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Abstract: Chronic pancreatitis (CP) is the end-stage of continuous inflammation and fibrosis in
the pancreas evolving from acute- to recurrent acute-, early, and, finally, end-stage CP. Currently,
prevention is the only way to reduce disease burden. In this setting, early detection is of great
importance. Due to the anatomy and risks associated with direct sampling from pancreatic tissue,
most of our information on the human pancreas arises from circulating biomarkers thought to
be involved in pancreatic pathophysiology or injury. The present review provides the status of
circulating biomarkers involved in the development of and progression to CP.
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1. Background

Acute pancreatitis (AP), chronic pancreatitis (CP), and pancreatic ductal adenocarci-
noma (PDAC) place a significant burden on healthcare systems worldwide. AP is among
the three most common benign gastrointestinal diseases, with a mortality rate of 0.9% and
an estimated economic burden of USD2.6 billion per year in the US [1]. CP is characterized
by gradual irreversible damage to the endocrine and exocrine parenchyma caused by in-
flammation and subsequent replacement of these tissues with fibrotic tissue and atrophy [2].
Over the last two decades, the incidence of CP has increased by 50%, and there are currently
no treatments available to alter this disease’s course, resulting in significantly reduced life
expectancy and quality of life. Prevention is the only way to reduce the disease burden, as
serious complications including exocrine pancreatic insufficiency, malabsorption, diabetes
mellitus, and PDAC may evolve as this disease progresses [3].

Approximately 50% of patients with CP have a history of AP [3]. There is continual
replacement of the pancreatic tissue with fibrosis. Individuals who experience first-time AP
have a 22% chance of developing recurrent acute pancreatitis (RAP) [4], and patients who
experience three episodes of RAP have a 16% chance of developing CP. In addition, patients
with four or more episodes of RAP have a much higher risk, around 50%, of developing
CP [5].

Thus, the continuum from the first episode of AP to the manifestation of CP provides
a framework for epidemiologic studies and the time-dependent evolution of circulating
biomarkers involved in the progression of this disease.

This review aims to compile and synthesize findings on existing human studies on
biomarkers thought to be involved in the development and progression of CP.

2. Materials and Methods

The literature search was conducted using PubMed. The search was performed to a
cut-off date of 1 September 2023 to ensure the inclusion of the most relevant and up-to-date
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studies. The main search included a combination of text words and MeSH terms: (inflam-
mation, oxidative stress, and fibrosis), combined with chronic pancreatitis and (serum,
plasma, or biomarker). Additionally, cross-references were identified manually through
the citation list of selected studies to capture additional sources. To ensure completeness, a
search was conducted on PubMed for each biomarker mentioned in the review.

We included human studies that compared blood/serum/plasma biomarkers of in-
flammation, fibrosis, and oxidative stress in patients with CP compared to healthy controls.
Animal studies, studies evaluating tissue biopsy biomarkers, and studies evaluating cancer
biomarkers were excluded. All the figures included were generated using BioRender.com.

3. Results

We identified 96 studies spanning from 1981 to 2022, examining 126 different biomark-
ers, with 59 being examined multiple times. Tables 1–3 provide an overview of the biomark-
ers examined at least twice, with brief additional information, their potential role in pan-
creatitis, and their levels in patients with CP. Table 4 provides an overview of additional
biomarkers only examined once.

3.1. Inflammation

From 1994 to 2022, 55 articles examined 64 inflammatory biomarkers, of which 23
were examined multiple times. In addition, five of these studies included patients with
AP [6–10]. The key findings are summarized in Table 1. Of the 23 biomarkers, 12 were
either not elevated in CP or the findings were inconclusive. Several pro-inflammatory
interleukins (IL-6, IL-8, and IL-12) were found to be elevated in patients with CP com-
pared to healthy controls [11–13], along with vascular endothelial growth factor (VEGF),
intercellular adhesion molecule (ICAM), chemerin, fractalkine, resistin, osteopontin, and
neopterin [7,10,14–18]. In contrast, leptin was found to be reduced in patients with CP [16].
IL-1β, IL-6, IL-10, tumor necrosis factor α (TNF-α), adiponectin, and leptin were the most
studied inflammatory biomarkers in CP. However, the findings were cohesive only for IL-6,
TNF-α, and leptin. IL-10, IL-12, TNF-α, and INF-γ were elevated in patients with AP [6,8].
Figure 1 demonstrates a schematic overview of the inflammatory biomarkers involved in
the progression to CP.

3.1.1. Interleukin 6

IL-6 induces the synthesis of acute-phase proteins and the production of other cy-
tokines, including C-reactive protein (CRP) [19]. Sixteen studies measured IL-6, with twelve
observing higher levels in patients with CP compared to healthy controls [6,11,12,20–28],
although the difference was not significant in three studies [20,25,28]. Four studies found
no difference in the IL-6 levels [27,29–31]. In one study, a surge in IL-6 serum levels was
observed in patients with alcoholic CP after the consumption of alcohol, with a decrease
to the pre-stimulatory levels after 4–24 h, suggesting a correlation between alcohol con-
sumption and IL-6 levels [24]. Elevated IL-6 levels were also evident in AP [6]. IL-6 rises
1–2 days before CRP, making it suitable for an early distinction between severe and mild
AP [32,33]. Higher concentrations of IL-6 are linked to the increased risk of complications
and death in severe AP [34–37]

3.1.2. Tumor Necrosis Factor α

TNF-α is a cytokine that facilitates both inflammation and fibrosis formation. It plays
a key role in regulating other cytokines towards inflammation and activating pancreatic
stellate cells (PSCs). TNF-α triggers the activation of PCSs, which, in turn, start producing
extracellular matrix (ECM). This disorganization of the ECM leads to fibrosis formation
and chronic inflammation of the pancreas [38,39]. The levels of TNF-α in patients with
CP were investigated in 12 studies from 1999 to 2022. Elevated levels were found in six
studies [9,11,22,31,39–41], one found lower levels [9], while the remaining five found no
significant differences [8,20,25,29,42]. Kiyci et al. discovered significantly higher serum
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levels of TNF-α in AP compared to CP, indicating TNF-α’s potential role in the progression
of the disease. However, it is worth noting that this study included only 13 patients with
AP, 36 patients with CP, and 14 controls [8].

