
Citation: Meyer, M.; Schwärzler, J.;

Jukic, A.; Tilg, H. Innate Immunity

and MASLD. Biomolecules 2024, 14,

476. https://doi.org/10.3390/

biom14040476

Academic Editor: Jorge Joven

Received: 20 March 2024

Revised: 8 April 2024

Accepted: 11 April 2024

Published: 13 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Innate Immunity and MASLD
Moritz Meyer, Julian Schwärzler, Almina Jukic and Herbert Tilg *

Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical
University Innsbruck, 6020 Innsbruck, Austria; moritz.meyer@i-med.ac.at (M.M.); almina.jukic@i-med.ac.at (A.J.)
* Correspondence: herbert.tilg@i-med.ac.at; Tel.: +43-512-504-23539

Abstract: Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as the most
common liver disease worldwide in recent years. MASLD commonly presents as simple hepatic
steatosis, but ~25% of patients develop liver inflammation, progressive fibrosis, liver cirrhosis and
related hepatocellular carcinoma. Liver inflammation and the degree of fibrosis are key determinants
of the prognosis. The pathophysiology of liver inflammation is incompletely understood and involves
diverse factors and specifically innate and adaptive immune responses. More specifically, diverse
mediators of innate immunity such as proinflammatory cytokines, adipokines, inflammasomes
and various cell types like mononuclear cells, macrophages and natural killer cells are involved
in directing the inflammatory process in MASLD. The activation of innate immunity is driven by
various factors including excess lipids and lipotoxicity, insulin resistance and molecular patterns
derived from gut commensals. Targeting pathways of innate immunity might therefore appear as an
attractive therapeutic strategy in the future management of MASLD and possibly its complications.

Keywords: MASLD; MASH; innate immunity; cytokines; liver inflammation; hepatology; inflamma-
some; adipokines

1. Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) has recently ap-
peared as the most frequent liver disease worldwide, affecting up to a third of the global
population. This is mostly because of the rapid increase in obesity and obesity-related
disorders such as type 2 diabetes (T2D) in the past 2 decades around the globe. In many
cases, MASLD is a rather inert condition that does not lead to relevant health issues; how-
ever, in up to 20–25% of affected individuals, liver inflammation appears, i.e., metabolic
dysfunction-associated steatohepatitis (MASH), which drives further liver complications
such as advanced fibrosis, liver cirrhosis and finally the development of hepatocellular
carcinoma (HCC). What has become highly relevant in the past two decades, however, is
the fact that MASLD is strongly associated with substantial extrahepatic disorders such as
cardiovascular disease (CVD), inflammatory disorders and an increased rate of extrahepatic
malignancies [1]. These extrahepatic complications dominate MASLD-associated mortality,
as liver disease with specific hepatic complications only ranks third after CVD and ma-
lignancy regarding mortality in MASLD populations. For these reasons, the presence of
MASLD has appeared as an important risk factor for affected populations, and therefore
MASLD reflects a key feature of human health.

As stated, the presence of simple steatosis without accompanying liver inflammation
might not cause relevant liver disease; however, as soon as inflammation evolves in an
affected liver, this changes substantially. Tissue-specific inflammation is considered as
the driving force in the evolution of organ-specific fibrosis, and it is well established that
liver fibrosis defines the prognosis of liver disease [2,3]. While inflammation might not be
involved in all cases of MASLD-associated liver fibrosis, evidence is compelling that in
most affected individuals, this seems to be the case. Various parts of innate immunity such
as several cytokines, adipokines or inflammasomes have been demonstrated in recent years
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to critically affect to development of MASH. Pro-inflammatory cytokines including various
interleukins (IL) and tumor necrosis factor (TNF) are considered prototypic mediators
behind an inflammatory liver phenotype. Besides pro-inflammatory cytokines, various
adipokines, e.g., adiponectin or leptin, which are mainly produced in adipose tissue, are also
crucially linked to obesity and its related disorders. The evolution of inflammation involves
numerous other participants, such as inflammasomes [4]. Inflammasomes are critically
linked to a proinflammatory cytokine milieu, which arises in an inflamed liver and many
diverse inflammatory pathways are activated in parallel. Inflammation-triggering factors in
this complex metabolic disease are still the subject of intensive research and it is increasingly
accepted that various diverse factors such as pathogenic lipids, insulin resistance or a
disturbed gut dysbiosis as observed in MASLD might be of disease-driving importance.

