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Abstract: Altered properties of fibrin clots have been associated with bleeding and thrombotic
disorders, including hemophilia or trauma and heart attack or stroke. Clotting factors, such as
thrombin and tissue factor, or blood plasma proteins, such as fibrinogen, play critical roles in fibrin
network polymerization. The concentrations and combinations of these proteins affect the structure
and stability of clots, which can lead to downstream complications. The present work includes clots
made from plasma and purified fibrinogen and shows how varying fibrinogen and activation factor
concentrations affect the fibrin properties under both conditions. We used a combination of scanning
electron microscopy, confocal microscopy, and turbidimetry to analyze clot/fiber structure and
polymerization. We quantified the structural and polymerization features and found similar trends
with increasing/decreasing fibrinogen and thrombin concentrations for both purified fibrinogen
and plasma clots. Using our compiled results, we were able to generate multiple linear regressions
that predict structural and polymerization features using various fibrinogen and clotting agent
concentrations. This study provides an analysis of structural and polymerization features of clots
made with purified fibrinogen or plasma at various fibrinogen and clotting agent concentrations. Our
results could be utilized to aid in interpreting results, designing future experiments, or developing
relevant mathematical models.

Keywords: fibrin; fibrinogen; thrombin; tissue factor; thrombosis

1. Introduction

During hemostasis, a blood clot forms to stop blood flow from exiting the wound
site [1]. However, unnecessary blood clotting in the veins or arteries can form an obstructive
thrombus that blocks blood flow to downstream organs and can ultimately lead to an
ischemic stroke, heart attack, or venous thromboembolism (VTE) [2]. Following vessel
injury, levels of procoagulant factors are upregulated in the blood, which can ultimately lead
to fibrin polymerization and clot formation [3,4]. Fibrinogen, the precursor to fibrin, is a
340 kDa glycoprotein consisting of two subunits, each containing three polypeptide chains:
Aα, Bβ, and γ chains [5,6]. These subunits are linked together by disulfide bonds in the
central E region. From both sides of the E region, the three chains extend to the two distal
D regions. The Bβ and γ chains end in two compact globular nodules, the β and γ nodules,
which contain hole ‘a’ and hole ‘b’, and the Aα chain extends into a partially unstructured
part of the molecule termed the αC region [7]. After vessel injury, active thrombin cleaves
fibrinopeptides A and B to make monomeric fibrin, which polymerizes into half-staggered
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protofibrils that aggregate laterally and form a three-dimensional network [8,9]. This
fibrin network provides the structural and mechanical stability that is essential for blood
coagulation and wound healing [5,10]. However, a clot can stem blood flow to stop bleeding
but can also occlude a blood vessel and restrict the transportation of essential nutrients to
downstream organs [11–13].

Dangerous thrombotic events, such as stroke, heart attack, or VTE, have been asso-
ciated with altered structural properties of the in vitro plasma clots made from the blood
of these patients [14–19]. Diseases such as cancer [20,21], diabetes [14,22], and COVID-
19 [23,24] have also been linked to the altered structural properties of in vitro plasma
clots, which could potentially impede clot degradation and increase the risk of thrombotic
events [25]. The coagulation cascade is a complex process; irregularities at any step can
lead to aberrant clot structures [26]. To understand why some diseases are linked with
altered fibrin structure, it is first necessary to understand what factors cause structural
changes to fibrin networks. To interpret fibrin clot behavior in physiological conditions,
clots can be made using plasma. However, plasma contains many proteins (including fib-
rinogen) that can bind to fibrin clots, changing the clot structure [27]. For example, albumin,
gamma-globulin, antithrombin III, and fibronectin all alter fibrin fiber thickness as well
as clot polymerization kinetics [4,28]. The fibrin network structure has also been studied
using purified fibrinogen, allowing for analysis of the effects of thrombin or fibrinogen con-
centration on individual parameters (i.e., density, diameter, pore size) in the absence of the
other plasma proteins and their confounding influences [29–31]. While experiments have
been performed to study clot structure, there is a need for a comprehensive analysis using
a combination of standard techniques [32]. In this work, we carry out a systematic study on
the effect of varying fibrinogen and activation factor concentrations on the fibrin network
structure, utilizing a combination of modeling and laboratory experimental techniques to
investigate clots made from both plasma and purified fibrinogen.