3.1.3. Leptin

Leptin, an adipokine with a crucial role in metabolism, obesity, and cardiovascular
diseases, has also been found to activate macrophages and T-lymphocytes, stimulating
their cytokine secretion [43]. Moreover, it has been demonstrated to induce fibrosis in the
liver by inhibiting hepatic stellate cell apoptosis [16,44,45]. Five studies found reduced
levels of leptin in patients with CP [16,46–49], while one study found elevated leptin levels
compared to healthy controls [41]. Because leptin is secreted by adipocytes, a higher fat
percentage results in a higher amount of circulating leptin. Patients with CP had lower
BMI across the involved studies, making it difficult to determine if the reduced levels were
due to pancreatitis or to a lower fat mass. Additionally, patients with CP with diabetes
mellitus (DM) were found to have higher levels of leptin than patients with CP without
DM [41]. Lower levels of leptin may play a protective role in the development of CP by
increasing apoptosis of the PSCs.
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Figure 1. Schematic illustration of the inflammatory biomarkers involved in the progression to
CP. GM-CSF: granulocyte-macrophage colony-stimulating factor; ICAM: intracellular adhesion
molecule; IFN: interferon; IL: interleukins; MCP: monocyte chemotactic protein; MIP: macrophage
inflammatory protein; OPN: osteopontin; STAT: signal transducer and activator of transcription; TNF:
tumor necrosis factor; and VCAM: vascular cell adhesion molecule.
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Table 1. An overview of the inflammatory biomarkers involved in the development and progression of chronic pancreatitis. (Symbols in the column “Blood Levels
in Patients with CP” correspond to the reference in the column “Biomarkers”; =: no difference; ↓: reduced levels; and ↑: elevated levels).

Biomarkers Mechanism Pancreas-Specific Effects Blood Levels in Patients with CP Comment

IL-1β
[12,22,29–31,50]

A pro-inflammatory cytokine that activates
several intracellular responses, e.g., stimulation

of IL-6, IL-8, and TNF-α [51,52].

Excessive or prolonged IL-1β activation can
lead to CP [52,53]. Activates proliferation and

collagen secretion in fibroblasts [54].
= = ↓ ↓ ↑ =

Overexpression of IL-1β in murine pancreas
results in CP [53]. Increases protease

inhibitors having a protective effect in
CP [30].

IL-1α
[9,29,50]

A pro-inflammatory cytokine that induces
inflammation via activation of, e.g., COX2, IL-6,

and TNF-α [55].

Not typically associated with the pancreas but
can indirectly be involved in pancreatic

diseases.
↓ ↓ =

IL-1Ra
[12,29]

An IL-1 receptor antagonist. Anti-inflammatory
cytokine with protumor activity [12].

Has a protective effect on both AP and
CP [56,57]. ↑ = Higher levels in PDAC compared to CP [29].

IL-2
[6,29,58]

A potent Th1-related cytokine that acts on NK
cells and T-cells [59]. Increases T-cells in the pancreas and induces

expression of T-cell-associated proteins [60].
↑ ↓ ↓

IL-2R
[20,61–63] IL-2 receptor ↑ = = =

IL-4
[6,9,29]

Modulates the differentiation of precursor Th
cells to Th2 cells [64]; inhibition of

pro-inflammatory cytokine synthesis [65].

Secreted by PSCs, mediates macrophage
activation by participating in the promotion of

pancreatic fibrosis [66].
↓ ↑ ↓

Potentially, levels of IL-4 in patients with CP
depend on whether inflammation or fibrosis

is the dominant process.

IL-6
[6,11,12,20–31,67]

A pro-inflammatory cytokine that causes cell
proliferation, differentiation, and inflammatory

responses and triggers the synthesis of
acute-phase proteins [19,30].

Promotes PSCs activation and collagen
synthesis through the upregulation of

TGF-β1 [68].
↑ ↑ ↑ = ↑ ↑ ↑ ↑ = ↑ = = = = = ↑

Levels are closely linked to the quantity of
alcohol consumed by patients with alcoholic

CP [24]. Elevated in AP and reflects the
severity and prognosis of the

pancreatitis [37].

IL-8
[9,11,12,31]

A chemoattractant that acts as a neutrophil
activator and a pro-angiogenic factor [9,69].

Circulating neutrophils from patients with CP
express mRNA for IL-8 [69]. High levels of IL-8

are found in CP tissue [69–71].
↑ ↑ ↑ ↑

Depending on the etiology, the amount of
IL-8 correlates with the severity of the

pancreatitis [69–71].

IL-10
[6,23,29,31,58]

An anti-inflammatory cytokine that inhibits
cytokine release from lymphocytes, e.g., IL-12,

IL-6, and TNF-α [13,72].

Has a protective effect on the pancreas during
inflammation. The absence of IL-10 prevents the

downregulation of inflammation [72,73].
↓ ↑ ↑ = = Is seen to have a protective effect on the

pancreas in mice [74].

IL-12
[6,9,13,29]

Activates Th1-cells and induces the secretion of
cytokines, e.g., INF-γ, IL-2, and TNF-α [6].

The level escalates during the transition from
AP to CP. Increased levels in both conditions [6]. ↑ ↑ ↑ ↓ Potential role in the progression of the

disease [6].

