ratio. A longer overall coverage length indicates 

greater contribution of the corresponding feature to the gene essentiality. Because we were more 

interested in predicting essential genes rather than non-essential genes, the features with a positive 

coverage length were our candidate features. We also considered prior biological information to 

remove feature redundancy.  

2.3. Training and Testing Sets Preparation 

The training data included the attribute values for each feature and the class assignments. Each gene 

was assigned a Boolean value regarding its essentiality (1—essential; 0—non-essential). The training 

data were divided into 10 equal parts. Nine parts were used to train the classifiers and the remaining 

part was used for testing. The control training set was generated by randomly assigning essential labels 

to all genes. The same number of random “essential genes” as the number of true essential genes was 

used in the training and testing frame. 

2.3.1. Same-Organism Approach  

For each of the four organisms (i.e., EC, AB, SC and NC), we withheld different fractions of known 

essential genes to simulate the situation that only partial true essential genes were known. These 

known essential genes were selected through random sampling and comprised of our “gold standard” 

positive set. Because there are more non-essential genes than essential genes (10:1 in prokaryotes and 

5:1 in eukaryotes), we constructed our training datasets with the same essential vs. non-essential ratio 

to resemble the situation in nature. That is, for a “gold standard” positive set of size N, we randomly 

selected xN (x = 10 for prokaryotes, and 5 for eukaryotes) genes from the non-essential genes as the 

“gold standard” negative set. We then solved the problem of imbalanced training set through data  

re-sampling, where we extracted a smaller set of non-essential genes while preserving all the essential 

instances. This method modifies the prior probability of the non-essential and essential classes to 

obtain a more balanced training set. Similar approaches have been used in other studies [30,31]. We 
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trained our model using this training set. Each time we repeated the random process 200 times to 

obtain a reliable result.  

2.3.2. Cross-Organism Approach 

As described in Deng et al. [24], when predicting essential genes in each of the four organisms, the 

training set is the complete gene set of its paired organism. For example, when we predict essential 

genes in EC, the training set is the complete gene set in AB, where the complete AB essential genes 

compose the “gold standard” positive set and the remaining AB non-essential genes consist of the 

“gold standard” negative set. 

2.3.3. The Combined Approach 

For each of the four organisms, the training set was constructed as the combination of the training 

sets in the same-organism approach and cross-organism approach. Meanwhile, we assigned different 

weights to each model organism based on the evolutionary distance to the target organism. For example, 

when we predicted essential genes in EC, the “gold standard” positive set consisted of a randomly 

selected fraction of essential genes in EC together with the complete set of essential genes in AB, 

where genes from EC were assigned weights w (w > 1), and those from AB were assigned a weight  

of 1. Similarly, the “gold standard” negative set consisted of the same fraction of randomly selected  

non-essential genes from EC together with the complete set of non-essential genes in AB, with weights 

w and 1 respectively. 

2.4. Classifier Design  

We used a logistic regression classifier to train and test the model. All classifiers were implemented 

using the Orange software package (http://www.ailab.si/orange/). To train and test our classifier, 

features were first extracted where available for each ORF and annotated with known essentiality values, 

thereby creating our “gold standard” data set. Then the “gold standard” dataset was divided into 10 equal 

parts. Nine parts were used to train the classifiers and the remaining part was used for testing. 

Then we applied the model to the target organism, and predicted the probability of essentiality for 

each gene in that organism. Based on the true gene labels and the predicted probability, we were able 

to calculate the AUC (Area Under Curve) of the Receiving Operation Curve (ROC) and the Sensitivity 

(number of correctly predicted essential genes/total essential genes) of the prediction. AUC and 

Sensitivity were then used to evaluate the performance of the model. 

3. Results and Discussion 

3.1. Optimal Strategy for Predicting Essential Genes in EC 

EC is a gram-negative bacterium commonly found in the lower intestine of warm-blooded organisms. 