2. Materials and Methods

A combination of multiple laboratory experimental approaches and modeling was
used to compare fibrin network polymerization and structural parameters across vary-
ing fibrinogen (i.e., 1–10 mg/mL) and activation factor concentrations (i.e., thrombin:
0.1–1 U/mL). Detailed methods are available in the supporting information (Section S1).

Turbidity assays were used to compare polymerization of the clots. These assays
exploit the increase in light scattering as fibrin polymerizes. They can be used to determine
the lag time, rate of polymerization, and maximum absorbance and/or turbidity, which
is related to the fiber density and diameter; however, turbidity assays require consistent
mixing/pipetting and measurement times to be compared between samples [33]. Scanning
electron microscopy (SEM) and confocal microscopy were used to both quantitatively
and qualitatively compare clot structural properties. Confocal microscopy can provide
two- and three-dimensional organizational information about the clot geometry, such as
pore size and density. However, confocal results are diffraction limited and unable to
distinguish features below ~200 nm [34], making them incapable of reliably determining
fiber diameter. SEM has higher resolution than confocal microscopy, which allows for
the measurement of individual fiber diameters. However, SEM preparation may result
in morphological changes within the clot due to drying, fixing, dehydration, and sputter
coating. Super-resolution microscopy is likely the most accurate method to measure
fibrin fiber diameters but is not widely available. Although we did not utilize super-
resolution microscopy in this work, it has been found that SEM and super-resolution
microscopy result in very similar diameters across the range of physiologically relevant
fibrinogen concentrations [35]. These results suggest that there are not significant structural
changes to the fibers due to the SEM sample preparation process or that any shrinkage
is compensated for by metal deposited during sputter coating. Lastly, turbidimetry, the
process of taking turbidity measurements at several wavelengths, was used as another
technique to determine individual fiber diameters. However, turbidimetry only allows for
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the determination of the average diameter and can therefore be skewed by very large or
small fibers, and it does not account for multiple scattering [36,37].

2.1. Purified Fibrinogen vs. Plasma

Purified fibrinogen experiments were performed at East Carolina University (ECU)
while plasma experiments were performed at Rutgers University (RU). Purified fibrinogen
was purchased from Enzyme Research Laboratories (Peak 1 Fib, XIII free, P1 FIB). Commer-
cially available human-pooled plasma from more than 25 healthy donors was purchased
from Cone Bioproducts (#5781). Individual replicates were conducted with the same lot
of pooled plasma. Turbidity approaches using ECU reagents (thrombin and FXIII) were
reproducible at RU (Figure S2). Four concentrations of the experimental parameter (fibrino-
gen or thrombin/tissue factor (TF)) were used for most experiments (with the exception of
samples with a fixed ratio of tissue factor to fibrinogen, in which only two concentrations
were used).

2.2. Scanning Electron Microscopy (SEM) Imaging

Clots made from plasma and purified fibrinogen were allowed to stand for at least
30 min with the conditions described in detail in the supplement. Plasma clots were formed
at room temperature [38]; clots from purified fibrinogen were formed at 37 ◦C. Structural
comparisons of room temperature (RT) vs. 37 ◦C clots can be seen in the supplement
(Section S3); any changes were smaller in magnitude than differences resulting from the
effects of changing concentration. Clots were washed with buffer, fixed with glutaraldehyde,
and dehydrated with an ethanol series and dried with hexamethyldisilazane (HMDS).
Samples were sputter coated and imaged using university-respective (ECU’s Zeiss EVO 10
or RU’s Zeiss SIGMA field emission) scanning electron microscopes. At least three images
per sample replicate were acquired with a minimum of two replicates and six images.
Fibrin fiber diameters (minimum 50 fibers per image) were measured using Fiji (Fiji Is Just
ImageJ) Version 2.9.0/1.53t.