IL-17
[23,75]

A pro-inflammatory cytokine with a key role in
the initial immune response [76].

Triggers damage to pancreatic acinar cells by
producing and releasing cytokines/chemokines

recruiting immune cells [76].
= ↑ Valuable severity and prognostic factor in AP

progression [77].

GM-CSF
[46,78]

A growth and differentiation factor for
granulocytes and macrophages [79].

Regulates cancer-associated inflammation in
PDAC [80]. ↓ ↑

IFN-γ
[6,13,29]

A pro-inflammatory cytokine produced by
activated T-cells and NK-cells, with chemotactic

abilities [81].

Stimulated by upregulated IL-18 and IL-12 in
CP [6]. Elevated levels were found in CP

tissue [82–84].
↑ = ↓ Potential role in the progression of

pancreatitis [6].
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Table 1. Cont.

Biomarkers Mechanism Pancreas-Specific Effects Blood Levels in Patients with CP Comment

TNF-α
[8,9,11,20,22,25,29,31,39–42]

Regulates cytokines and adhesion molecules;
also, a priming activator of inflammatory cells

and PSCs [38].

Induces PSC activation and collagen synthesis
leading to fibrosis and inflammation in the

pancreas [40].
= ↓ ↑ = ↑ = = ↑ ↑ ↑ ↑ = Elevated levels are also seen in patients with

AP [33,36].

ICAM
[15,85–87]

An adhesion molecule that serves to mediate
the adhesion of immune cells to

endo-/epithelial cells [88].

Overexpression of ICAM-1 in pancreatic
endothelial cells leads to inflammatory cell

infiltration in the pancreatic parenchyma [88].
↑ = ↑ ↑

Elevated levels in AP correlate with higher
mortality rates and necrosis

development [88]

VEGF
[14,89]

A pro-angiogenic mediator that enhances
vascular permeability and stimulates immune

cell migration [90].

Not typically associated with the pancreas, it
can indirectly be involved in pancreas diseases. ↑ =

Fractalkine
[7,91,92]

Adhesion molecule that can be cleaved and
functions as a chemoattractant [93].

Expressed on the cell membranes of PSCs, it
induces monocyte recruitment in the inflamed

pancreas [7].
↑ ↑ ↑

Alcohol consumption influences the levels of
fractalkine. One study only found elevation

in mild and severe CP [91].
Chemerin
[10,94,95]

An adipokine with chemoattractant properties,
promotes the differentiation of adipocytes [96].

Promotes the recruitment of macrophages to the
inflamed pancreas [96]. ↑ ↑ ↑ No correlation between chemerin levels and

alcohol intake or diabetes [94].

Adiponectin
[16,22,41,47,48,97]

An adipokine with anti-inflammatory
properties. Reduces the levels of circulating

fatty acids, activates their oxidation, and
prevents lipid accumulation in cells [98,99].

A lack of adiponectin accelerates the
progression of CP in mice [100]. = ↑ ↓ = = ↑ Levels are inversely proportional to fat

percentage.

Leptin
[16,41,46–49]

An adipokine with pro-inflammatory and
pro-fibrogenic properties [44,45].

Inhibits SC apoptosis; therefore, lower levels are
thought to induce SC apoptosis and thereby

inhibit fibrosis [16].
↓ ↑ ↓ ↓ ↓ ↓ Higher levels were found among patients

with CP with DM [41].

Resistin
[16,46,101]

An adipokine that acts in a pro-inflammatory
manner by upregulating IL-6 and TNF-α [102].

Increases the concentration of TNF-α, which, in
turn, activates PSCs [16]. ↑ ↑ ↑ Higher levels were found among patients

with CP with DM [41].

Osteopontin
[17,103–106]

A glycophosphoprotein produced and secreted
by osteoblasts, activated T cells, macrophages,
and others. Functions as a chemoattractant in

sites of inflammation [17,107].

May play a part in the calcification and the
formation of pancreas calculi [108]. ↑ ↑ ↑ = =

Neopterin
[18,20,62]

A compound secreted by activated
macrophages stimulated by INF-γ [20].

A marker of the cellular immunity mediated by
the lymphocyte–macrophage axis [20]. = ↑ ↓ Elevated in patients with AP and can reflect

the severity and prognosis of AP [109,110].

DM: diabetes mellitus; GM-CSF: granulocyte-macrophage colony-stimulating factor; ICAM: intracellular adhesion molecule; IFN-γ: interferon-γ; NK: natural killer; PDAC: pancreatic
ductal adenocarcinoma; and VGEF: vascular endothelial growth factor.
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3.2. Fibrosis

A total of 46 studies spanning from 1995 to 2022 examined 28 potential biomarkers
of fibrosis in patients with CP. Of these, 13 were studied multiple times. Three studies
also included patients with AP [7,10,111]. Table 2 provides an overview of the examined
biomarkers. The biomarkers mainly consist of PSCs activators, with the most extensively
studied being TGF-β, PDGF, and MIC-1, and components of the ECM, with TIMP-1 and
MMP-9 being studied the most. Figure 2 demonstrates a schematic overview of the fibrotic
biomarkers associated with the development of CP.
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extracellular matrix; EGF: epidermal growth factor; HA: hyaluronic acid; IGF: insulin-like growth
factor; MCP: monocyte chemotactic protein; MIC: macrophage inhibitory cytokine; MMP: matrix
metalloproteinase; PDGF: platelet-derived growth factor; TGF: tumor growth factor; TIMP: tissue
inhibitors of metalloproteinases; and TSP: tissue polypeptide specific antigen.