A crucial challenge in the clinical assessment of MASLD patients remains the fact that
inflammation so far can only be detected reliably via liver histology, which is not feasible
in most affected individuals.

In this article, we will focus on the role of innate immunity in MASLD, although it is
acknowledged that besides innate immunity, adaptive immunity has recently appeared
as equally important in this disorder [5,6]. Understanding the complex interplay between
the different parts of innate immunity in liver inflammation will lead to the development
of novel therapeutics in targeting this deleterious condition, affecting nearly a third of the
world’s population [7].

2. Proinflammatory Cytokines and Their Role in MASLD

More than 20 years ago, it became evident that proinflammatory cytokines contribute
substantially to the pathogenesis of MASLD [8,9]. One of the very first clinical studies in
MASLD observed the increased expression of TNF and its type 1 receptor, the expression
of which positively correlated with the degree of liver fibrosis, and suggested that proin-
flammatory cytokines affect the progression of disease [10]. Several other studies in the
subsequent years have shown that crucial proinflammatory cytokines such as IL-1α/β, IL-6
or various chemokines are highly expressed in patients with inflammation and MASLD.
Liver IL-6 expression in patients with MASH also correlated with the degree of inflamma-
tion and fibrosis [11]. High-sensitivity C-reactive protein, an acute phase protein which
is up-regulated by proinflammatory cytokines, is significantly increased in patients with
MASH, and the levels were especially pronounced in patients with advanced fibrosis [12].
The circulating levels of hs-CRP in this study were correlated with intrahepatic CRP mRNA
concentrations [12]. An important study by Gadd and colleagues investigated the portal
inflammatory infiltrate in various stages of MASLD and cytokine expression [13]. Here,
the authors convincingly demonstrated that the cellular infiltrate is composed of cells in-
volved in both innate and adaptive immunity and proinflammatory cytokines such as IL-1β
and TNF directing them, which paralleled the degree of the inflammatory infiltrate [13].
Interleukin-1 receptor antagonist (IL-1Ra) is a major antagonist of endogenous IL-1 and
reflects an important mechanism of the body in limiting chronic inflammation. Serum
IL-1Ra levels also reflect the amount of endogenous inflammation, e.g., in the liver in
the case of MASLD, and increased serum levels also mirror the degree of liver inflamma-
tion [14]. It is now well established that proinflammatory cytokines are highly expressed in
NASH/MASH and their expression affects the degree of fibrosis. Importantly inflammation
in this disorder is the driving force of the evolution of fibrosis and fibrosis is the major
prognostic factor in MASLD regarding the long-term outcomes of this liver disease [15].

Increased expression of proinflammatory cytokines might also have metabolic conse-
quences, and indeed it has been recognized in the past two decades that proinflammatory
cytokines reflect key metabolic messengers. The first proposed “metabolic cytokine” was
TNF [16]. Obesity has been shown to be associated with increased synthesis of proin-
flammatory cytokines not only in visceral and subcutaneous adipose tissue but also in
other organs such as the liver or muscles. Gokhan Hotamisligil and colleagues made the
first observation that the expression of TNF was increased in various models of obesity
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and diabetes [17]. Furthermore, they showed that this proinflammatory cytokine might
impair insulin signaling, proposing the concept that inflammatory signals impact insulin
signaling [18]. The expression of TNF increased in obese premenopausal women, corre-
lated with hyperinsulinemia and decreased after weight loss [19]. Further elegant studies
revealed that mice lacking TNF function exhibited improved insulin sensitivity and had
lower levels of circulating free fatty acids in diet-induced obesity models [20]. Several
studies in the following years demonstrated that targeting TNF by specific monoclonal
antibodies improved insulin sensitivity and improved hepatic steatosis, which is frequently
observed in obesity and obese mice [21,22]. Despite this striking evidence that TNF is a
metabolic cytokine and inflammation is considered of importance in the pathophysiol-
ogy of insulin resistance, clinical studies using TNF neutralizing strategies have so far
not convincingly shown that such an approach significantly impacts metabolic functions
including insulin resistance and hyperglycemia [23]. Importantly, placebo-controlled trials
with TNF-neutralizing monoclonal antibodies are still not available [16].