2.3. Confocal Microscopy

To prepare the clot samples for confocal microscopy, fibrinogen, thrombin/TF, calcium,
and labeled fibrinogen were allowed to fully form for at least 30 min. Plasma clots were
formed in a 96-well plate at room temperature (as described in Risman et al., 2022) [39];
clots from purified fibrinogen were formed on a cover glass at 37 ◦C. The same sample
preparation was used for samples containing each of the fibrinogen/thrombin concentra-
tions analyzed (described in the supplement). At least two images per sample replicate
were acquired using a confocal microscope (average of 6 images, ECU’s Zeiss LSM800 or
RU’s Zeiss LSM800). The percent area covered by fibrin fibers, the pore size of fibrin net-
works, and the length of fibrin fibers were measured using FIJI of images in a single plane
of the clot. The percent area covered by the fibers represents the fluorescent density (the
percentage of the 2D images that contained fluorescence after being made binary). Pore size
measurements were taken using a line tool of the average diameter of the pore on 2D slices
(single plane) of the clots. While technically the pore sizes are three-dimensional, it has been
shown that 2D pore size measurements can accurately represent the three-dimensional
pores [40,41].

2.4. Turbidity/Turbidimetry

The absorbance measurements of forming clots (with plasma or fibrinogen and TF or
thrombin) were taken every 15 s for 1 hour at a wavelength of 405 nm and a temperature of
37 ◦C to capture the polymerization process. Three replicates were measured. After that
hour, absorbance measurements were taken on the same wells every 10 nm from 500 to
800 nm as well as at a wavelength of 900 nm and 977 nm (in order to calculate the path
length). To calculate the turbidity values (τ) at each timepoint for the samples, the ab-
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sorbance values with the background subtracted out (A) were divided by the path length
(x) and then multiplied by ln(10) such that:

τ =
A
x
∗ ln(10)

Three parameters were analyzed from the turbidity assays: lag phase, maximum
turbidity, and rate of clot formation.

There were multiple turbidimetry approaches used to determine fibrin diameter
from light-scattering measurements, as there are several different approaches commonly
used within the fibrin community. We utilized the approaches introduced by Carr and
Hermans [42], and the corrected approach introduced by Yeromonahos et. al. [43], as
these approaches have been found to be reasonably accurate for clots made from purified
fibrinogen under clotting conditions similar to those utilized in this study when compared
to super-resolution microscopy [44]. The methods of determining the fiber diameter from
the turbidimetry data using these two approaches are described in the Supplemental
Information [45–47].

To compare the microplate readers (ECU’s BioTek Synergy HT and RU’s SpectraMax)
and overall techniques utilized at ECU and RU for turbidity and turbidimetry approaches,
ECU reagents (FXIII and thrombin) were utilized at RU. Experiments were conducted
using RU protocol. Supplemental Figure S1 shows the overlap of the data indicating the
similarity of the technique and equipment.

2.5. Multiple Linear Regressions

To delineate the dependent role of fibrinogen and thrombin concentrations, we devel-
oped multiple linear regressions for each independent parameter (diameter, pore size, %
area, fiber length, lag time, rate of formation, and maximum turbidity). A custom python
code with inputs of average independent variable data was used to output multiple lin-
ear regression equations and r-squared values. These codes can be found on a GitHub
repository at https://github.com/rr901/Fibrin-structure (accessed on 8 February 2024).

2.6. Statistical Analysis

All statistical analysis was performed using GraphPad Prism 10.0.2. Outliers were
identified and removed using the Grubbs’ test with an alpha of 0.05. To perform comparison
tests on the diameters, pore size, percent area covered, fiber length, and turbidity mea-
surements, normality was first confirmed with the D’Agostino and Pearson test. One-way
ANOVA tests were used to compare concentrations and techniques; corrected ANOVA tests
were used when samples were non-normal (Kruskal–Wallis test), and Welch’s corrected
ANOVA was used for samples with different standard deviations. Corresponding post hoc
tests were performed to conduct multiple comparisons. The specific test used is specified
in each figure legend. Turbidimetry-derived values were compared by uncertainty analysis.
Simple linear regressions were calculated using Prism by considering the mean Y value for
each data point. R-squared and slopes were recorded.