3.2.1. Extracellular Matrix Remodeling

Continuous modulation of the ECM leads to fibrosis. Matrix metalloproteinases
(MMPs) degrade the ECM, while tissue inhibitors of matrix metalloproteinases (TIMPs) in-
hibit MMPs. Numerous studies have measured the concentration of these biomarkers in pa-
tients with CP. MMPs are included in seven of the studies we reviewed [39,47,48,87,112–114].
Elevated levels of MMP-1, MMP-2, MMP-7, and MMP-9 were found in patients with CP
compared to the control group, while MMP-3 was not seen to be elevated in patients
with CP.

TIMP-1 concentrations in patients with CP were studied in nine of the studies we
reviewed [15,48,85,87,105,106,113,115,116], all showing elevated concentrations in patients
with CP, although three did not reach significance [48,85,105]. Hyaluronic acid (HA),
laminin, and fibronectin are also important components of the ECM and are directly
associated with the potential role of the ECM in the context of CP, see Figure 2. Elevated
levels of all these components of the ECM were found in patients with CP. Four studies
found elevated levels of HA [92,101,117,118], a fundamental component of the ECM in the
pancreas. The Mac-2-binding protein (M2BP), a ligand which binds to ECM proteins and a
novel biomarker of liver fibrosis, has also been found to be elevated in patients with CP.
Additional biomarkers of the ECM and their potential role in CP are shown in Table 4.
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3.2.2. Activation of PSCs

The activation and proliferation of PSCs influence the development of pancreatic
fibrosis by the synthesis and remodeling of the ECM. The remodeling of the ECM is
primarily mediated through the PCSs’ secretion of MMP and TIMP [119].

The cytokine transforming growth factor β1 (TGF-β1), the growth factor platelet-
derived growth factor (PDGF), and the chemokine monocyte chemoattractant protein 1
(MCP-1) are among the most important mediators involved in the activation of PSCs. With
few exceptions, these biomarkers are all found to be elevated in patients with CP compared
to the controls. Elevated levels of TGF-β, PDGF, and MCP-1 were also found in patients
with AP [7,10,111]. Macrophage inhibitory cytokine 1 (MIC-1), a cytokine part of the TGF-β
family, has also been found to be elevated in patients with CP in five different studies. Its
specific role in the pancreas is not extensively studied, but, as a part of the TGF-β family, it
can be presumed that it has a role in the activation of PSCs.

Some of the inflammatory cytokines listed in Table 1, especially IL-4, IL-6, and TNF-α,
also play a major role in pancreatic fibrosis formation. Additional activators and prolifera-
tors of PSCs are listed in Tables 2 and 4.
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Table 2. An overview of the fibrotic biomarkers involved in the development and progression of chronic pancreatitis. (Symbols in the column “Blood Levels in
Patients with CP” correspond to the reference in the column “Biomarkers”; =: no difference; ↑: reduced levels; and ↑: elevated levels).

Biomarkers Mechanism Pancreas-Specific Effects Blood Levels in Patients with CP Comment

MMP-7 [48,87] Enzymes secreted by activated PSCs that
degrade the ECM [120].

Degradation of basement collagen (type IV)
[39,112].

= ↑
MMP-9

[39,112–114] ↑ ↑ = ↑ One study found elevated levels in the
plasma and not in the serum [114].

TIMP-1
[15,48,85,87,105,106,113,115,116]

Enzymes secreted by activated PSCs that
inhibit MMPs [120].

Inhibits the proteolytic activity of MMPs. An
imbalance between MMP And TIMPs supports

the abnormal formation of the ECM [120].
↑ ↑ = ↑ = ↑ ↑ = mRNA expression in the pancreas

increases with disease progression [121].

HA
[92,101,117,118] A protein component of the ECM [101]. Marker of ECM proliferation. ↑ ↑ ↑ =

TGF-β
[7,10,24,91,92,94,101,117,122,123]

A multipotent growth factor, with various
functions, e.g., cell differentiation, proliferation,
matrix production, and apoptosis. Promotes

the recruitment of inflammatory cells and
contributes to fibrosis [124].

Activates PSCs leading to fibrosis formation in
CP [124]. ↑ ↑ = ↑ ↑ ↑ ↑ ↑ ↑ =

Higher in patients with pancreatic
atrophy than in patients with a

non-atrophic pancreas [7]. Correlates
with the severity of alcoholic CP [91].

PDGF
[10,12,46,89,94,117,122]

A growth factor and mitogen acting on
fibroblasts and promoting cell proliferation

and migration [125].

Acts as a growth factor on PSCs leading to ECM
formation and, consequently, fibrosis [101]. ↑ = ↓ = ↑ ↑ =

One paper studied PDGF-AA [122].
No correlation between PDGF-BB and

alcohol intake [117].

MCP-1
[7,9,12,24,25,29,48,91,92,101,111]

A chemoattractant that recruits an
inflammatory infiltrate and initiates

inflammation [24,126].

Activates PSCs via TNF-β and promotes
pancreatic fibrosis [101]. = ↓ = = ↑ = = = ↑ ↑ ↑

Negative association with alcohol [24].
Treatment with MCP-1 antagonist in rats

inhibits pancreatic fibrosis [7].
MIC-1

[17,106,127–129]
Part of the TGF-β family. An autocrine

regulator of macrophage activation [130].
The specific mechanism in the pancreas is not

clear [106,129]. ↑ ↑ ↑ ↑ ↑ = Further elevated in patients with PDAC,
making it a potential biomarker [106].

M2BP [131,132]
A ligand that binds to extracellular proteins

such as integrins, collagens, and
fibronectin [133].

Suggested to be associated with cell-to-cell and
cell-to-ECM adhesion and plays a role in the

facilitation of fibrosis [134].
↑ ↑ A novel biomarker of liver

fibrosis [135,136].

ET-1 [22,137]
A mediator with vasoconstrictive and

pro-inflammatory properties, secreted by
damaged endothelial cells [137].