Interleukin-1 is another potent pro-inflammatory cytokine which also exhibits various
metabolic effects [24]. The IL-1 cytokine family (IL-1F) includes pro- and anti-inflammatory
members: the pro-inflammatory members including IL-1α, IL-1β, IL-18, IL-33, IL-36 and IL-
38, whereas IL-1Ra or IL-37 have anti-inflammatory action [25]. These mediators exert their
specific functions via interaction with specific IL-1 receptors (IL-1R) and IL-1Ra specifically
binds to IL-1Rs to prevent IL-1 signaling. Whereas IL-1α is active as a precursor molecule,
mature IL-1β needs to be processed by caspase-1, a member of NLR family pyrin domain
containing protein 3 (NLRP3). Both IL-1α and IL-1β are highly potent pro-inflammatory
mediators triggering the release of other pro-inflammatory cytokines and chemokines,
thereby contributing to many acute and chronic inflammatory disorders. In particular,
IL-1β has been demonstrated to play a crucial role in MASLD as it activates many diverse
liver cells, for example hepatocytes and stellate cells, and plays an important role in the key
features of MASLD, such as insulin resistance. Indeed, mice deficient in either IL-1α or IL-
1β were protected from liver inflammation in a high-fat diet (HFD) model of MASLD [26].
IL-1α−/− mice also exhibited lower glucose and insulin levels when exposed to an HFD,
whereas prolonged treatment with IL-1β worsened insulin signaling in adipocytes [27].
IL-1β knockout mice, after being exposed to an HFD, presented with less hepatic steatosis
and almost no adipose tissue inflammation [28]. Furthermore, the administration of IL-
1Ra to obese mice improved hepatic steatosis [29]. All these preclinical studies clearly
indicate a role for IL-1F members in the propagation of hepatic steatosis, adipose tissue
inflammation and regulation of metabolic pathways. We have shown that obese MASLD
patients with insulin resistance display very high levels of IL-1β in the adipose tissue
(both subcutaneous and visceral adipose tissue), with levels massively exceeding their
liver expression, and successful weight loss almost eliminated IL-1β expression in the
subcutaneous adipose tissue [30]. Importantly, weight loss also increased the levels of
anti-inflammatory IL-1F members such as IL-1Ra and IL-37 in this study. IL-1Ra levels
were increased in obese patients with insulin resistance and in patients with MASLD, likely
reflecting an inefficient effort of the innate immune system to limit inflammation [14,31].
Interleukin-37 exerts anti-inflammatory and protective functions [32] in many disease
models, as IL-37 transgenic mice are protected against obesity-induced inflammation and
insulin resistance [33]. Importantly, IL-37 not only suppresses liver inflammation but
also decreases liver fibrosis in preclinical experimental models [34]. In summary, IL-1F-
member cytokines are crucial players in metabolic inflammation, MASLD and related
complications, and targeting these mediators could play a role in clinical management of
these patients [35].