It is one of the most well-studied prokaryotic model organisms and has the best-characterized  

essential genes.  
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We compared three approaches using our previously developed integrative algorithm (Table 2):  

(1) the same-organism approach, where we learned traits among the partially known essential genes in 

EC and predicted the rest of the essential genes; (2) the cross-organism approach, in which we learned 

traits among the known essential genes in AB, a closely-related model organism, and tried to predict 

the essential genes in EC; and (3) the combined approach, in which we learned traits among the known 

essential genes in AB as well as the partially known essential genes in EC and tried to predict the rest 

of the essential genes in EC. Because in our previous research we have shown that our cross-organism 

approach outperforms homology mapping [24], we did not compare homology mapping in this study. 

Table 2. Summary of the three approaches (see Experimental Section for details). 

Approach Description 
“Gold Standard” Set 

Prediction Set 
Training Set Testing Set 

Same-organism 

approach 

Learning from the 

limited number of 

known essential 

genes in the target 

organism 

9/10 of the “gold 

standard” set of the 

target organism 

1/10 of the “gold 

standard” set of 

the target 

organism 

The entire set of 

genes except the 

“gold standard” in 

the target organism  

Cross-organism 

approach 

Learning from 

essential genes from a 

closely-related model 

organism 

9/10 of the “gold 

standard” set in the 

related model organism  

1/10 of the “gold 

standard” set in 

the related model 

organism 

The entire set of 

genes except the 

“gold standard” in 

the target organism 

Combined 

approach 

Learning from known 

essential genes in the 

target organism as 

well as a closely-

related model 

organism with higher 

weights to the former 

9/10 of the “gold 

standard” combined set. 

The weights assigned to 

the genes in the target 

and model organism is 

w:1 

1/10 of the “gold 

standard” 

combined set 

The entire set of 

genes except the 

“gold standard” in 

the target organism 

3.1.1. Same-Organism Approach: Learning Traits from the Partially Known Essential Genes in EC 

Among the total characteristic features that we considered, we have identified 13 that are potentially 

associated with gene essentiality in EC with relatively weak correlations among themselves (Table 1). 

Among these 13 features, we previously identified the domain enrichment score (DES) as the  

strongest [24], suggesting that gene essentiality is likely preserved through the function of protein 

domains or domain combinations rather than through the conservation of the entire genes. To show its 

efficiency, in our model construction process, we separated this dominant feature from the remaining 

12 features. First, we used 12 features excluding DES to build the “no-DES” model. Next, we 

compiled the DES feature with the other features to form the “with-DES” model.  

We first built the “no-DES” model in EC (see Experimental Section). The 12 selected features were 

used as input variables in the logistic regression classifier. The classifier generated a probability score 

of essentiality for each gene of the entire target organism (both “gold standard” set and prediction set 

(Table 2)). Combining this probability score and the true essentiality information of each gene, we 

generated the ROC curve. The ROC was then evaluated by the AUC score. We gradually increased the 
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size of known essential genes in our model. The result showed that the AUC score increased from 0.84 

to 0.88 before the size of known essential genes reached 2% of the total genes in the genome. At this 

point, the model had already performed very closely to its optimal, achieving over 95% of its  

best performance. Beyond this point, the AUC score increased slowly from 0.88 to 0.89 even with a 

substantial increase of known essential genes (Figure 1a, red curve).  

Figure 1. Comparison of three approaches in EC. (a) The distribution of AUC along with 

the different sizes of known essential genes in EC: red curve: same-organism approach 

“with no-DES”; black curve: same-organism approach “with DES”; blue curve: combined 

approach; green curve: the DES feature only dashed line: cross-organism approach. The 

bar chart of the correctly classified essential genes among the top 400 predictions with 

respect to the different sizes of known essential genes in EC using (b) “no-DES” model;  

(c) “with-DES” model; and (d) combined model. The black bar shows the correctly 

classified essential genes in the “gold standard” set. 
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Besides the AUC score, we were also interested in the number of genes we successfully classified. 