Affects the activation of PSCs and stimulates the
migration of PSCs [138]. = = Elevated levels seen in smokers [137].

EGF
[29,89,139]

A growth factor that stimulates the
proliferation of, e.g., fibroblasts and epithelial

cells [140].

Regulates both chemoattraction and stimulation
of the proliferation of PSCs [141]. ↑ ↓ ↑

IGF-1
[24,48,50,139,142–144]

A growth factor that plays an important role in
many bioactivities such as cell proliferation,

differentiation, and survival [145].
Stimulates migration and proliferation of

PSCs [146].
= = = = ↑ = = One study found reduced levels of

IGF-1R [144].

IGFBP-2 [48,142] Insulin growth factor-binding protein 2 ↑ ↑
ECM: extracellular matrix; EGF: epidermal growth factor; ET-1: endothelin; HA: hyaluronic acid; IGF: insulin-like growth factor; IGFBP: insulin-like growth factor-binding protein;
MCP: monocyte chemoattractant protein; MIC: macrophage inhibitory cytokine; MMP: matrix metalloproteinase; M2BP: mac-2-binding protein; PDAC: pancreatic adenocarcinoma;
PDGF: platelet-derived growth factor; TGF: transforming growth factor; and TIMP: tissue inhibitor of metalloproteinases.
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3.3. Oxidative Stress

Twenty-three studies from 1981 to 2022 examined 34 biomarkers of oxidative stress, of
which 23 were studied multiple times. Four articles also included patients with AP [147–150].
A potential relationship between oxidative stress and pancreatic inflammation has been
extensively studied. Research indicates an early occurrence of pancreatic oxidative stress in
AP. Free oxygen radicals play a crucial role in regulating the extent of necrosis in acinar cells,
the development of pancreatic edema, the sequestration of inflammatory cells within the
pancreas, and the release of inflammatory mediators [151]. Additionally, there is growing
evidence connecting oxidative stress and CP. The use of antioxidant therapy has been
shown to reduce the severity of CP, resulting in less fibrosis in murine models [152], as well
as improve the well-being, decrease pain, and improve the overall functioning of patients
with CP [153,154]. The biomarkers of oxidative stress are challenging to evaluate, primarily
due to their complex metabolism and high turnover, making them difficult to measure in
systemic circulation. Most of the biomarkers included in the present review are, therefore,
indirect markers of oxidative stress. The low blood antioxidant levels could be attributed
to poor nutritional status due to malabsorption, maldigestion, and reduced food intake,
often observed in patients with CP. Figure 3 gives a schematic overview of oxidative stress
biomarkers associated with CP development.
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3.3.1. Lipid Peroxidation

Prolonged exposure to oxygen radicals results in lipid peroxidation and the oxidation
of fatty acids in cell membranes. Lipid peroxidation has been the focus of several studies
investigating oxidative stress in CP [155]. Many of the biomarkers in Table 3 are primarily
byproducts of lipid peroxide; these include TBARS, 4-HNE, MDA, and CD. Fourteen studies
have included one of these biomarkers, and, apart from a few non-significant results, all
these biomarkers are found to be elevated in patients with CP. Few studies include oxygen
radicals in patients with CP. Superoxides, main reactive oxygen species (ROS) in cells,
and ROS production in cells after phorbol myristate acetate (PMA) stimulation have all
been investigated in patients with CP. These biomarkers are difficult to measure in the
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blood as they have a very short half-life. Elevated levels were found in all four studies;
however, in two of them, the elevation was not significant. On the other hand, PON1 is a
free radical-scavenging molecule contributing to the detoxification of free radicals involved
in lipid peroxidation [156], and consistently reduced levels of PON1 were found in patients
with CP in the studies we analyzed, indicating elevated lipid peroxidation in patients with
CP. MDA, superoxide anion, and CAT were also found to be elevated in AP [147–150].

3.3.2. Antioxidation

The reactive superoxide is catalyzed to hydrogen peroxide by superoxide dismutase
(SOD). The main ROS scavenger molecule is glutathione (GSH), which is used by glu-
tathione peroxidase (GPX) and catalase (CAT) to reduce/neutralize ROS [157]; see Figure 3.
GSH, GPX, CAT, and SOD have been measured in patients with CP in, respectively six,
eight, four, and six studies. GSH, GPX, and SOD levels were reduced in patients with
CP, while the results on CAT were contradictive, as two studies found no difference, one
found lower levels, and one study found elevated levels. The antioxidant capacity in the
blood is measured by the ferrin-reducing ability of the plasma (FRAP) and the total peroxyl
radical-trapping antioxidant parameter (TRAP). While FRAP is reduced in patients with
CP, the TRAP concentrations are no different from the controls. Reduced levels of GSH and
elevated levels of CAT and TRAP were found in patients with AP [147–149].



Biomolecules 2024, 14, 239 11 of 23

Table 3. An overview of the oxidative stress biomarkers involved in the development and progression of CP. (Symbols in the column “Blood Levels in Patients with
CP” correspond to the reference in the column “Biomarkers”; =: no difference; ↓: reduced levels; and ↑: elevated levels).

Biomarkers Mechanism Blood Levels in Patients with CP Comment

TBARS [122,147,158–162] A byproduct of the lipid peroxidation process [163]. ↑ ↑ ↑ ↑ ↑ ↑ = TBARS are higher in patients with TCP than in patients with
ACP [160].

4-HNE [164,165] A byproduct of the lipid peroxidation process [166]. ↑ ↑ Also elevated in RAP, especially during attacks on AP [164].

MDA [149,164,165] One of the final products of lipid peroxidation [164]. ↑ = ↑ Elevated levels are also found in pancreatic tissue
samples [149].

CD [155,157] Primary products in lipid peroxidation in cells [157]. = ↑ Elevated levels are also found in pancreatic tissue
samples [149].