3. Adipokines: Adipose Tissue-Derived Mediators Contributing to MASLD

Adipokines, especially adiponectin, leptin and many others, are released by healthy
and disturbed adipose tissue and have appeared as crucial mediators affecting
immunometabolism [36,37]. Although initially believed to be a rather inert organ, the
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understanding of the adipose tissue has evolved in the past 20 years, and it is now viewed
as an endocrinologically and immunologically highly active organ, producing many differ-
ent mediators collectively termed adipokines. “Adipokine” indicates that such mediators
are mainly but not exclusively a product of the adipose tissue, and interestingly adipocytes
are also able to synthesize and release many classical immune mediators, i.e., cytokines.
Adiponectin has evolved as one of the major products of the adipose tissue, and this section
will focus on this pleotropic adipokine. The history of adiponectin began almost 30 years
ago when the group of Philipp Scherer identified a 30 kDa protein named adipocyte
complement-related protein (Arcp30) via a subtractive cloning approach from 3T3-L1
adipocytes [38]. In 1996, other groups identified the same protein being dysregulated
in obesity [39–41], and Arita and colleagues proposed the name adiponectin [42]. In the
meantime, the literature on this major product of adipocytes exploded (January 2024:
25,485 PubMed articles). Early-adiponectin-knockout mouse studies revealed a pheno-
type of impaired insulin sensitivity after exposure to an HFD [43,44], and importantly, it
was found that the injection of adiponectin into mice improved insulin sensitivity and
dyslipidemia [45]. Adiponectin acts via two receptors (AdipoR1 and AdipoR2), thereby
eliciting AMP kinase signaling [46]. Indeed, targeted disruption of these receptors also
caused insulin resistance and glucose intolerance [47], and a specific agonist (AdipoRon)
improved metabolic dysfunction [48].

The success of clinical adiponectin research started with the landmark publication by
Arita and colleagues, where they first described that healthy volunteers demonstrate much
higher serum concentrations compared to obese subjects, establishing the “adiponectin
deficiency” in obesity [42]. Numerous studies followed in many clinical entities, and these
clearly showed that low levels of adiponectin can be observed in metabolic dysfunction,
including type 2 diabetes [49,50], while certain diseases such as liver cirrhosis, irrespective
of etiology, exhibit increased serum levels [51]. In the following years, a plethora of studies
indicated that adiponectin exerts anti-inflammatory, anti-apoptotic and anti-fibrotic actions
and increases insulin sensitivity. The anti-inflammatory capability of adiponectin correlates
with its potential to suppress the synthesis of proinflammatory cytokines and to induce
anti-inflammatory cytokines such as IL-10, as we and others have demonstrated [52].

Based on the importance of this adipokine in obesity and obesity-related disorders,
many investigators have studied the role of adiponectin in MASLD. Importantly, patients
with MASLD not only exhibited reduced serum levels of adiponectin, especially in the
case of obesity, but also displayed a lower expression of adiponectin in their livers [53]. In
this study, adiponectin protein expression was mainly found in the endothelial cells and
decreased AdipoR2 expression correlated with the grade of liver fibrosis [53]. Importantly,
massive weight loss, as achieved by means of bariatric surgery, resulted in a significant
increase in hepatic and adipose tissue adiponectin mRNA and protein expression [54],
which was paralleled by a decrease in hepatic leptin and visfatin expression, thereby
generating a more anti-inflammatory adipokine milieu in the body. A large meta-analysis
including 28 studies covering MASLD patients demonstrated that patients with MASH
exhibited the lowest adiponectin serum levels [55]. Interestingly, even lean MASLD patients
show decreased adiponectin levels, a finding which is still not understood and probably
reflects a complex interplay between the adipose tissue and the liver [56]. Important for the
effects of adiponectin on liver function is the fact that adiponectin can direct Kupffer cells
and macrophages towards an anti-inflammatory phenotype. This indicates that adiponectin
has detrimental effects on sustaining a healthy liver environment [57]. Adiponectin, as with
many other adipokines, can nowadays be considered as part of innate immunity, and these
mediators link obesity with related disorders and the immune system. Adiponectin, as a
prototypic anti-inflammatory adipokine, can therefore be defined as an important player
not only in obesity but also in MASLD and related complications. A thorough discussion
of the other adipokines involved in MASLD is beyond the scope of this article.
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4. Inflammasomes: Key Factors in MASLD