Using 10% as a cutoff, the top 400 genes with the largest probability scores were predicted as essential 

genes. Those 400 genes came from two parts, the “gold standard” set (Figure 1b, black bar) and the 

prediction set (Figure 1b, white bar). Figure 1b showed that the performance was nearly stable if the 

known essential genes took up more than 2% of the total genes in EC.  
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Next, we compiled the DES feature with the other 12 features and built model by the same process 

used for the “no-DES” set. Compared with the “no-DES” model, the results were significantly 

improved (Figure 1a, black curves and Figure 1c). We can see that the AUC reached 0.94 if we knew 

about 2% of total genes to be essential. Figure 1c also suggested that the performance of the 

classification is stable if more than 2% of the total genes are known to be essential. They both decrease 

quickly as less essential information is given. We also applied our model only using the DES feature and 

compared the predictions with both the “no-DES” and “with-DES” sets (Figure 1a). The comparison 

showed that the DES alone is not enough to make optimal predictions, suggesting that including more 

features is necessary to achieve the optimal prediction performance.  

3.1.2. Cross-Organism Approach: Transferring Essential Gene Annotations from AB 

AB is a gram-negative bacterium commonly found in aquatic and soil environments. It belongs to 

the same class of gram-negative proteobacteria as EC. A set of 499 AB essential genes has been 

identified by targeted mutagenesis. We were able to use AB essential genes set to predict essential 

genes in EC [24], and the direct prediction yielded an ROC with the AUC score of 0.92. In Figure 1a, 

the dashed line shows the AUC of the prediction from AB, and the black curve dominates it when 1.5% 

of the total genes are known to be essential. This suggested that knowing 1.5% or more genes of the 

total genes to be essential in EC is sufficient to achieve a prediction better than transferring annotations 

from AB. 

3.1.3. Combined Approach: Combining Both AB and Partially Known Essential Information in EC 

Based on the above results, we had a new question: If we combine both AB and the fraction of 

known genes with essential information in EC as the new “gold standard” set and try to predict the rest 

of the essential genes in EC, could the result be significantly improved? To answer this question, we 

randomly chose a fraction of genes (we gradually increased the number of known genes from 10% to 

90%) from EC and combined them with AB dataset (see Experimental Section). In the model training 

process, we assigned different weights to the two gene sets to obtain a more reliable result. Here, the 

partially known genes with essential information from EC have been set to have 4:1 weights vs. the AB 

genes. We trained the model on this combined “gold standard” set. Each time we also repeated the 

random process 200 times to estimate the variance. The results (Figure 1a, blue curve) showed that the 

combined approach outperformed the same-organism approach at the beginning. However, the black 

curve quickly outperformed the blue curve as the known essential genes in EC increased. The correctly 

predicted genes in Figure 1d also supported this result. 

3.2. Optimal Strategy for Predicting Essential Genes in AB 

In AB, we identified 11 features that are potentially associated with gene essentiality and have 

relatively weak correlations among themselves [24] (Table 1). We followed the same analysis procedure 

as in EC. In the same-organism approach, we first used 10 features excluding DES as the input of the 

classifier to build the “no-DES” model, and then including DES to build the “with-DES” model. The 

model generated a probability score of gene essentiality for each gene of the entire target organism. 
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Combining this probability score and the true essentiality information of each gene, we were able to 

evaluate the performance. In Figure 2a, the red and black curves showed the distribution of the AUC 

scores of the results output from the “no-DES” and “with-DES” models respectively. Both curves 

increase rapidly before 2% (66/3308) of total genes are known to be essential, achieving more than 

95% of the best performance. Compared with “no-DES” results, the results of “with-DES” were 

significantly improved. Also, the dashed line in Figure 2a shows the AUC of the cross-organism 

approach using EC essential genes, suggesting that knowing 2% of total genes to be essential is 

“sufficient” to lead to a prediction better than transfer from EC. Figure 2b and c show the bar charts of 

the correctly classified essential genes using the “no-DES” and “with-DES” models respectively. For 