Bar plots display the mean ± standard error of the mean for parameters with normal
distributions; median ± interquartile range for parameters with non-normal distributions.
XY graphs are displayed as the mean ± standard error of the mean with connecting
lines. Unless otherwise specified, the following star nomenclature is used for statistical
significance: ns (not significant) p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3. Results

A variety of modeling and experimental techniques were used to analyze fibrin
polymerization and network structure. We used a combination of SEM imaging, confocal
imaging, and turbidity/turbidimetry to study clots made from purified fibrinogen and
pooled human plasma for a range of physiologically relevant fibrinogen and thrombin
concentrations. These experimental techniques were chosen as they are among the most

https://github.com/rr901/Fibrin-structure
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commonly utilized for studying fibrin polymerization and structure. Pooled human plasma
was used to minimize the large variations between individual plasmas.

3.1. Effect of Fibrinogen Concentration on Fibrin Network Structure

We assessed the effect of fibrinogen concentration (1, 2.7, 5, and 10 mg/mL) on the re-
sulting fiber and network structure in clots made from purified fibrinogen
(Figure 1) and pooled human plasma (Figure 2) with a fixed thrombin concentration
of 0.1 NIH-U/mL for the purified fibrinogen samples and 75 pM tissue factor for plasma
samples, which is the concentration of TFused for diagnostic testing [48,49]. For both sample
types, fiber diameter increased with increasing fibrinogen concentration (Figures 1A–D,I and
2A–D,I). The plasma samples increased by a rate of 29 nm per mg/mL (R2 = 0.90), while the
purified fibrinogen samples increased by a rate of 11 nm per mg/mL (R2 = 0.96). Further-
more, both purified fibrinogen and plasma clots had decreased pore sizes with increasing
fibrinogen concentration (purified fibrinogen: 0.72 µm per mg/mL; plasma: 0.24 µm per
mg/mL rate of decrease (R2 = 0.83 and 0.70, respectively)) (Figures 1E–H,J and 2E–H,J).
They also both had increased fiber area covered with increased fibrinogen concentration
(purified fibrinogen: 3.50% area per mg/mL rate of increase (R2 = 0.71), plasma: 0.96% area
per mg/mL increase (R2 = 0.53)) (Figure 1E–H,K and Figure 2E–H,K). Both samples had
decreased fiber length with increasing fibrinogen concentration (purified fibrinogen: 0.64
µm per mg/mL (R2 = 0.81), plasma: 0.63 µm per mg/mL (R2 = 0.79)) (Figures 1E–H,L and
2E–H,L).

For both purified fibrinogen and plasma, according to both turbidimetric fitting ap-
proaches and according to SEM imaging, there was an increase in diameter as the fibrinogen
concentration increased (Figure 3). For both samples, the Carr–Hermans approach usually
provides the largest diameter value, and the Yeromonahos approach usually provided
the smallest diameter with the SEM diameter falling somewhere between the two. Di-
ameters of fibrin fibers of clots made with plasma measured with SEM, Carr–Hermans,
and Yeromonahos decreased with slopes of 28.7 (R2 = 0.9044), 51.3 (R2 = 0.9459), and 4.1
(R2 = 0.9373) nm per mg/mL, respectively. Diameters of fibrin fibers made with purified
fibrinogen measured with SEM, Carr–Hermans, and Yeromonahos increased with slopes of
10.97 (R2 = 0.9598), 24.8 (R2 = 0.9922), and 4.0 (R2 = 0.9763) nm per mg/mL, respectively.
This showed that while the trends remained, the diameter differences between fibrino-
gen concentrations were muted for the Yeromonahos approach and exaggerated for the
Carr–Hermans approach compared to SEM. The diameter values obtained from the three
different methods were all similar for fibrinogen concentrations of 1 and 2.7 mg/mL, but as
the fibrinogen concentration increased, so did the variation in the diameter values obtained
by the different methods with a very large increase in the diameter obtained using the
Carr–Hermans approach at 10 mg/mL for both samples. The raw turbidimetry curves are
shown in Figure S3 of the Supporting Information.