ROS [158,167] Reactive oxygen species = ↑ Difficult to measure in the blood due to a short half-life.

O−
2 [148,167] Reactive oxygen species molecule [148]. ↑ ↑ Elevated in both PMA-stimulated and resting

neutrophils [167].

GSH [157,159–161,168] The main ROS scavenger. Used by GPX to metabolize H2O2 and lipid
hydroperoxides to water/alcohols [157]. = ↓ ↓ ↓ ↓

GPX
[157,159,160,162,164,167,169,170] Catalyzes hydrogen peroxide to oxygen and water and, therefore, has an

important function in the protection against oxidative stress [167].
↓ ↓ ↓ ↓ ↓ ↓ = ↓

CAT [150,157,167,169] = = ↑ ↓

SOD [157,159–161,164,167,169] Catalyzes the dismutation of superoxide anions to hydrogen peroxide [157]. = ↓ ↓ ↓ = ↑ = One study found elevated serum SOD and lower levels of
erythrocyte SOD in patients with CP [161].

PON1 [156,157]
An HDL-associated enzyme. Plays a role in the hydrolyzation of active

oxidized phospholipids and in the destruction of lipid hydroperoxides and
H2O2 and prevents oxidation of LDL [156].

↓ ↓

TRAP [147,165] Total peroxyl radical-trapping antioxidant parameter. = =

FRAP [122,158,161,164] Ferrin-reducing ability of the plasma. A measurement of the non-enzymatic
antioxidant capacity of the plasma [158]. ↓ ↓ ↓ ↓ Lower levels are also observed in patients with RAP [164].

Vitamin A [42,161,162,169,171] Blood antioxidant ↓ ↓ ↓ ↓ ↓ Dietary-dependent
Vitamin C [147,159–161,164,169] Blood antioxidant ↓ ↓ ↓ = = = Dietary-dependent
Vitamin E [42,161,162,169–171] Blood antioxidant ↓ ↓ ↓ ↓ ↓ ↓ Dietary-dependent

Zink [162,169,171] Blood antioxidant = = = Elevated levels in patients with RAP [171].
Copper [162,169,171] Induces oxidative stress by increasing ROS [172]. ↑ ↑ = Reduced levels in patients with RAP [171].

Selenium [162,169,171] Blood antioxidant ↓ ↓ ↓
Homocysteine [158,168] Amino acid mediator in the synthesis of GSH. = ↑

Cysteine [158,168] Essential amino acid necessary for the formation of GSH. ↓ ↓
Methionine [49,168,173] Essential amino acid necessary for the formation of GSH. = ↓ ↓ One study only found elevated levels in TCP [168].
β-carotene [156,169,171] Blood antioxidant ↓ ↓ ↓

ACP: alcoholic chronic pancreatitis; CAT: catalase; CD: conjugated dienes; FRAP: ferrin-reducing ability of the plasma; GPX: glutathione peroxidase; GSH: glutathione; MDA: mal-
ondialdehyde; O−

2 : ion oxide; PON1: paraoxonase; PMA: phorbol myristate acetate; RAP: recurrent acute pancreatitis; ROS: reactive oxygen species; SOD: superoxide dismutase;
TBARS: Thiobarbituric acid-reactive substances; TCP: tropical chronic pancreatitis; TRAP: total peroxyl radical-trapping antioxidant parameter; and 4-HNE: 4-hydroxynonenal.
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Table 4. An overview of the biomarkers examined once.

Inflammation Fibrosis Oxidative stress

Group Biomarker Expression
Changes in CP Group Biomarker Expression

Changes in CP Group Biomarker Expression
Changes in CP Group Biomarker Expression

Changes in CP

Interleukins

IL-5 [9] ns
Adhesion
molecules

CD44 [62] ↓

Components
of the ECM

Collagen IV [87] ↑

Antioxidants

GR [157] ns
IL-7 [9] ns e-selectin [22] ns Fibronectin [87] ↑ Xanthine [171] ↓

IL-13 [9] ns VCAM [22] ns Laminin [117] ↑ B-cyproxanthine
[171] ↓

IL-15 [29] ↓

Complement
factors

C1q [9] ↓ MMP-1 [112] ↑ Lycopene [171] ↓
IL-16 [9] ns C3 [9] ns MMP-2 [47] ↑ SH groups [147] ↓

IL-18 [13] ↑ C4 [9] ↑ MMP-3 [112] ns
Lipid

peroxidation

Ox-LDL/LDL
[157] ↑

IL-23 [75] ↑ C4BPA [174] ↑ PICP [87] ns ROOH [170] ↑

Cytokines

TNF-β [9] ↓ C5 [9] ↑ PINP [87] ns Lipid peroxide
[170] ↑

GCSF [78] ns pro-C3 [118] ns THBS1 [85] ns Protein
damage

3-NT [157] ↑
MCSF [78] ns Pro-C5 [175] ns TPS [18] ↑ Carbonyls [158] ↑

IFN-α [29] ns Properdin [9] ↓ TSP-2 [87] ↑ Others Nitrites [165] ↑

Chemokines

CCL5 [85] ns Adipokines Omentin [95] ↑

Others

AZGP1 [85] ↑
CXCL16 [176] ns

Others

ANG-1 [89] ↓ CCN1 [87] ns
IP10 [12] ns HMGB1 [10] ns CCN2 [87] ↑

MCP-3 [9] ns LBP [85] ns PLG [87] ns
MIP-1β [12] ns LTF [85] ↑
MIP-3α [11] ↑ RORγT [75] ↑
PPBP [85] ns STAT3 [75] ↑