AB, we adopted a similar percentage as the cutoff to predict essential genes as in EC, and the top 400 

genes with the largest probability scores were predicted as essential genes. In both Figures 2b and 2c, the 

performance is nearly stable if the known essential genes take up more than 2% of the total genes in 

AB. In the combined approach, we combined both the EC essential genes with increasing numbers of 

known AB essential genes by assigning different weights. The blue curve (Figure 2a) shows the 

combined approach outperforming the same-organism approach only at the beginning. Compared with 

Figure 1, the difference between the combined approach and the same-organism approach in AB was 

less significant than in EC. The green curve in Figure 2a shows the performance of DES feature only. 

This suggests that the integration of different features is able to make more accurate predictions than 

using DES alone.  

Figure 2. Comparison of three approaches in AB. (a) The distribution of AUC along with the 

different sizes of known essential genes in AB: red curve: same-organism approach “with  

no-DES”; black curve: same-organism approach “with DES”; blue curve: combined 

approach; dashed line: cross-organism approach. The bar chart of the correctly classified 

essential genes among the top 400 predictions with respect to the different sizes of known 

essential genes in AB using (b) “no-DES” model; (c) “with-DES” model; and (d) combined 

model. The black bar shows the correctly classified essential genes in the “gold standard” set. 
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Figure 2. Cont. 
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3.3. Optimal Strategy for Predicting Essential Genes in SC 

Our results suggested that essential genes are highly predictable by learning the characteristics 

underlying gene essentiality in prokaryotes. To test whether the same trend can also be observed in 

eukaryotic species, we chose SC and NC as our test candidate species.  

SC is an important eukaryotic model organism in cell biology and is one of the most thoroughly 

studied eukaryotic microorganisms. There are 1049 essential genes identified by the systematic deletion 

project [26]. Using the same-organism approach in SC, we identified 14 features potentially associated 

with gene essentiality (Table 1). Domain enrichment score (DES) was found to be a strong feature in 

predicting essential genes in eukaryotes as well. This suggests that, much as in prokaryotes, gene 

essentiality in eukaryotes is likely preserved through the function of protein domains or domain 

combinations rather than through the conservation of entire genes. First, we used 13 features excluding 

DES as the input of the classifier. After the 10-fold cross-validation, each gene of the target organism 

received a probability score of essentiality. Combining this probability score and the true essentiality 

information of each gene, we were able to evaluate the performance. Figure 3a (red curve) showed the 

AUC curve of the “no-DES” results. It gradually increases along with the increase of the known 

essential genes and reaches stable at around 4% point on the x-axis, achieving 95% of the best 

performance. Besides the AUC curve, we also plotted the bar chart of correctly predicted essential 

genes (Figure 3b). Since essential genes comprise of about 20% of a eukaryotic genome, we used 1200 

as the cutoff, i.e., the 1200 genes with the highest essential scores were predicted as SC essential 

genes. The performance increased as we increased the size of the training dataset, and the saturation 

point was at 4%. Figure 3a (green curve) shows that, similar to in prokaryotes, DES is a strong feature 

to the prediction of gene essentiality and incorporating it with other functional and genomics features 

is able to achieve an optimal performance.  
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Figure 3. Comparison of three approaches in SC. (a) The distribution of AUC along with the 

different sizes of known essential genes in SC: red curve: same-organism approach “with  

no-DES”; black curve: same-organism approach “with DES”; blue curve: combined 

approach; dashed line: cross-organism approach. The bar chart of the correctly classified 

essential genes among the top 1200 predictions with respect to the different sizes of known 

essential genes in SC using (b) “no-DES” model; (c) “with-DES” model; and (d) combined 

model. The black bar shows the correctly classified essential genes in the “gold standard” set. 
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Next, we added the DES feature into the model. Figure 3a (black curve) and Figure 3c show a 

similar trend, except the values are significantly higher than those of the “no-DES” results. This 

further supports the notion that the DES feature has strong power in predicting essential genes in 

eukaryotic species. Moreover, we note that the saturation occurred at 4% point in both figures. Thus, 

knowing 4% or more of the total genes is essential to building a reliable prediction.  