To further isolate the role of fibrinogen concentration, we preserved the volume ratio
of tissue factor to fibrinogen (3.1 mM TF for 1 mg/mL of fibrinogen). We did this by
decreasing the concentration of fibrinogen, just as in the previous plasma samples; however,
we accordingly decreased the tissue factor concentration to provide a fixed ratio between
the two. In the above plasma samples, there was a fixed volume ratio (1:80), and thus there
was a smaller ratio of fibrinogen molecules to TF molecules as the fibrinogen concentra-
tion increased, while the TF concentration remained constant. Here, we focused on two
fibrinogen concentrations: 1 and 2.7 mg/mL. The latter sample (2.7 mg/mL) is the same as
in the previous plasma samples, while the former (1 mg/mL) has less TF. For this reason,
we are able to distinguish the role of fibrinogen independent of tissue factor. The results
are shown in Figures S5 and S6 of the Supporting Information. As fibrinogen concentration
increased from 1 to 2.7 mg/mL, we observed thicker fiber diameter (Figure S5E, p < 0.001),
reduced pore size (Figure S5F, p < 0.001), denser networks (Figure S5G, p < 0.01), and longer
fibers (Figure S5H p < 0.001). We were also able to compare diameters as measured with
SEM when there was a fixed volume ratio of TF to fibrinogen. Interestingly, with a lower
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fibrinogen concentration and less TF, the diameter was thicker (Figure S6). Compared to
SEM, the Carr–Hermans turbidimetry fitting approach underestimated the diameter of the
1 mg/mL sample and overestimated the diameter of the 2.7 mg/mL sample. Yeromon-
ahos only slightly underestimated the diameter compared to SEM but followed a more
similar trend.
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Figure 1. Structural analysis of clots made from purified fibrinogen with varying fibrinogen concen-
trations. (A–D) SEM images obtained on a Zeiss EVO10 (Zeiss, Oberkochen, Germany) at ~20,000× 
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Figure 1. Structural analysis of clots made from purified fibrinogen with varying fibrinogen concen-
trations. (A–D) SEM images obtained on a Zeiss EVO10 (Zeiss, Oberkochen, Germany) at ~20,000×
magnification on clots made with (A) 1 mg/mL, (B) 2.7 mg/mL, (C) 5 mg/mL, and (D) 10 mg/mL
fibrinogen. (E–H) Confocal images obtained on a Zeiss LSM800 (Zeiss, Oberkochen, Germany) using
a 63× oil immersion objective on clots made with (E) 1 mg/mL, (F) 2.7 mg/mL, (G) 5 mg/mL, and
(H) 10 mg/mL fibrinogen. (I) Diameters acquired from SEM images. (J) Pore sizes acquired from
confocal images. (K) Percent area covered obtained from confocal images. (L) Fiber lengths obtained
from confocal images. (All clots contain 0.1 U/mL thrombin and 25 L-U/mL FXIIIa in a buffer of
150 mM NaCl, 20 mM HEPES, 5 mM CaCl2, pH 7.4; scale bars 10 µm;, ** p < 0.01, **** p < 0.0001.)
Kruskal–Wallis with Dunn’s multiple comparison tests were used due to non-normal distributions
present for each parameter. Horizontal number inside bar is the mean; vertical number above bar is
sample size.
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Figure 2. Plasma clot structural analysis with varying fibrinogen concentrations. (A–D) SEM
images obtained on a Zeiss SIGMA (Zeiss, Oberkochen, Germany) at 20,000× magnification on
clots made with (A) 1 mg/mL, (B) 2.7 mg/mL, (C) 5 mg/mL, and (D) 10 mg/mL fibrinogen.
(E–H) Confocal images obtained on a Zeiss LSM800 using a 63× oil immersion objective on clots
made with (E) 1 mg/mL (adjusted in FIJI for visualization), (F) 2.7 mg/mL (adjusted in FIJI for
visualization), (G) 5 mg/mL, and (H) 10 mg/mL fibrinogen. (I) Diameters acquired from SEM
images. (J) Pore sizes acquired from confocal images. (K) Percent area covered obtained from
confocal images. (L) Fiber lengths obtained from confocal images. (All clots contain 1:80 volume ratio
of tissue factor; scale bars 10 µm; ns not significant, * p < 0.05, ** p < 0.01, **** p < 0.0001.) Brown–
Forsythe and Welch ANOVA tests and Dunnett multiple comparisons test (I,K), Kruskal–Wallis test
and Dunn multiple comparison test (J,L). Horizontal number inside bar is the mean; vertical number
above bar is sample size of individual measurements from 2 to 6 images.
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Figure 3. Diameter values obtained from the Carr–Hermans and Yeromonahos turbidimetric ap-
proaches as well as from SEM imaging for (A) purified fibrinogen and (B) plasma clots. Mean ± stan-
dard deviation displayed for scanning electron microscopy. Mean ± uncertainty due to approximation
displayed for Carr–Hermans and Yeromonahos. n = 3.