Inflammasomes are prototypic participants in innate immunity and reflect cytosolic
multiprotein oligomers, playing a key role in the activation of proinflammatory cytokines
such as IL-1β or IL-18. The assembly of inflammasomes allows proteolytic cleavage, matu-
ration, and the secretion of these pro-inflammatory cytokines. The NLRP3 inflammasome,
the so far most studied inflammasome involved in metabolic disorders, consists of a protein-
nucleotide-binding domain and a leucine-rich repeat NLR family pyrin domain containing
3 protein (NLRP3) or cryopyrin, an apoptosis speck-like protein containing CARD, and
the pro-caspase protease caspase-1 [58]. The initial step in an inflammatory reaction is the
up-regulation of pro-IL-1β messenger RNA/protein expression. Assembly of the inflam-
masome complex results in the cleavage of pro-caspase-1 into its active form, caspase-1,
which cleaves the pro-IL-1β into its mature and secreted form, IL-1β [59,60]. Inflammasome
activation and assembly is directed by various cytosolic pattern recognition receptors (PRR)
that respond to either microbe-derived pathogen-associated molecular patterns (PAMPs)
or damage-associated molecular patterns (DAMPs).

Especially the NLRP3 inflammasome has been well studied in metabolic inflammation
and MASLD. Activity of caspase-1 and IL-1β increase in the adipose tissue after exposure
to an HFD or in genetically obese mice [61]. In this study, caspase-1-deficient mice exhibited
increased insulin sensitivity. As stated, IL-18 also needs to be processed by caspase-1 to gen-
erate mature IL-18 from pro-IL-18. This proinflammatory cytokine is also up-regulated in
obese mice and in human obesity [62]. The importance of NLRP3 in obesity and metabolic
inflammation has been further demonstrated in a preclinical study where the ablation of
NLRP3 improved obesity-related inflammation and metabolic functions [63]. This interven-
tion also resulted in a decrease in IL-18 expression. NLRP3 expression is of importance in
preclinical models of MASLD, as a loss of function improves liver inflammation and a gain
of function worsens liver disease and associated liver fibrosis [64]. NLRP3 inflammasome
activation in myeloid cells plays a role in the progression of murine MASLD by driving a
fibrotic phenotype induced by a Western-type diet [65]. The NLRP3 inflammasome seems
to be of particular relevance in causing liver fibrosis in metabolic liver disease [66]. NLRP3
activation up-regulates fibrotic markers in hepatic stellate cells and Nlrp3 knock-in mice
demonstrate increased liver fibrosis and enhanced collagen production, even independent
of the degree of inflammation [67]. However, studies demonstrating a key role of NLRP3
in human MASLD are still rare, and there is a clear need for further studies [68]. This is
important as NLRP3 can be antagonized by various drugs such as MCC950, which specif-
ically neutralizes NLRP3 and has been shown to improve MASH pathology, including
inflammation and liver fibrosis [69]. Other inflammasome members such as NLRP1 or 6
have not been studied in preclinical MASLD models so far. Overall, there is compelling
(preclinical) evidence (although some reports failed to show a convincing protective role
of NLRP3 against MASH [70]) that inflammasomes are of crucial importance in MASLD
and might especially be relevant in the evolution of fibrosis. The importance of NLRP3 is
also proven by the fact that a key product of inflammasome activation (i.e., IL-1β) has been
proven to be critical factor in the inflammatory phenotype of this disease. Further studies,
both preclinically and clinically, are needed to prove that the inhibition of NLRP3 might
finally also benefit patients with this common disease.

