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Abstract: 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase, HMGCR) is one of
the rate-limiting enzymes in the mevalonate pathway required for cholesterol biosynthesis. It is an
integral membrane protein of the endoplasmic reticulum (ER) but has occasionally been described
in peroxisomes. By co-immunofluorescence microscopy using different HMGCR antibodies, we
present evidence for a dual localization of HMGCR in the ER and peroxisomes in differentiated
human monocytic THP-1 cells, primary human monocyte-derived macrophages and human primary
skin fibroblasts under conditions of low cholesterol and statin treatment. Using density gradient
centrifugation and Western blot analysis, we observed a truncated HMGCR variant of 76 kDa in the
peroxisomal fractions, while a full-length HMGCR of 96 kDa was contained in fractions of the ER. In
contrast to primary human control fibroblasts, peroxisomal HMGCR was not found in fibroblasts
from patients suffering from type-1 rhizomelic chondrodysplasia punctata, who lack functional PEX7
and, thus, cannot import peroxisomal matrix proteins harboring a type-2 peroxisomal targeting signal
(PTS2). Moreover, in the N–terminal region of the soluble 76 kDa C-terminal catalytic domain, we
identified a PTS2-like motif, which was functional in a reporter context. We propose that under
sterol-depleted conditions, part of the soluble HMGCR domain, which is released from the ER by
proteolytic processing for further turnover, remains sufficiently long in the cytosol for peroxisomal
import via a PTS2/PEX7-dependent mechanism. Altogether, our findings describe a dual localization
of HMGCR under combined lipid depletion and statin treatment, adding another puzzle piece to the
complex regulation of HMGCR.
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1. Introduction

The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR, NCBI Ref-
erence Sequence: NP_000850.1) exerts the rate-limiting step of the mevalonate pathway
required for the biosynthesis of cholesterol [1] and essential non-sterol metabolites such as
farnesyl pyrophosphate (FPP), geranylgeranyl pyrophosphate (GGPP), dolichol, heme A,
isopentenyl adenosine and ubiquinone (coenzyme Q) [2,3]. Reduced activity of HMGCR
caused by biallelic variants can cause autosomal recessive progressive limb-girdle mus-
cular dystrophy [4]. HMGCR is a highly regulated enzyme [5] affected by a complicated
multilevel feedback system, which acts on enzyme activity, protein stability, gene expres-
sion and translation efficiency [6–9]. Thus, competitive HMGCR inhibitors such as statin
drugs (e.g., lovastatin) [10,11], which efficiently reduce the mevalonate level [12], and
thus the pools of sterols and other isoprenoids, also result in a drastic upregulation of
HMGCR [13]. Human HMGCR is an integral membrane protein of the endoplasmic reticu-
lum (ER) [14,15] consisting of 888 amino acids (AAs) [16] encompassing a highly conserved
transmembrane-8 span domain of 330 AAs [17,18]; a long, flexible linker region of 120 AAs;
and a widely conserved C-terminal catalytic domain of 430 AAs [19]. In the presence of ex-
cess sterols, HMGCR becomes susceptible to proteolysis and can be effectively degraded by
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an ER-associated degradation (ERAD) [20,21] process, which is induced by a combined in-
crease in cellular sterol and non-sterol isoprenoids [22,23] and mediated by insulin-induced
gene (INSIG) protein-activated ubiquitination and a proteasome-dependent degradation
pathway [24–28]. This degradation involves several proteolytic processing steps, and
several cleavage sites have been confirmed within the transmembrane domain and the
linker region [16]. It has been shown that the sterol-induced dislocation of HMGCR from
the ER membrane into the cytosol involves a subcellular compartment resembling lipid
droplets [29]. In rodents, an enzymatically active C-terminal fragment of 62 kDa is released
from the ER membrane and can be further processed to a 53 kDa fragment without losing
enzymatic activity [16].

In 1985, Keller and colleagues described HMGCR in peroxisomes by using immuno-
gold labeling [30], and these results were later reconfirmed [31,32]. Peroxisomes are
ubiquitous, single-membrane-bounded organelles, which were first characterized to have
important functions in lipid metabolism and oxidative stress [33,34]. Their importance
is underscored by the existence of a wide range of inherited human diseases linked to
a complete or partial dysfunction of peroxisomes [35–39]. Next to their indispensable
role in multiple metabolic pathways such as fatty acid β-oxidation [40] or plasmalogen
biosynthesis [41,42], peroxisomes contribute to various other cellular processes, including
signaling [43], viral response and antiviral immunity [44,45].

Many publications have reported the peroxisomal location of enzymes involved in
cholesterol biosynthesis [46–52]. However, the claim of a peroxisomal contribution to
cholesterol biosynthesis [53] has been disputed due to results contradicting the concept of
a peroxisomal segment of cholesterol biosynthesis [54,55]. In particular, the peroxisomal
compartmentation of mevalonate kinase, phosphomevalonate kinase and mevalonate py-
rophosphate decarboxylase has been questioned [56–58]. However, various other cellular
and physiological findings corroborate a link between peroxisomes and cholesterol. In the
absence of peroxisomes, the cholesterol level, the gene expression of enzymes involved in
cholesterol biosynthesis [51,59–62] and cholesterol trafficking [63,64] are changed. More-
over, acetyl-CoA produced inside peroxisomes from the degradation of very-long-chain
fatty acids (VLCFAs) was effectively integrated into cholesterol [65]. Defects in ABCD1,
the peroxisomal transporter for VLCFAs, are accompanied in human cells by dysregulated
cholesterol homeostasis and transport [66], and in Abcd1-deficient mice cholesterol levels
are increased [67]. Conversely, the treatment of keratinocytes with HMGCR inhibitors
increased peroxisome number and activity [68]. All these results suggest the embedding
of peroxisomes within a net of cellular processes jointly ensuring cholesterol homeostasis,
which includes the synthesis, uptake, export, esterification and hydrolysis of cholesterol
esters, but also the intracellular storage of cholesterol in lipid droplets. The physical in-
teractions between peroxisomes and other membrane-bound compartments by means
of a tethering mechanism, which is mediated by local contact sites, allows an effective
transfer of metabolites [69]. For cholesterol and other isoprenoids, the interaction with the
ER [70,71] is indispensable, but also the interaction of peroxisomes with lipid droplets [72]
and lysosomes [63] may play important roles in cholesterol homeostasis [73].