3.2. Effect of Fibrinogen Concentration on Fibrin Network Formation

We quantified fibrin polymerization properties using turbidity. For both clots made from
purified fibrinogen and plasma, the maximum turbidity values and rate of polymerization
increased with increasing fibrinogen concentration (Table 1, Figures S3 and S7). Maximum
turbidity is often used as a quantitative representation of the clot density and fiber thickness.
We found that the maximum turbidity increased as the % area of fibers increased and as the
fiber diameter increased (Section S6 of Supporting Information). The rates of clot formation
increased with increasing fibrinogen for the plasma samples and purified fibrinogen sam-
ples. The lag time increased as the fibrinogen concentration increased for the clots made
with purified fibrinogen, but it decreased for the clots made with plasma. The raw turbidity
curves are shown in Figure S3 of the Supporting Information. The relationship between
maximum turbidity and fibrinogen/thrombin concentration (Figure S7), % area (Figure S8),
and diameter (Figure S9) can be seen in the supplementary information.

Table 1. The lag phase, rate of clot formation, and max turbidity values for the clots from puri-
fied fibrinogen (left side) and plasma (right side) with fibrinogen concentrations of 1, 2.7, 5, and
10 mg/mL; ns not significant, *** p < 0.001, **** p < 0.0001. Dash (—) corresponds to lag time occurring
before first reading. A standard deviation of 0 corresponds to the values of all biological replicates
being the same. n = 3.

Parameter Purified Fibrinogen Plasma

Fibrinogen
Concentration

(mg/mL)
1 2.7 5 10 p-value 1 2.7 5 10 p-value

Lag Time (s) 140 ± 0 155 ± 0 175 ± 5 210 ± 13 *** 70 ± 36 45 ± 22 — — ns
Rate of Clot

Formation (cm−1/s
× 10−3)

3.4 ± 0.1 6.88 ±
0.06 8.2 ± 0.2 10.2 ±

0.4 **** 11 ± 3 39 ± 3 50 ± 5 59 ± 2 ****

Maximum Turbidity
(cm−1)