5. Various Cell Types Involved in Innate Immunity Contribute to This Disease

In addition to numerous paracrine, autocrine, and soluble mediators, inflammation
involves a complex and diverse cellular infiltrate (Figure 1). In this article, we will focus on
classical cell types directing innate immunity, such as monocytes/macrophages or natural
killer (NK) cells, although it is now well known that adaptive immunity (which is not
covered in this article) seems to be of equal importance. Of note, the crosstalk between
innate and adaptive immunity (as extensively reviewed elsewhere [5]), and also between
immune- and non-immune cells such as hepatocytes, promotes liver inflammation in
MASLD. For example, lipotoxicity in the hepatocytes induces the release of extracellular
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vesicles, which promotes immune cell and specifically macrophage infiltration into the
liver [71–73].
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Figure 1. Innate immunity and MASLD: overnutrition and a Western diet fuel obesity, lipotoxicity
and adipose tissue inflammation. Cytokines and adipokines derived from the adipose tissue influence
hepatic inflammation. Pathogen-associated molecular patterns derived from the gut are sensed by
TLR4 and inflammasomes, inducing pro-inflammatory cytokine and chemokine production. BMDMs
are recruited to the inflamed liver mainly via chemokines such as CCL2. The crosstalk between innate
immune cells, cytokines and various external stimuli induces hepatic inflammation and liver fibrosis.
MASH may also promote adipose tissue inflammation, further fueling metabolic diseases.

Liver macrophages comprise two different cell types, resident Kupffer cells (KCs) of
embryonic origin and monocyte-derived macrophages, which are recruited to the liver
mainly via the CCL2/CCR2 axis [74]. Dependent on various stimuli, macrophages can
differentiate into a pro- (M1) or an anti-inflammatory (M2) phenotype [74]. During MASLD
pathogenesis, M1 polarized macrophages seem to have a disease-driving role, and the
activation of M2 KCs induces the apoptosis of M1 polarized KCs, which limits liver
disease [75].

KCs sense danger signals including cholesterol crystals and free-fatty acids (FFAs) [76],
but also PAMPs originating from a decreased intestinal barrier via, e.g., Toll-like receptor 4,
which induces the secretion of pro-inflammatory cytokines and chemokines, promoting a
pro-inflammatory hepatic environment [77,78]. KCs can also directly influence MASLD
pathogenesis by influencing fatty acid metabolism, and the ablation of a specific KC
subtype (CD206hiESAM+) reduced hepatic steatosis in HFD-fed mice [79]. Of note, during
the progression of MASLD, the liver macrophage composition changes, as resident KCs
are replaced by bone marrow-derived macrophages [80,81]. Interestingly, MASH impairs
the self-renewal of embryonic KCs, causing their replacement by monocyte-derived KCs
which display an increased pro-inflammatory transcriptional profile [82].

In MASLD patients, hepatic crown-like structures, macrophage infiltrates surrounding
steatotic hepatocytes, are among the main histopathological findings [83], as similarly
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observed in the adipose tissue of obese individuals [84]. Recently, single-cell RNA se-
quencing of human and mouse MASH livers revealed an upregulation of Trem2-expressing
macrophages [85], which could serve as a potential treatment target [86], while measuring
systemic soluble TREM2 may be a feasible option for non-invasively monitoring MASH
severity [87]. Interestingly, MASH has also been shown to promote dysfunction within
adipose tissue macrophages, further fueling the vicious cycle between adipose tissue
inflammation and MASLD [88].

Hepatic macrophages also induce the recruitment and activation of neutrophils via
lipocalin 2 [89]. Neutrophil infiltration is one of the key features of MASLD, and it is
suspected to directly promote hepatocyte damage [90], while vice versa, neutrophil in-
filtration and NETosis are induced by liver injury [91]. The pro-inflammatory effects of
neutrophils in MASLD and MASH are mediated via the formation of neutrophil extra-
cellular traps (NETs) [92] and reactive oxygen species [93], and the crosstalk between
neutrophils and hepatic stellate cells was shown to amplify hepatic fibrosis in a murine
model of MASLD [94].

In patients with MASLD, the grade of steatosis is positively correlated with increased
myeloperoxidase expression [95] and an elevated neutrophil to lymphocyte ratio is asso-
ciated with disease severity in MASLD patients [96]. However, data from rodent models
also suggest a role for neutrophils and macrophages in the resolution of hepatic inflamma-
tion [97].