In this study, we provide evidence for a bi-localized distribution of HMGCR between
ER and peroxisomes and for a PTS2/PEX7-mediated peroxisomal targeting of the soluble,
catalytic domain of HMGCR under cholesterol-depleted conditions.

2. Materials and Methods
2.1. Cell Culture

Cell lines: The mouse A9 Hybridoma cell line, which was used to produce the HMGCR-
A9 antibody, was obtained from the American Type Culture Collection (ATCC, CRL-1811).
The HEK-293 cell line was also obtained from ATCC (CRL-1573). HeLa cells were derived
from the European Collection of Authenticated Cell Culture (ECACC -86090201). The
human hepatoma cell line HepG2 was also obtained from ATCC (CRL-11997). The human
monocytic cell lines THP-1 and U-937 were obtained from ATCC (TIB-202 and CRL-1593.2).
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The human fetal microglial cell line CHME3 was a gift from Dr. Karsten Tedin (Department
of Microbiology and Genetics, University of Vienna). Human primary skin fibroblasts
from RCDP1 and RCDP2 patients with mutations in the PEX7 or GNPAT gene were
previously described [74,75] and were provided by Nancy E. Braverman (Department of
Human Genetics and Pediatrics, McGill University, Montreal, Canada). Informed consent
for the use of the patient cell lines for research was obtained by the McGill University
Health Center according to institutional guidelines. Control fibroblasts derived from
metabolically healthy individuals were obtained from Dr. Brunhilde Molzer (Institute for
Neuropathology, Medical University of Vienna). All studies involving human fibroblasts
were approved by the Ethical Review Board of the Medical University of Vienna (application
no. EK729/2010). Primary human CD14+ monocytes from healthy donors were isolated
from leukocyte reduction chambers, purchased from the General Hospital of Vienna,
using Ficoll density gradient centrifugation (PAN Biotech, Aidenbach, Germany) and
positive selection for CD14+ cells using MACS microbeads and an LS column system
(Miltenyi Biotec, Bergisch Gladbach, Germany) according to the manufacturers’ instructions,
as recently described [76]. All studies involving human monocytes/macrophages were
approved by the Ethical Review Board of the Medical University of Vienna (application
no. EK1462/2014).

Culture medium: A9 Hybridoma, CHME3, HEK-293, HeLa, HepG2 and U-937 cells
were cultivated in Dulbecco’s modified Eagle’s medium (DMEM, PAA), supplemented
with 10% (v/v) heat-inactivated fetal bovine serum (FBS, PAA), 2 mM l-glutamine (Lonza,
Basel, Switzerland), 100 units/mL penicillin (Lonza), 100 µg/mL streptomycin (Lonza)
and 1 µg/mL Fungizone (Invitrogen, Carlsbad, CA, USA) as a complete medium in an
atmosphere of 5% CO2 at 37 ◦C. Human fibroblasts, monocytes and THP-1 cells were
cultivated in Roswell Park Memorial Institute medium (RPMI-1640, PAA) with the same
supplementation.

Cell stimulation and differentiation: CHME3 cells were activated in DMEM for 24 h
using 50 ng/mL IFNγ (Immuno Tools). Primary human CD14+ monocytes were differ-
entiated to macrophages using RPMI-1640 supplement with 10% LPS-free FCS (Gibco
Life Technologies/Invitrogen, Waltham, MA, USA) and 50 ng/mL M-CSF (PeproTech,
Rocky Hill, NJ, USA) for 7 days. U-937 cells were differentiated in DMEM using 40 ng/mL
phorbol 12-myristate 13-acetate (PMA, Sigma, St. Louis, MA, USA) for 3 days. THP-1 cells
were differentiated in RPMI using 40 ng/mL PMA for 3–7 days.

Sterol depletion: Lipid-depleted medium (LDM) was supplemented with lipid-depleted
FBS (Bodinco, Alkmaar, The Netherlands, BDC-5608) as a replacement for FBS for 3 or
7 days, and with 5 µM lovastatin overnight (for the last 16 h). For primary human in vitro-
differentiated macrophages, only 8 h of lovastatin incubation was carried out due to the
sensitivity of this primary cell type. See also Table 1 for detailed treatment conditions.

Table 1. Percentage of peroxisomal HMGCR in different human cell lines under certain conditions.