1.85 ±
0.03

5.24 ±
0.06

7.85 ±
0.10

9.35 ±
0.21 **** 0.87 ±

0.17
4.16 ±

0.10
7.23 ±

0.62
11.42 ±

0.19 ****

3.3. Effect of Thrombin Concentration on Fibrin Network Structure

We then assessed the effect of thrombin concentration (0.1, 0.25, 0.5, and 1 U/mL) on
the resulting fiber and network structure in clots made from purified fibrinogen (Figure 4)
and pooled human plasma (Figure 5). For both sample types (plasma and purified fib-
rinogen), the diameter decreased with increasing thrombin concentration (Figures 4A–D,I
and 5A–D,I) (plasma samples: 100 nm per U/mL (R2 = 0.82), purified fibrinogen: 91 nm
per U/mL (R2 = 0.94)). Both samples also have decreased pore size and fiber length as
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the thrombin concentration increases (Figures 4E–H,J,L and 5E–H,J,L) (pore size rate of
decrease 3.62 µm per U/mL (R2 = 0.89) for purified fibrinogen and 3.58 µm per U/mL
(R2 = 0.61) for plasma; fiber length rate of decrease 4.08 µm per U/mL (R2 = 0.98) for
purified fibrinogen and 5.67 µm per U/mL (R2 = 0.67) for plasma). The density had an
overall increasing trend for both purified fibrinogen and plasma samples as the thrombin
concentration increased with a rate of increase of 8.42% area per U/mL (R2 = 0.60) for
purified fibrinogen and 12.87% area per U/mL (R2 = 0.83) for plasma (Figures 4E–H,K and
5E–H,K).
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Figure 4. Structural analysis of clots from purified fibrinogen with varying thrombin concentrations
(2.7 mg/mL fibrinogen). (A–D) SEM images obtained on a Zeiss EVO10 at ~20,000× magnifica-
tion on clots made with (A) 0.1 U/mL, (B) 0.25 U/mL, (C) 0.5 U/mL, and (D) 1 U/mL thrombin.
(E–H) Confocal images obtained on a Zeiss LSM800 using a 63x oil immersion objective on clots made
with (E) 0.1 U/mL, (F) 0.25 U/mL, (G) 0.5 U/mL, and (H) 1 U/mL thrombin. (I) Diameters acquired
from SEM images. (J) Pore sizes acquired from confocal images. (K) Percent fluorescent density
obtained from confocal images. (L) Fiber lengths obtained from confocal images. (All clots contain
2.7 mg/mL fibrinogen and 25 L-U/mL FXIIIa in a buffer of 150 mM NaCl, 20 mM HEPES, 5 mM
CaCl2, pH 7.4; scale bars 10 µm; ns not significant * p < 0.05, ** p < 0.01, **** p < 0.0001.) Kruskal–Wallis
with Dunn’s multiple comparison tests were used to account for non-normal distributions present for
each parameter. Horizontal number inside bar is the mean; vertical number above bar is sample size
of individual measurements from at least 6 images.
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what was seen for increasing fibrinogen, the Yeromonahos approach had muted trends 
compared to Carr–Hermans and SEM. For purified fibrinogen, the Carr–Hermans and 
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Figure 5. Plasma clot structural analysis with varying thrombin concentrations (2.9 mg/mL fibrino-
gen). (A–D) SEM images obtained on a Zeiss SIGMA at 20,000× magnification on clots made with
(A) 0.1 U/mL, (B) 0.25 U/mL, (C) 0.5 U/mL, and (D) 1 U/mL thrombin. (E–H) Confocal images
obtained on a Zeiss LSM800 using a 40x water immersion objective on clots made with (E) 0.1 U/mL,
(F) 0.25 U/mL, (G) 0.5 U/mL, and (H) 1 U/mL thrombin. (I) Diameters acquired from SEM images.
(J) Pore sizes acquired from confocal images. (K) Percent fluorescent density obtained from confocal
images. (L) Fiber lengths obtained from confocal images. (Scale bars 10 µm; ns not significant,
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.) Brown–Forsythe and Welch ANOVA tests, Dunnett
multiple comparisons test (I–L). Horizontal number inside bar is the mean; vertical number above
bar is sample size of individual measurements from at least 6 images.

Figure 6 shows the diameters obtained from SEM in comparison to those obtained
from the Carr–Hermans and Yeromonahos approaches fit to turbidimetry data for both
purified fibrinogen and plasma at the four different thrombin concentrations. All three
methods, for both samples, showed a decrease in diameter as the thrombin concentration
was increased. The diameters of fibrin fibers in clots made with plasma measured with
SEM, Carr–Hermans, and Yeromonahos decreased with slopes of −100.1 (R2 = 0.81), −81.0
(R2 = 0.79), and −10.8 (R2 = 0.87), respectively. Diameters of fibrin fibers in clots made
with purified fibrinogen measured with SEM, Carr–Hermans, and Yeromonahos decreased
with slopes of −90.4 (R2 = 0.94), −66.8 (R2 = 0.89), and −25.9 (R2 = 0.95), respectively. Like
what was seen for increasing fibrinogen, the Yeromonahos approach had muted trends
compared to Carr–Hermans and SEM. For purified fibrinogen, the Carr–Hermans and SEM
diameters were very similar for 0.1 U/mL and the Yeromonahos and SEM diameters were
very similar for 0.25 and 0.5 U/mL, but the diameter obtained from SEM imaging was
much lower than the other two methods for 1 U/mL. For the plasma samples, there was a
large difference in the diameter values obtained using the three different methods, with
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the SEM values being the smallest, the Yeromonahos values being the next largest, and
the Carr–Hermans diameter values being the largest. The raw turbidimetry curves are
provided in Figure S4 of the Supporting Information.
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Figure 6. Diameters obtained from the Carr–Hermans and Yeromonahos turbidimetric approaches as
well as from SEM imaging for (A) clots from purified fibrinogen and (B) plasma clots. Mean ± stan-
dard deviation displayed for scanning electron microscopy. Mean ± uncertainty due to approximation
displayed for Carr–Hermans and Yeromonahos. n = 3.