Numerous studies have also depicted that NK and NKT cells shape MASLD pathogen-
esis. An increase in NKT cells, for example, has been found in murine MASH models [98,99],
while the absence of NKT cells protected mice from liver fibrosis [99]. Notably, hepatic
microbes seem to regulate liver inflammation via NKT cells [100]. Furthermore, an increase
in NKT cells was found in the livers of MASLD patients, suggesting a disease-driving role
for these innate immune cells [101–103]. On the other hand, obesity and MASLD seem to
impair NK cell function by inducing cell phenotype changes [104,105].

Notably, ample evidence depicts an anti-fibrotic role for NK cells in non-MASLD/
MASH rodent models [106–108], while some studies indicate that NK cells may promote
MASH [109,110], which might be explained by the different cell phenotypes during health
and disease [111].

To summarize, innate immune cells influence MASLD by various means, and newer
technologies such as sc-RNA sequencing allow us to gain more and more insights into
the immune cell infiltrate of MASLD/MASH. This also allows us to study the different
immune cell phenotypes during various stages of this complex and heterogenous disease,
potentially revealing promising new therapeutic targets.

6. How Does Inflammation Evolve in MASLD?

It remains unclear why almost 75–80% of affected MASLD subjects never develop liver
inflammation and associated complications, whereas 20–25% do. In 2010, we proposed a
“multiple parallel hits model of MASLD”, suggesting that various parallel hits are needed
to initiate and propagate inflammation in MASLD [112]. The above-discussed players
in innate immunity have to be activated by various PAMPs and DAMPs to initiate and
develop inflammation. Whereas early models of this disease proposed that the presence
of hepatic steatosis bacterial components such as endotoxins might be linked with an
inflammatory model [113], our model suggested that diverse factors from dietary compo-
nents to proinflammatory lipids or gut microbial factors might act as PAMPs and DAMPs.
Furthermore, inflammation generated in the adipose tissue could further augment liver
inflammation. Endoplasmic reticulum (ER) stress reflects another critical pathway involved
in MASLD pathogenesis. Therefore, it seems likely that both sterile and non-sterile inflam-
mation contribute to liver inflammation. This is also supported by recent evidence showing
that bacterial components, but particularly bacterial DNA (most likely gut-derived), are
detectable in the liver of obese subjects, which could also drive this disease [114]. Similar
data have also recently been presented in mouse models of obesity and MASLD [100,115].
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Dietary proinflammatory components and especially pathogenic lipids may, on the other
hand, reflect key driving factors of the sterile component of MASH [116]. What is not
discussed but is probably of special importance is the contribution of genetic factors as risk
factors for developing MASH and further complications of progressive liver disease.

7. Conclusions

Research from the past two decades has convincingly demonstrated that MASLD
is a disorder in which innate immunity plays a crucial role. One fascinating aspect is
that this disease has appeared as a disorder in which metabolic dysfunction is critically
linked to inflammation and immunity, establishing MASLD as a prototypic metabolic-
inflammatory disease. Many known features of innate immunity are activated in the livers
of MASLD patients and may contribute to the disease phenotype. Importantly, sterile but
probably also non-sterile inflammation will contribute to MASH and its complications.
It remains a challenge to define which factors besides genetic factors dictate whether
a subject develops simple hepatic steatosis or an inflammatory phenotype, i.e., MASH.
Some crucial players, such as proinflammatory cytokines, adipokines, inflammasomes
and certain cell types involved in innate immunity, have been discussed in this review.
However, there remain various other proponents of innate immunity which might be
involved in this disease process, such as hepatokines, ER stress or complementary factors
and others. Importantly, we have to acknowledge that MASLD is commonly part of
metabolic syndrome and therefore part of a systemic disorder, which is reflected by the
fact that CVD and malignancies are highly relevant for the final outcome of these patients.
Therefore, it seems crucial not only to look at the liver but to consider MASLD as a highly
relevant and prevalent systemic disorder.
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