Cell Line Cell Type Differentiation/
Stimulation

LDM
Treatment

Lovastatin
Treatment

Perc.
Peroxisomal

HMGCR
(±STDEV)

Quantification

Monocyte
7 d differentiation 7 days 16 h 68 ± 8.7% 147 (n = 3)

THP-1 3 d differentiation 3 days 16 h 50 ± 10.9% 211 (n = 3)
No differentiation 3 days 16 h 14 ± 9.5% 206 (n = 3)

U937 Monocytic cell 3 d differentiation 3 days 16 h 0% ND
HeLa Epithelial cell No differentiation 3 days 16 h 0% ND

HEK-293 Embryonic kidney No differentiation 3 days 16 h 0% ND
CHME-3 Microglia cell 1 d stimulation 3 days 16 h <5% ND
HepG2 Liver cell No differentiation 3 days 16 h <3% ND

Primary
macrophage 7 d differentiation 3 days 8 h * 65 ± 8.8% 320 (n = 3)

Primary control
fibroblast No differentiation 3 days 16 h 33 ± 10.0% 201 (n = 3)

* For primary human in vitro-differentiated macrophages, only 8 h lovastatin incubation was carried out because
of the sensitivity of this primary cell type.



Biomolecules 2024, 14, 244 4 of 17

2.2. Preparation of Cells for Immunofluorescence Microscopy

Cells were seeded onto 24 × 24 mm glass coverslips and incubated under the indi-
cated growth conditions until they were fixed for 15 min using 3.7% paraformaldehyde in
phosphate-buffered saline (PBS), followed by 0.1% Triton X-100 for permeabilization for
5 min, and then blocked in blocking solution (PBS with 10% FCS and 5% bovine serum
albumin, Roche Applied Science, Penzberg, Germany) for 2 h at room temperature. Cells
were incubated with primary antibodies from different species overnight at 4 ◦C under
a humidified atmosphere. Immunostained coverslips were then incubated with the cor-
responding secondary antibody for 1 h at room temperature, counterstained by DAPI
(4′,6-diamidino-2-phenylindole, Roche Diagnostics Gmbh, Mannheim, Germany) to visual-
ize nuclei, and mounted on glass slides with Mowiol (Sigma, St. Louis, MI, USA)-based
mounting medium. Coverslips were rinsed in PBS between each step. Slides were later ana-
lyzed with an Olympus invert microscope IX71 equipped with a CCD camera (CAM-XM10)
using CellˆM/CellˆR software (version 3.2) (Olympus, Shinjuku, Japan) or a confocal laser
scan microscope (Leica SP5, Leica, Mannheim, Germany) using Leica confocal LAS AF
software (version 3.3.10134). During the analysis of subcellular distribution, cells showing
apoptosis or extremely high expression levels were avoided.

2.3. Antibodies for Immunofluorescence Microscopy and Western Blot Analysis

The primary antibodies used in the experiments were as follows: mouse α-ABCD1 (Eu-
romedex, Souffelweyersheim, France); mouse α-β-Actin (Chemicon, Tokyo, Japan); mouse
α-ATP synthase (Molecular Probes, Eugene, OR, USA); a rabbit polyclonal α-calnexin
antibody, which was a gift from Erwin Ivessa (Max Perutz Labs, Vienna Biocenter, Vienna,
Austria) and is directed against the COOH-terminal peptide of calnexin (AA 555–573 of
the mature dog protein [77]; mouse α-GRP78 (BD Transduction Laboratories, Franklin
Lakes, NJ, USA); mouse α-HMGCR (antibody was prepared from supernatant of A9 hy-
bridoma cells, ATCC #CRL-1811 directed against HMGCR AAs 621-825); mouse α-PDI
(Stressgen, Victoria, BC, Canada); rabbit α-PMP70 (Genetex, Irvine, CA, USA); and rabbit
α-HMGCR (a gift from Prof. Peter A. Edwards, Department of Biological Chemistry, Uni-
versity of California Los Angeles, CA, USA) made to the catalytic fragment of rat HMGCR
and cross-reacted with human HMGCR. Secondary antibodies for immunofluorescence
microscopy: Cy2- and Cy3-labeled donkey α-rabbit and α-mouse IgG, respectively (Jack-
son ImmunoResearch, Philadelphia, PA, USA). For Western blot analysis, horseradish
peroxidase (HRP)-conjugated secondary antibodies (Dako, Glostrup, Denmark) were used.

2.4. Western Blot Analysis

After treatments, cells were washed with PBS and lysed in RIPA buffer, which was
supplemented with a protease inhibitor cocktail (Complete Protease Inhibitor Cocktail
Tablets, Roche, Basel, Switzerland), 100 µM Leupeptin (Roche), 2 mM freshly prepared
PMSF (phenylmethylsulfonyl fluoride, Sigma) and 10 mM DTT (dithiothreitol, Boehringer
Ingelheim, Ingelheim am Rhein, Germany) for 15 min on ice. The lysate was transferred
to a 1.5 mL syringe, followed by passage through a 27.5 gauge needle 3 times to shear the
genomic DNA mechanically. Then, the lysate was centrifuged for 10 min at full speed at
4 ◦C. The supernatant was collected and the protein concentration was determined using
Bradford protein assay. For SDS polyacrylamide gel electrophoresis (PAGE), the samples
were incubated with Laemmli sample buffer at 37 ◦C for 30 min. Protein lysates were
separated into polyacrylamide gels at an appropriate percentage and transferred to nitrocel-
lulose membranes (0.2 micron, GE healthcare, Little Chalfont, PA, USA), blocked with 4%
skim milk in TBS-T (TRIS-buffered saline with 0.05% w/v Tween 20) for 1 h, followed by
incubation with primary antibodies overnight at 4 ◦C. Membranes were incubated with the
corresponding HRP-conjugated secondary antibodies (Dako) for 2 h at room temperature.
Millipore HRP substrate peroxide solution was used as a chemiluminescence-enhancing
reagent. Relevant protein bands were detected and visualized on a Chemidoc XRS+ de-
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tection system (Bio-Rad, Hercules, CA, USA) and analyzed with Image Lab 5.1 analysis
software (Bio-Rad).