In the combined approach, we used both NC and the partially known essential genes in SC as the 

new training set. Would the result be significantly improved again? We followed the same scheme  

as described above. The results were consistent: As shown in Figure 3a, the performance of the same-

organism approach (black curve) dominates the performance of the combined approach (blue curve) 
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from about 1.5% on the x-axis. Although the saturation point of the prediction is different, the 

dominating points are almost the same as those in EC and AB.  

3.4. Optimal Strategy for Predicting Essential Genes in NC 

NC is an ascomycete, the red bread mold. Like all fungi, it reproduces by spores. It is used as a 

eukaryotic model organism because it is easy to grow and has a haploid life cycle which makes genetic 

analysis easier. There are 1250 essential genes in NC produced by the systematic gene deletion project. 

We identified 14 features potentially associated with gene essentiality in NC (Table 1). Following the 

same procedure as above, we analyzed the “no-DES” and “with-DES” dataset of the same-organism 

approach separately. We assigned the top 1500 genes as the predicted essential genes. Figure 4a shows 

that when given about 4% of total genes to be essential, the prediction achieves stable AUC with over 

95% best performance. Compared with the red curve, the black curve is significantly improved. The blue 

curve also showed the performance of the combined approach using SC and partial NC known 

essential genes. The conclusion is similar to that in SC: The same-organism approach in NC (black 

curve) dominates the combined approach (blue curve) after at least 1.5% of the total genes are known 

to be essential. 

Figure 4. Comparison of three approaches in NC. (a) The distribution of AUC along with 

the different sizes of known essential genes in NC: red curve: same-organism approach  

“with no-DES”; black curve: same-organism approach “with DES”; blue curve: combined 

approach; dashed line: cross-organism approach. The bar chart of the correctly classified 

essential genes among the top 1500 predictions with respect to the different sizes of known 

essential genes in NC using (b) “no-DES” model; (c) “with-DES” model; and (d) combined 

model. The black bar shows the correctly classified essential genes in the “gold standard” set. 
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Figure 4. Cont. 
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3.5. Discussion 

Our results suggest that, in prokaryotes, when the number of known essential genes is greater than 

2% of total genes, it will achieve over 95% of the best performance, recovering >68% of total essential 

genes at the given cutoff. For example, for an understudied organism with 3000 genes, we need to 

know ~60 essential genes in order to accurately predict the majority of its ~300 essential genes. In 

contrast, in eukaryotes, achieving the same level of performance requires more than 4% of total genes, 

reflecting the increased complexity of eukaryotic organisms. The complexity comes from different 

aspects. One possibility is that eukaryotes have more complex genome structures than prokaryotes, such 

as the expanded protein domain repertoire. In fact, EC and AB contain 5468 and 4204 unique domains, 

respectively, while SC and NC contain 6023 and 7031 unique domains, respectively, according to the 

Interpro database. In addition, higher organisms have larger and more complex cellular structure as well 

as perform more diversified functions, which also require them to have more essential genes.  

We found that the required number of known essential genes was surprisingly small for both 

prokaryotes and eukaryotes, suggesting that the distribution of genomic features extracted from  

this small subset already provided a close approximation to the distribution of those extracted from  

the entire essential gene set. This showed the advantage of predicting essential genes using  

machine-learning approaches.  

We also noticed that as the model reaches saturation, there are still parts of essential genes  

(i.e., 32% in prokaryotes) that cannot be correctly predicted as essential. We further explored these 

incorrectly predicted essential genes by plotting the distributions of their associated features. Here we 

defined the essential genes that were correctly predicted as true positives (TPs) and those that were 

incorrectly predicted as false negatives (FNs). Figure 5 shows the boxplot of the two parts of genes in 

AB. The features for which the distributions between the two sets of genes differed most widely are 

DES and PHYS, followed by CAI, Nc and Aromo, all of which were derived from genomic sequences. 