RBP-4 [143] ns YKL-40 [26] ns

Growth
factors

IGF-2 [48] ns CD40L [29] ↑

IGFBP1,3 [48] ↑
ns: non-significant; ANG-1: angiopoietin; AZGP: zinc-α2-glycoprotein 1; CCL: C-C motif chemokine ligand; CNN: cellular communication network; CXCL: C-X-C motif ligand;
G-CSF: granulocyte colony-stimulating factor; GR: glutathione reductase; HGMB: high-mobility group box; IGF: insulin-like growth factor; IGFBP: insulin-like growth factor-binding
protein; IL: interleukin; INF: interferon; IP: induced protein; LBP: lipopolysaccharide-binding protein; LTF: lactoferrin; MCP: monocyte chemotactic protein; MCSF: macrophage colony-
stimulating factor; MIP: macrophage inflammatory protein; MMP: matrix metalloproteinase; PLG: plasminogen; PICP/PICP: procollagen type I C-terminal propeptide/N-terminal
propeptide; PPBP: pro-platelet basic protein; RBP: retinol-binding protein; ROOH: lipid hydroperoxide; RORγ: retinoic acid receptor-related orphan receptor gamma; SH groups: thiols;
STAT: signal transducer and activator of transcription; THBS: thrombospondin; TNF: tumor necrosis factor; TSP-2: tissue polypeptide specific antigen; TSP: thrombospondin;
VCAM: vascular cell adhesion protein; and 3-NT: 3-nitrotyrosine.
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4. Discussion

The identification of a biomarker for the early diagnosis of CP is of great importance,
as it has the potential to make a significant impact on disease prevention and intervention.
Moreover, an early-stage CP biomarker could facilitate clinical trials with anti-fibrotic, anti-
inflammatory, and antioxidative therapies. Several biomarkers of inflammation, fibrosis,
and oxidative stress have been studied so far to improve our understanding of the transition
from AP to CP. Herein, we present a general overview of established inflammatory, fibrotic,
and oxidative stress biomarkers associated with the progression to CP as well as a brief
presentation of the most promising biomarkers. It is important to note that 50% of patients
with CP have not had an episode of AP prior to their diagnosis; therefore, some of the
biomarkers associated with CP might not be associated with AP [3].

Studies on CP biomarkers present varying results. Some inflammatory biomark-
ers have been linked to CP development, mainly IL-6, IL-8, IL-10, IL-12, TNF-α, ICAM,
fractalkine, and some adipokines. All the findings are not coherent; therefore, we found no
conclusive inflammatory pattern of CP. Several biomarkers of fibrosis are used to determine
fibrotic development in patients with CP. The main biomarkers of circulating ECM compo-
nents are MMPs, TIMP-1, and HA, and the main stimulators of PSCs are TGF-β, PDGF-BB,
and MCP-1. In addition, oxidative stress is increased, and antioxidant capacity is lowered
in CP. The exact impact of oxidative stress on disease progression and development is still
not thoroughly understood.

CP is histologically characterized by the loss of acinar cells, irregular interlobular
fibrosis, infiltration of inflammatory cells, and, eventually, also by the loss of intralobular
ducts and islets [177]. The pattern of fibrosis varies depending on the type of cell pri-
marily affected by the injury. Different causes of CP result in different fibrotic patterns.
For instance, alcoholic CP is more likely to exhibit inter(peri)lobular fibrosis, whereas
nonalcoholic CP more frequently shows periductal or intralobular fibrosis [119]. After
exposure to risk factors, such as smoking, alcohol, intraductal obstruction, or other injuries,
oxidative stress occurs, leading to the necrosis and apoptosis of pancreatic cells. This
triggers the activation and infiltration of inflammatory cells. Once the inflammatory cells
are activated, they secrete cytokines, growth factors, and other molecules that promote
the differentiation and activation of the PSCs. Activated PSCs excessively secrete and
synthesize extracellular matrix (ECM). PSCs cause ECM to be continuously remodeled,
resulting in fibrosis. Activated PSCs secrete matrix metalloproteinases (MMPs), enzymes
which degrade the ECM, and tissue inhibitors of MMPs (TIMPs), enzymes which inhibit
MMPs. An imbalance between MMPs and TIMPs can lead to the abnormal formation
of the ECM [119]. Oxidative stress occurs when ROS damage cell lipids and proteins.
Lipid peroxidation is the process by which ROS interact with polyunsaturated fatty acids.
Lipid peroxidation in cell membranes causes cell damage [158]. Antioxidants neutralize
ROS molecules, having a protective effect on CP. The processes of fibro-inflammation and
oxidative stress are intertwined, as oxidative stress causes inflammation but also directly
activates PSCs [178], while inflammation causes the formation of ROS and activates PSCs;
see Figure 4.

This review presents promising CP biomarkers. The three most promising biomarkers
of inflammation seem to be IL-6, IL-8, and fractalkine, meanwhile, those for fibrosis are
TGF-β1, HA, and MIC-1 and, for oxidative stress, TBARS, FRAP, and GPX. However, these
candidates require further investigation before they can be implemented in clinical practice.

Several methodological limitations must be taken into consideration when interpreting
the findings of current research efforts. The studies included in this review have marked
variability in their design, population, and CP diagnosis criteria. The lack of standardization
and proper characterization of patients included in studies can lead to biased results and
inaccurate conclusions. Disease stage standardization is particularly crucial, as biomarker
patterns may differ depending on whether samples were collected in the early or later
stages of the disease or during or between flare-ups. Due to the fact that CP can be difficult
to identify in its early stage, most clinical studies included patients with advanced CP or
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a flare-up, as these patients attend the sites of research for treatment. One study found
elevated levels of TGF-β1 in only mild and moderate CP, the assumed reason for this is
the replacement of pancreatic tissue with fibrotic tissue. Advanced CP is characterized by
fibrosis formation, which might play a role in the levels of biomarkers, as less pancreatic
tissue is present to produce cytokines and other factors. Disease severity should, therefore,
be a target for standardization and should at least be characterized in participating patients.
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How biomarkers are measured can also affect the accuracy of the outcome. Measuring
biomarkers can be challenging at times, especially when certain markers have a short
half-life and are difficult to measure correctly in the plasma or the serum. This can lead to
inaccurate results. The studies included in this review have used different methods, which
might explain the varying results which the same biomarker has in different studies.