2.5. Density Gradient Centrifugation for Organelle Fractionation

Density gradient centrifugations were carried out as described earlier [78]. In brief,
OptiPrep (Axis-Shield) density gradient solutions were prepared based on the same buffer
composition as the homogenization buffer (HB; 250 mM sucrose, 1 mM EDTA (free acid),
0.1% ethanol, 0.1 mM PMSF, complete protease inhibitor mixture (Roche Applied Science,
catalog number 04693132001), 3 mM imidazole and KOH to pH 7.4) and further diluted
with HB. Two milliliters of postmitochondrial supernatant (containing 4 mg of protein)
was layered on top of a prebuilt 10–30% isoosmotic OptiPrep gradient, and a 40% OptiPrep
cushion was used. Centrifugation was carried out at 25,000 rpm for 90 min in a Beckman VTi
65.2 vertical rotor (without braking below 3000 rpm). Gradient fractions were collected from
the bottom, and the respective organellar markers were identified by Western blot analysis.

2.6. PTS2 Reporter Constructs and Analysis of Peroxisomal Targeting in COS-7 Cells

A PTS2 reporter construct was generated previously [79], in which the first 30 AAs
of rat thiolase B were cloned in front of EGFP, and the PTS2 nonapeptide was flanked by
two restriction sites (PstI and EcoRI) allowing the exchange of nonapeptides. The plasmid
encoding the reporter protein with the human thiolase PTS2 (RLQVVLGHL) was used as a
positive control for peroxisomal localization of EGFP upon transfection into COS-7 cells [79].
The oligonucleotide sequences encoding the HMGCR-PTS2A (RATFVVGNS) and the
HMGCR-PTS2 B (RGVSIRRQL) as well as the mutated HMGCR-PTS2AMut (DDIFVVGNS)
including the restriction enzyme sequence for PstI and EcoRI were cloned into the reporter
construct. The reporter plasmids were transfected into COS-7 cells and the colocalization
with the peroxisomal membrane protein PMP70 was investigated by immunofluores-
cence microscopy.

2.7. Statistical Analysis

Statistical computations were conducted using SPSS Statistics version 20 (IBM Cor-
poration, Armonk, NY, USA). Data sets were tested for normal distribution by Levene’s
test first. One-way analysis of variance (ANOVA) with LSD (least significant difference)
post hoc comparison was performed for normally distributed data to compare mean values
among all measured variables. A non-parameter Mann–Whitney U test was used for multi-
ple comparisons among the different groups if the data sets did not have similar variances.
Quantitative data and graphical results are represented as mean ± standard error of mean
(s.e.m.) or mean ± standard deviation (s.d.). Sample size is indicated in the figure caption.
Statistically significant results are indicated as * p < 0.05, ** p < 0.01, *** p < 0.001.

3. Results
3.1. HMG-CoA Reductase Is Bilocalized to ER and Peroxisomes in Human Differentiated THP-1
Cells under Conditions of Low Cholesterol and Lovastatin Treatment

As cholesterol metabolism is of particular importance for macrophages, we first inves-
tigated the subcellular localization of HMGCR in THP-1 monocytic cells differentiated with
PMA to macrophage-like cells. Differentiated THP-1 cells were incubated in lipid-depleted
medium for 7 days and the HMGCR inhibitor lovastatin was added for the last 16 h. Under
these conditions, HMGCR is known to be highly abundant due to its high expression and
low degradation rates. Using an antibody against HMGCR obtained from Edwards (anti-
HMGCR-E) and one for the ER marker protein PDI, we observed the expected localization
of HMGCR in the ER (Figure 1a–c). However, additional punctuated staining was observed
that did not co-localize with PDI. When co-staining the cells with the antibody against
HMGCR and one directed against the peroxisomal membrane protein ABCD1, the punctate
staining co-localized with ABCD1 (Figure 1d–f). This demonstrates peroxisomal HMGCR’s
immunoreactivity and suggests a dual localization of HMGCR to the ER and peroxisomes
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under conditions of cholesterol depletion and HMGCR inhibition. To corroborate these re-
sults and to rule out an unspecific peroxisomal labeling by the polyclonal HMGCR antibody,
we additionally used a monoclonal anti-HMGCR antibody (anti-HMGCR-A9) directed
against the C-terminal domain. First, we showed the predominant ER localization by using
co-staining with the ER marker calnexin (Supplementary Figure S1). We next performed
co-staining with an anti-PMP70 antibody labeling another peroxisomal membrane protein
(Figure 1g–i). Again, HMGCR’s immunoreactivity was consistently found to be colocalized
with the peroxisomal marker. Colocalization of PMP70 with the ER marker protein PDI
verified that the staining of the two organelles is specific (Supplementary Figure S2). Finally,
these findings were confirmed by confocal microscopic imaging (Figure 1j,k). Of note, in
each staining, approximately 70% of cells showed dual HMGCR localization, whereas in
about 30% an exclusive ER localization of the enzyme was observed. Altogether, these
results demonstrate a clear dual localization of HMGCR under low-cholesterol conditions
with lovastatin treatment.
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Figure 1. Localization of human HMG-CoA reductase in peroxisomes of differentiated THP-1
cells: (a–j) Cells of the human monocytic cell-line THP-1 were differentiated using 40 ng/mL PMA
and cultivated in lipid-depleted medium for 7 days with 5 µM lovastatin added for last 16 h to
increase endogenous HMG-CoA reductase (HMGCR). The subcellular distribution of HMGCR was
investigated by immunofluorescence microscopy (a–i) and confocal microscopy (j,k) using different
antibody pairs: (a–c) rabbit polyclonal α-HMGCR-E (green) with mouse α-PDI (red) labeling the
ER; (d–f) α-HMGCR-E (green) with mouse α-ABCD1 (red) labeling peroxisomes; (g–i) murine
monoclonal α-HMGCR-A9 (green) with rabbit polyclonal α-PMP70 (red) labeling peroxisomes;
(j) α-HMGCR-E (green) and α-PDI (red); and (k) α-HMGCR-E (green) and α-ABCD1 (red). The
co-staining demonstrates that under these conditions HMGCR is co-localized with both an ER marker
protein (a–c,j) and two different peroxisomal marker proteins (d–f,g–i,k). White arrows: punctate
peroxisomal staining pattern. Scale bars: 20 µm.
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3.2. The Fraction of Peroxisomal HMGCR Increases with the Differentiation State of THP-1 Cells