This suggests that in order to correctly predict the FNs, relying on features based on genomic sequences 

is no longer enough. Other strong functional genomics features have to be discovered and incorporated 

into predictions. This observation also supports the notion that gene essentiality is likely determined 

not solely by genomic sequence, but by multiple aspects of biology, from sequence to function.  
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Figure 5. The distribution of features among true positives (TPs) and false negatives (FNs) in AB. 
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We then performed functional analysis of the FN genes by categorizing them according to the 

clusters of orthologous groups (COGs) proteins classification. In COGs, genes can be generally 

classified into four broad functional categories: information storage & processing, cellular processes & 

signaling, metabolism and poorly characterized. Previous work has shown that essential genes are 

overrepresented in the category of information storage and processing with basic cellular functions 

such as RNA processing and modification and DNA replication [32]. Essential genes involved in this 

category are often well conserved across species. On the other hand, the species-specific essential 

genes are mainly distributed in cellular processes and metabolic categories, which often reflects a 

microbe’s unique life style and living environment. Figures S1a and S1b) show the distributions of FN 

genes across different functional categories in EC and SC respectively. We can see in EC the FN genes 

are enriched in the metabolic category while in SC these FN genes are enriched in cellular processes 

and signaling category. 

Comparing different sets of features used between the prokaryotes (EC, AB) and eukaryotes (SC, NC) 

in Table 1, the common features they shared are: Nc, L_aa, PHYS, PA, DES and FLU. These features 

cover all three categories described in Section 2.2. This supports our conclusion that the computational 

integration of different genomic and functional features is able to accurately predict essential genes in 

both prokaryotes and eukaryotes. However, there are some differences of features used between them, 

such as those sub-cellular localization features. For example, Nucleus, Plasma and PredHel are used 

only by SC and NC while Inner member is used only by EC and AB. These reflect the differences in 
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cellular structure between prokaryotes and eukaryotes—the eukaryotic cells are much larger and more 

complex than prokaryotic cells. 

Through our analysis, we realize that the evolutionary distance between the understudied organism 

and the model organism may affect the thresholds observed in our study. Nevertheless, our results 

suggest that an organism’s own known essential genes usually contain more information about its 

unique physiology and are a better representative set of its total essential genes. 

Logistic regression was chosen in this study mainly because of its simplicity and ease of interpretation 

of results. Other machine-learning methods could have been used. However, most alternative techniques 

suffer from their own limitations, e.g., missing value problems or being prohibitively time-consuming, 

which prevent them from being used in this study. Nevertheless, we expect our conclusions from this 

investigation are unlikely to change if a different machine-learning technique is used. Since the four 

species we studied are all microorganisms, the conclusions from this study may not be applicable to 

more complex systems, such as mouse and human. Finally we believe the results obtained from our 

study provided important information on accurately predicting essential genes and will greatly 

facilitate the annotations of microbial genomes.  

4. Conclusion 

In this study, we investigated the performance of three approaches for predicting essential genes 

under conditions where information on different numbers of known essential genes is given. Our 

results suggest that when determining the best strategy for predicting essential genes, unless the 

number of known essential genes is small, i.e., less than 1.5% of total genes, learning from the known 

essential genes in the target organism usually outperforms transferring essential gene annotations from 

a related model organism. This is consistent in both prokaryotes and eukaryotes. Moreover, when the 

known essential genes are few (i.e., <1.5% of total genes), and a closely related organism is available, 

combining these two sources of information results in a significantly increased performance over 

either the same-organism approach or the cross-organism approach. On the other hand, when the target 

organism has a sufficiently large number of known essential genes, combining the annotations from a 

model organism often results in a reduced performance as compared with using its own known 

essential genes, reflecting the slight differences of the underlying properties of essential genes between 

different organisms. 
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Supplementary Section 

Intrinsic and Context-Dependent Genomic Features  

To create a training dataset for our classifier, features are extracted where available for each ORF in 

each organism and annotated with known essentiality values from the essential gene datasets. Our 

study considers three main types of features: (A) those intrinsic to a gene’s sequence (e.g., GC content, 

length); (B) those derived from genomic sequence (e.g., localization signals and codon adaptation 

measures) and (C) experimental functional genomics data (e.g., gene-expression microarray data). 