Additionally, CP is a complex disease with different etiologies that may have different
sets of biomarker patterns, and factors such as smoking, alcohol, diabetes, age, gender,
and BMI are not matched in all the studies, which may lead to confounding effects, as
inflammation and oxidative stress may be present due to other causes. It is also important
to note that the interaction between cytokines and their specific inhibitors in the plasma
makes the accurate analysis and interpretation of cytokine levels and activity difficult.

Many cytokines and MMPs primarily exert paracrine effects, which are not necessarily
expressed in the systemic circulation. Oxidative stress is typically localized and organ-
specific. By implementing the notion that the levels of certain molecules in the bloodstream
may not accurately reflect the specific processes occurring in the organs, it becomes clear
that many of the biomarkers included in this review may also be elevated in other diseases
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and conditions. Therefore, it is important to consider factors such as smoking, alcohol use,
and diabetes when comparing biomarker levels to those of healthy individuals, as these
typically are present in some form in patients with CP.

The development of CP can be associated with disturbances in the flow of pancreatic
fluid from the acinar cells through the side branches and ducts in the pancreas. The dis-
turbances can be caused by strictures, the formation of intraductal stones, or intraductal
hypertension caused by (extra)pancreatic collections. Pancreatic obstruction is linked to
enhanced levels of inflammatory, fibrogenic, and oxidative stress markers in the pancreas.
Interventional procedures like endoscopic retrograde cholangiopancreatography or ex-
tracorporeal shock-wave lithotripsy are often used to reduce pancreatic duct obstruction,
thereby reducing intraductal pressure and, presumably, decreasing the levels of the mea-
sured biomarkers. Their effect on biochemical patterns in CP has not been extensively
studied and remains a topic of interest.

Some of the studies included in the present review also examined biomarkers in
patients with AP and RAP. These studies indicate that some of the biomarkers elevated in
CP are also elevated in patients with AP (e.g., IL-6, IL-2, MCP-1) and in patients with RAP
(e.g., MCP-1, 4-HNE, MDA). This overlap in biomarkers makes it challenging to use them
as early predictors of CP. Further prospective evaluation of a large and well-characterized
cohort of patients with AP, RAP, and CP may clarify the differences in the expression levels
of biomarkers within these separate entities.

The current literature review mainly includes cross-sectional studies on patients with
advanced CP, which limits the ability of this work to accurately assess disease progression.
Future longitudinal studies including patients with AP, RAP, and early CP are essential in
order to provide valuable insights into the time-dependent interplay between inflammatory,
fibrogenic, and oxidative stress biomarkers and the development of CP. Such a prospective
and prolonged follow-up may give us valuable insight and a rationale for interventional
studies [179,180].

CP is a rather heterogenous disease, and, within this diagnosis, several phenotypes as
well as clinical challenges exist. Future research should be aimed at associating different
phenotypes (obstructive, inflammatory, painful, etc.) with different biomarker profiles.

5. Conclusions

The fibro-inflammatory process involved in the progression from acute to recurrent
acute and, ultimately, chronic pancreatitis is epidemiologically and clinically evident.
Several biomarkers have been investigated in an attempt to unravel this process, but
their exact role in the continuous process of inflammation, fibrosis, and oxidative stress
towards CP is not yet fully established. Currently, there is no reliable biomarker specifically
indicative of chronic pancreatitis. The development of chronic pancreatitis remains poorly
understood, and a better understanding of it may help researchers identify new targets for
intervention.
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137. Śliwińska-Mosson, M.; Milnerowicz, S.; Nabzdyk, S.; Kokot, I.; Nowak, M.; Milnerowicz, H. The Effect of Smoking on Endothelin-1
in Patients With Chronic Pancreatitis. Appl. Immunohistochem. Mol. Morphol. 2014, 23, 288–296. [CrossRef]

138. Jonitz, A.; Fitzner, B.; Jaster, R. Molecular Determinants of the Profibrogenic Effects of Endothelin-1 in Pancreatic Stellate Cells.
World J. Gastroenterol. 2009, 15, 4143–4149. [CrossRef]

139. Meggiato, T.; Plebani, M.; Basso, D.; Panozzo, M.P.; Del Favero, G. Serum Growth Factors in Patients with Pancreatic Cancer.
Tumor Biol. 1999, 20, 65–71. [CrossRef]

140. Wong, R.W.C.; Guillaud, L. The Role of Epidermal Growth Factor and Its Receptors in Mammalian CNS. Cytokine Growth Factor
Rev. 2004, 15, 147–156. [CrossRef]

141. Blaine, S.A.; Ray, K.C.; Branch, K.M.; Robinson, P.S.; Whitehead, R.H.; Means, A.L. Epidermal Growth Factor Receptor Regulates
Pancreatic Fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 297, 434–441. [CrossRef]

142. Wlodarczyk, B.; Borkowska, A.; Wlodarczyk, P.; Malecka-Panas, E.; Gasiorowska, A. Insulin-like Growth Factor 1 and Insulin-like
Growth Factor Binding Protein 2 Serum Levels as Potential Biomarkers in Differential Diagnosis between Chronic Pancreatitis
and Pancreatic Adenocarcinoma in Reference to Pancreatic Diabetes. Przegląd Gastroenterol. 2021, 16, 36–72. [CrossRef]
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