It is known that PMA-induced differentiation toward macrophages increases HMGCR
activity and cholesterol synthesis [80]. Thus, we next set out to quantify the percentage of
cells demonstrating peroxisomal HMGCR localization under low-cholesterol conditions
and statin treatment and in relation to PMA differentiation. To this end, we quantified the
number of cells with peroxisomal HMGCR in undifferentiated THP-1 cells cultured for
3 days in lipid-depleted medium and for the last 16 h with lovastatin, and compared it to
PMA-differentiated THP-1 cells cultured for 3 or 7 days in lipid-depleted medium with 16 h
lovastatin treatment. We found that 14% of the undifferentiated THP-1 cells presented per-
oxisomal HMGCR localization (Figure 2a–c,j). This number increased with differentiation to
50% after 3 days and 68% after 7 days (Figure 2d–j). These findings indicate that the amount
of peroxisomal HMGCR reaching the detection threshold depends on the metabolic state
or differentiation state of the THP-1 cells or both. The heterogeneity in the differentiation
process possibly explains why not all THP-1 cells show peroxisomal HMGCR.
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Figure 2. The fraction of THP-1 cells with peroxisomal HMGCR increases with PMA-mediated
differentiation. THP-1 cells were incubated in lipid-depleted medium (LDM) for 3 days followed by
16 h with lovastatin (a–c), differentiated for 3 days with PMA and then incubated in LDM for 3 days
with 16 h lovastatin treatment (d–f) or differentiated for 7 days with PMA and then incubated in LDM
for 7 days with 16 h lovastatin (g–i). Undifferentiated THP-1 cells were smaller in size (compare c,f,i) and
also presented lower percentage of cells with peroxisomal HMGCR (α-HMGCR-E (green) and α-ABCD1
(red) antibodies). Manual counting verified a significantly higher fraction of differentiated cells with
peroxisomal α-HMGCR signal (j). (f) After 3 days of differentiation, THP-1 cells with (f-α) and without
(f-β) peroxisomal labelling by the α-HMGCR antibody were present on the same slide. White arrows:
punctate peroxisomal staining pattern. Scale bars: 20 µm. (j) For each condition, 3 individual coverslips
were investigated, 20 areas were randomly selected and at least 36 cells were evaluated per coverslip. Cells
were identified by DAPI staining and the fraction of cells with peroxisomal HMGCR immunoreactivity
(α-HMGCR-E (green) and α-ABCD1 (red) antibodies) was estimated by manual counting. Comparison
between these three groups revealed an increasing percentage of THP-1 cells with peroxisomal HMGCR
(from undifferentiated 14 ± 9.5%, 3 days diff. 50 ± 10.9%, 7 days diff. 68 ± 9.5%) after long-term
differentiation under low-cholesterol conditions. Error bars indicate SEM; *** p < 0.001.
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3.3. A Truncated HMGCR Is Located to Peroxisomes

To verify this result of a dual localization of HMGCR under low-cholesterol conditions
with lovastatin treatment in differentiated THP-1 cells with a second independent method,
we performed density gradient centrifugation for organellar separation as described pre-
viously [78]. Fractions of the density gradient were loaded onto a polyacrylamide gel
and Western blot analysis was performed. Fractions containing ER were identified by
an anti-GRP78 antibody (ER chaperone, 78-kDa glucose regulated protein), peroxisomal
fractions by the anti-PMP70 antibody and mitochondria fractions by an anti-ATP-synthase
antibody (Figure 3). Full-length HMGCR and truncated versions thereof were detected
by Edwards’ anti-HMGCR antibody. Whereas the full-length 96 kDa HMGCR was only
visible in the ER-containing fractions, another band with a molecular weight of 76 kDa
was observed in the peroxisomal fractions (Figure 3 and Supplementary Figures S3 and
S4) and probably reflects a truncated version of HMGCR. This suggests that the HMGCR
immunoreactivity in peroxisomes is caused by a truncated and not full-length version of
the protein.
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Figure 3. In differentiated THP-1 cells grown under low-cholesterol conditions and lovastatin
treatment, a truncated form of HMGCR was found in peroxisome-enriched fractions obtained
by density gradient centrifugation (DGC). THP-1 cells were differentiated and incubated in lipid-
depleted medium for 7 days. An amount of 5 µM lovastatin was provided for the last 16 h before
harvesting (low-cholesterol conditions). DGC was used to enrich organelles and separate fractions
with different compositions according to their density. Fractions were then pooled and Western
blots were performed using α-GRP78, α-PMP70 and α-ATP synthase antibodies to identify fractions
enriched in ER (fraction 16–33, lane 5–9), peroxisomes (F7–18, lane 2–5) and mitochondria (F16–21,
lane 5–6), respectively. Whereas full-length HMGCR with a size of about 97 kDa was found in
fractions enriched in the ER (Lanes 5–9), a truncated form of HMGCR with a size of about 76 kDa
was additionally found in peroxisome-enriched fractions (Lane 2–5). Western blot original images
can be found in Supplementary Figure S3. The sizes of the molecular weight marker are indicated on
the left side.