A-1. Genomic sequence properties: We use CodonW (http://bioweb.pasteur.fr/seqanal/interfaces/ 

codonw.html) to calculate the following properties associated with genomic sequences: Kyte and 

Doolittle’s grand average of hydropathicity (GRAVY) [1], protein length (amino acids), GC content, 

and two measures of codon usage: effective Nc [2,3] and CAI [4].  

B-1. Predicted subcellular localization: We used the PA-SUB Server v2.5 to obtain these features [5]. 

Gram-negative bacteria (EC, PA and AB) have five predicted localizations: Inner membrane, 

Extracellular, Cytoplasm, Periplasm, Outer membrane. Gram-positive bacteria (BS) have three predicted 

localizations: Extracellular, Cytoplasm, Plasma membrane.  

B-2. Transmembrane helices for each ORF: The putative transmembrane helices are calculated by 

TMHMM Web server v2.0 [6,7]. 

B-3. Evolutionary conservation of a gene: We used the RBH method to search orthologs in multiple 

complete genomes for each gene of the target organism (PA, EC, AB and BS). The number of genomes 

that have orthologous hits was used as a measure of evolutionary conservation of a gene. Such 

conservation has been shown to correlate well with the dispensability of a gene [8].  

B-4. Paralogy: Duplicated genes in an organism are often referred to as paralogs. An all-against-all 

FASTA search was conducted for the whole set of ORFs in the target organism (PA, EC, AB and BS) 

to identify the paralogs with an E-value threshold of 10
−20

. 

B-5 Domain enrichment: For each individual domain, we collected its occurrence in each organism 

(PA, EC, AB and BS) using the Pfam database (http://pfam.sanger.ac.uk). Then we estimated the 

domain enrichment score according to the ratio of occurrence frequencies between essential gene sets 

and the total genes in the target organism:
/

/ /

ess ess

ess ess non ess non ess

n N
DES

n N n N 




, here ness and nnon-ess 

represent a domain’s occurrence frequency in the essential and non-essential dataset, respectively. Ness 

and Nnon-ess is the size of the essential and non-essential dataset, respectively. 

C-1. Fluctuation in gene-expression: The mRNA expression levels of essential genes often vary, on 

average, within a narrower range, whereas the expression of nonessential genes fluctuates more widely [9]. 

Gene expression data in these bacteria were downloaded from NCBI GEO [10], ArrayExpress [11], as 

well as the gene-expression profiles of microarray data from Gasch et al. [12]. The variance of each gene 

was calculated from these gene expression profiles as a measure of the fluctuation of gene expression. 
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C-2. Topology in gene co-expression network: From gene expression microarray data, a gene-expression 

cooperativity graph is constructed as    ggg EVDG , , with the vertex set  DddV iig  |  and the 

edge set  DddddE jijig  ,|),(  for ji  and || ijr ≥ 0.7. Each vertex represents a gene and each 

edge represents a gene pair whose gene expression profiles correlation coefficient || ijr  is greater than 

0.7. This cutoff value of || ijr is determined based on our previous work [13]. The hubs (nodes with 

high degrees) and bottlenecks (nodes with high betweenness or shortest paths occurrence) have been 

found to have correlations with gene essentiality [14]. The network statistics are calculated using 

tYNA (http://www.gersteinlab.org/tyna). 

Figure S1. Functional distribution of false negative genes according to the orthologous 

groups of proteins (COGs) classification in EC (a) and SC (b) respectively.  
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