3.4. The Percentage of Cells with Detectable Peroxisomal HMGCR under Low-Cholesterol
Conditions and Lovastatin Treatment Is Cell-Type-Specific

To further investigate whether the peroxisomal HMGCR localization is a general
phenomenon observed under conditions of low cholesterol and statin treatment, we inves-
tigated differentiated human monocyte-derived U937 cells, human microglia-like CHME-3
cells, the hepatoma cell line HepG2 as well as HeLa and HEK-293 cells, all after 3 days
of cultivation in lipid-depleted media and 16 h of lovastatin treatment. Whereas in U937,
HeLa and HEK-293 no co-localization of HMGCR with peroxisomes was detectable, the
enzyme was bilocalized to both ER and peroxisomes in a small percentage of CHME-3
(5%) and HepG2 (3%) cells (Table 1). To verify that the bilocalization of HMGCR is not
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only found in human cell lines but is also observed in primary human cells, we isolated
monocytes from leukocyte reduction chambers of human healthy donors and differentiated
the cells for 7 days using M-CSF to mature macrophages before culturing them in lipid-
depleted medium for 3 days and finally adding lovastatin for 8 h. We found that in 65% of
monocyte-derived primary macrophages, HMGCR was found in peroxisomes (Figure 4a–d,
Table 1). This percentage of cells with detectable peroxisomal HMGCR is comparable to
that observed in differentiated THP-1 cells (68%; Table 1). In primary human fibroblasts
after 3 days of culturing in lipid-depleted medium and 16 h of lovastatin treatment, we
observed a peroxisomal localization of HMGCR in 33% of cells (Table 1). Taken together,
differentiated human macrophages and the macrophage-like THP-1 cells, but not U937
cells, along with primary human fibroblasts exhibited the highest fraction of cells with a
detectable peroxisomal HMGCR localization.
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Figure 4. In in vitro-differentiated human macrophages, HMGCR also co-localizes with peroxisomes:
(a–d) Immunofluorescence microscopic analysis of primary monocyte-derived macrophages using
α-HMGCR-E (green) and α-ABCD1 (red) antibodies: Primary human CD14+ monocytes were differ-
entiated to macrophages using RPMI supplemented with 50 ng/mL macrophage colony-stimulating
factor (M-CSF) for 7 days, then incubated for 3 days with lipid-depleted medium followed by an in-
cubation for 8 h with 5 µM lovastatin. In epifluorescence (a–c) and confocal (d) microscopic analyses,
α-HMGCR immunoreactivity colocalized with the peroxisomal marker ABCD1 (α-HMGCR-E (green)
and α-ABCD1 (red) antibodies). White arrows: punctate peroxisomal staining pattern. Scale bars:
20 µm.

3.5. PEX7 Is Required for the Peroxisomal Localization of Human HMGCR

Next, we addressed the molecular mechanism of peroxisomal import. We supposed
that the fragment corresponds to the soluble domain of HMGCR without transmembrane
domains, and thus a peroxisomal targeting signal (PTS) at the C-terminus (type 1, PTS1) or
close to the newly generated N-terminus (type-2, PTS2) was expected. As the extreme C-
terminus of human HMGCR does not resemble a PTS1, we expected a PTS2 and tested this
hypothesis by studying primary human fibroblasts from a patient suffering from type-1 rhi-
zomelic chondrodysplasia punctata (RCDP1), in which the PTS2 receptor PEX7 is mutated.
Indeed, in contrast to control primary fibroblasts with peroxisomal HMGCR localization
(Figure 5a–c), the fibroblasts from the RCDP1 patient did not show peroxisomal HMGCR
(Figure 5d–f). As in PEX7-deficient cells the peroxisomal part of the ether phospholipid syn-
thesis is impaired, leading to plasmalogen deficiency, we excluded the possibility that this
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causes the absence of peroxisomal HMGCR. Thus, we next investigated primary human
fibroblasts from a patient with RCDP-2 (rhizomelic chondrodysplasia punctata type-2) har-
boring mutations in the enzyme glyceronephosphate O-acyltransferase (GNPAT) required
for ether phospholipid synthesis via a PTS1/Pex5-dependent mechanism. In these cells,
HMGCR was also detected in peroxisomes (Figure 5g–i). These findings demonstrate that
the peroxisomal localization of the truncated HMGCR under conditions of low cholesterol
specifically depends on PEX7.
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Figure 5. The peroxisomal localization of HMGCR requires the PTS2 receptor PEX7. Immunofluo-
rescence microscopic analysis of primary human dermal fibroblasts using α-HMGCR-E (green) and
α-ABCD1 (red) antibodies: (a–c) Human fibroblasts obtained from a healthy subject were treated
with lipid-depleted medium for 3 days and 5 µM lovastatin was added for 16 h. A fraction of cells
with α-HMGCR immunoreactivity showed a punctate staining pattern that co-localized with the
peroxisomal marker protein ABCD1. (d–f) However, in PEX7-deficient human fibroblasts obtained
from a patient suffering from rhizomelic chondrodysplasia punctata type-1 (RCDP-1) grown under
the same conditions, α-HMGCR immunoreactivity showed a diffusely distributed pattern but no
co-localization with the peroxisomal marker protein in all cells. (g–i) In contrast, in GNPAT-deficient
fibroblasts obtained from a patient suffering from RCDP-2 and grown under the same conditions,
α-HMGCR immunoreactivity was also co-localized with peroxisomes in a fraction of cells. White
arrows: punctate peroxisomal staining pattern. Scale bars: 20 µm.

3.6. The C-Terminal Domain of HMGCR Contains a Functional PTS2 Close to Its N-Terminus

As peroxisomal import of the truncated HMGCR depends on PEX7, a functional PTS2
is expected within the truncated HMGCR. Two putative PTS2 sequences were identified in
the linker region and at the beginning of the catalytic domain of human HMGCR, (Figure 6a)
which we termed HMGCR-PTS2-A (RATFVVGNS, 412–420 AAs) and HMGCR-PTS2 B
(RGVSIRRQL, 490–498 AAs), respectively (Figure 6b). To investigate the functionality of
these PTS2-like motifs, we used a reporter protein consisting of the first 30 AAs of rat
thiolase in front of EGFP72 (Figure 6b). When the reporter protein harboring HMGCR-
PTS2-A was expressed in COS-7 cells, EGFP showed a punctate staining pattern, which
co-localized with PMP70 (Figure 6c–e). This indicated that the nonapeptide sequence
can mediate peroxisomal import of the reporter protein and thus can be considered as
a functional PTS2. In contrast, when the reporter protein harbored HMGCR-PTS2-B,
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the reporter protein was found in the cytosol and nucleus (Figure 6f–h), indicating that
the nonapeptide is not a functional PTS2. The introduction of three point mutations in
the HMGCR-PTS2-A sequence (HMGCR-mut-PTS2-A, DDIFVVGNS) caused failure in
targeting the reporter protein into peroxisomes (Figure 6i–k).
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Figure 6. A functional type-2 peroxisome-targeting signal (PTS2) motif is encoded in the linker
domain of human HMGCR: (a) Domain structure of human HMGCR consisting of a highly conserved
N-terminal domain comprising eight transmembrane spans, a flexible linker region and a conserved
catalytic domain; two putative PTS2 were identified, one in the linker region (HMGCR-PTS2-A:
411–420 AAs) and one at the beginning of the catalytic domain (HMGCR-PTS2-B: 490–498 AAs).
(b) Schematic representation of the PTS2 reporter protein [79] consisting of the first 30 AAs of rat
thiolase in front of EGFP. To test the functionality of putative PTS2 motifs, the candidate nonapeptides
were inserted into the reporter protein to substitute the endogenous PTS2. (c–k) Immunofluorescence
microscopic analysis of the subcellular distribution of various reporter proteins, which encode
HMGCR-PTS2-A (RATFVVGNS) (c–e), HMGCR-PTS2-B (RGVSIRRQL) (f–h) or a variant of HMGCR-
PTS2-A, in which two negative charges were introduced to obtain the inactive HMGCR-mutated-
PTS2-A (DDIFVVGNS); COS-7 cells were transfected with expression plasmids for these reporter
protein variants encoding the PTS2-like motifs and the distribution of EGFP was investigated. A
punctate staining pattern that co-localized with the peroxisomal marker protein PMP70 was only
found for the reporter protein encoding HMGCR-PTS2-A. When the reporter protein encoded the
HMGCR-PTS2-B or HMGCR-mutated-PTS2-A, it was found evenly distributed across the cytosol
and the nucleus but did not co-localize with PMP70. White arrow: punctate peroxisomal staining
pattern. Scale bar: 10 µm.

These findings demonstrated that an effective PTS2 is encoded in the linker region of
human HMGCR, connecting the membrane-embedded N-terminal part of HMGCR and
the catalytic C-terminal domain. Irrespective of which processing site in HMGCR is critical
under these conditions, the PTS2 motif is located in close proximity to the novel N-terminal
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end of the soluble HMGCR domain and the location within a flexible linker exposes the
PTS2 to the receptor PEX7. This should allow for the targeting of the truncated soluble
HMGCR containing the complete catalytic domain into peroxisomes.

4. Discussion

HMGCR has been detected in peroxisomes by using electron microscopy and im-
munogold labelling. The cellular metabolic conditions promoting bilocalization and the
mechanism leading to a peroxisomal transport, however, are unknown. There is no ev-
idence for a second HMGCR gene in mammals [81]. Here, we demonstrate that under
conditions of low cholesterol and statin treatment, a truncated form of HMGCR is targeted
to peroxisomes. This finding is observed by co-immunofluorescence microscopy using two
different antibodies recognizing HMGCR and by density gradient centrifugation. The per-
oxisomal HMGCR is not the full-length protein but a truncated fragment of approximately
76 kDa that was found in peroxisome-enriched fractions containing PMP70. In contrast,
the full-length HMGCR protein of 96 kDa was exclusively present in fractions containing
GRP78, a well-established ER protein. Unfortunately, we were not able to identify the N-
terminus of the truncated peroxisomal HMGCR variant. Based on the apparent molecular
weight, the truncated 76 kDa HMGCR that we observed in our experiments is different from
the 90 kDa peroxisomal HMGCR variant observed in UT2* cells or in CHO cells by Krisans’
group [82]. Importantly, we only observed the peroxisomal localization of the truncated
soluble HMGCR under low cholesterol in the presence of lovastatin, a condition known
to increase production and to stabilize HMGCR, as the sterol depletion prevents HMGCR
from binding to INSIG proteins and the associated E3 ubiquitin ligases (gp78, TRC8 and
RNF145) [83]. Thus, under these specific conditions, the standard degradation pathway of
HMGCR is not expected to generate such truncated peroxisomal HMGCR. However, it is
tempting to speculate that under these conditions residual processing continues, but a low
degradation rate of the HMGCR fragment causes its accumulation in the cytosol.

We demonstrate that the peroxisomal targeting of HMGCR is PEX7-dependent. PEX7
is the soluble receptor, which binds peroxisomal matrix proteins harboring a PTS2 motif
close to the N-terminus [84]. We identified a functional PTS2 in the flexible linker region
of HMGCR close to the putative new N-terminus of the truncated HMGCR. This PTS2
motif is able to target a reporter protein into peroxisomes and is embedded within a flexible
domain, which is a property amply found in typical PTS2-carrying proteins [79]. The exact
N-terminus of the truncated HMGCR has not yet been identified, and the suggested PTS2
(RATFVVGNS) deviates from the traditional PTS2 consensus sequence ([R/K]-[L/V/I/Q]-
X-X-[L/V/I/H/Q]-[L/S/G/A/K]-X-[H/Q]-[L/A/F]) [84,85]. Thus, the contribution of
another targeting sequence cannot be excluded. Based on the apparent molecular weight
and the epitope recognized by the monoclonal HMGCR-A9 antibody, the HMGCR fragment
should contain the catalytic domain. The peroxisomal polypeptide has a higher molecular
weight than the truncated 62 kDa fragment that is released from the ER under high-
cholesterol conditions [86]. Importantly, this 62 kDa fragment has been shown to be
catalytically active even when it is further processed to a 53 kDa HMGCR C-terminal
fragment [86].

We have previously demonstrated that cholesterol can be synthesized from radioac-
tively labelled acetate generated by peroxisomal β-oxidation of the labelled very-long-chain
fatty acid C24:0. Of note, the amount of cholesterol containing acetyl units generated in
peroxisomes was not affected by lovastatin treatment, whereas the amount of cholesterol
containing mitochondrially generated acetyl-CoA or acetyl-CoA derived from exogenously
added acetate was strongly diminished under these conditions [65]. Unfortunately, the
metabolic embedding of peroxisomal HMGCR is unclear. It seems reasonable to assume
that the structural similarity between 3-hydroxy-3-methylglutaryl-CoA and branched-chain
fatty acids or the side chain of the bile acid precursors di- or trihydroxycholestanoic acid
might allow import via the same peroxisomal ABC transporter, ABCD3/PMP70 [87], to
gain access to peroxisomal HMGCR. Under normal conditions, the product of HMGCR,
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mevalonate, is further processed by the enzyme mevalonate kinase in the next step of
isoprenoid biosynthesis. Although some publications have suggested a peroxisomal lo-
calization of this protein [49,88], we share the view that these studies do not provide
sufficient evidence for a peroxisomal localization [57]. We rather suggest that mevalonate
is transferred to the ER and that this transfer is supported by the tethering and physical
interaction between peroxisomes and ER [70]. In this way, mevalonate could reach the
other enzymes at the ER which are not tightly regulated. Thus, under conditions of low
cholesterol and statin treatment, the truncated peroxisomal HMGCR might escape statin
inhibition and contribute to isoprenoid production. As the appearance of peroxisomal
HMGCR only occurs under very specific conditions when particularly large amounts of
full-length HMGCR are localized at the ER, it could also be a non-functional bystander
effect of an alternative turnover process under conditions of cholesterol depletion and
statin binding. Also, alterations in the ER membrane and ER stress and an overloaded
transport system might contribute to the findings. The open question of the physiologic
significance is a limitation of this study, as we were not able to resolve this issue.

In this study, we contribute to the long-standing question of whether or not HMGCR
can be localized to peroxisomes in addition to the ER. We identified cell types and a condi-
tion where this reliably occurs. These findings add another puzzle piece to the complex
regulation of intracellular cholesterol homeostasis. Isoprenoid biosynthesis may be another
example, next to ether phospholipid biosynthesis [42], that requires tight interactions be-
tween peroxisomes and the ER for effective transfer of certain metabolites. These findings
under low-cholesterol conditions and statin treatment might be relevant for human patients
with hypercholesterolemia receiving statins in combination with a low-cholesterol diet
and/or the antihyperlipidemic drug colestipol.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/biom14020244/s1: Figure S1: The monoclonal anti-HMGCR antibody
(anti-HMGCR-A9) stains predominantly in the ER; Figure S2: Specificity controls for the antibodies
in THP-1 cells; Figure S3: Unprocessed full-size images of Figure 3; Figure S4: Independent density
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