3.4. Effect of Thrombin Concentration on Fibrin Network Formation

The results obtained from the turbidity curves for the clots made with purified fibrino-
gen and plasma made at each of the thrombin concentrations are provided in Table 2. The
raw turbidity curves are shown in Figure S3 of the Supporting Information. For both the
purified fibrinogen and for the plasma samples, the lag time decreased as the thrombin
concentration increased. For the purified fibrinogen samples, the rate of polymerization in-
creased as the thrombin concentration increased, while it decreased for the plasma samples.
The maximum turbidity values decreased slightly as the thrombin concentration increased
for the purified fibrinogen samples but increased slightly overall for the plasma samples.
Interestingly, the maximum turbidity decreased with increasing % area for purified fibrino-
gen but increased with increasing % area for plasma (Figure S8). Similar to what was seen
in Section 3.2, the maximum turbidity increased with increasing diameter when the clots
were made with purified fibrinogen but decreased with increasing diameter for clots made
with plasma (Figure S9).

Table 2. The lag phase, rate of clot formation, and max turbidity values for purified fibrinogen (left
side) and plasma (right side) clots with thrombin concentrations of 0.1, 0.25, 0.5 and 1 U/mL; ns not
significant, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Dash (—) corresponds to lag time occurring before
first reading. A standard deviation of 0 corresponds to all the values being the same. n/a p-value was
due to the values within each concentration being the same (standard deviation of 0). n = 3.

Parameter Purified Fibrinogen Plasma

Fibrinogen
Concentration

(mg/mL)
0.1 0.25 0.5 1 p-value 0.1 0.25 0.5 1 p-value

Lag Time (s) 105 ± 0 75 ± 0 30 ± 0 — n/a 113 ± 25 24 ± 3 13 ± 3 — ****
Rate of Clot

Formation (cm−1/s
× 10−3)

9.9 ± 0.2 14.1 ±
0.5

24.5 ±
0.6

33.3 ±
1.5 **** 2.3 ± 0.4 2.1 ± 0.4 1.6 ± 0.3 1.5 ± 0.2 ns

Maximum Turbidity
(cm−1)

5.86 ±
0.14

5.20 ±
0.15

5.13 ±
0.09

4.47 ±
0.17 *** 2.31 ±

0.27
3.02 ±

0.14
2.83 ±

0.17
3.51 ±

0.32 **

3.5. Generalized Trends and Predicted Values

First, we looked at trends developed when the clots are dependent on fibrinogen and
thrombin concentrations, as summarized in Table S2. Most parameters, both structural
and kinetic, show the same increasing or decreasing trends for clots made with purified



Biomolecules 2024, 14, 230 12 of 18

fibrinogen or plasma. For clots made with increasing fibrinogen concentration, the diameter
increased for all methods, the percent area and maximum turbidity increased, the rate of
formation was faster, and the pore size and fiber length decreased. For clots made with
increasing thrombin, the diameter decreased for all methods, the pore size and fiber length
decreased, the percent area fraction increased, and the lag time shortened. For clots made
with purified fibrinogen, the lag time and fibrinogen concentration were positively related,
whereas for plasma clots, the fibrinogen concentration and lag time were inversely related.
For clots made with purified fibrinogen, increased thrombin concentrations had faster
rates of formation and lower maximum turbidity. In contrast, for clots made with plasma,
increased thrombin concentrations had slower rates of formation and higher turbidity
compared to clots made with lower thrombin concentrations.

Furthermore, we studied the coefficients of the generated equations from the multiple
linear regressions using our data (Tables S3 and S4). In the case of diameter, we saw similar
magnitudes for both coefficients for purified fibrinogen and plasma clots (10.89 vs. 59.89 for
fibrinogen and −88.73 vs. −100.15 for thrombin). The sign of these coefficients describes the
role of these concentrations on the diameter or other independent parameters. For example,
in the case of diameters, the positive coefficients for fibrinogen concentration implies that
increasing fibrinogen leads to larger diameters; contrastingly, the negative coefficient for
thrombin concentration implies increasing thrombin leads to smaller diameters. All trends
can be found in the supplementary file (Tables S3 and S4).

Next, we looked at the trends with plasma when made with TF rather than thrombin
(Table S4). These equations were generated using data from a fixed volume of TF and a
fixed ratio of TF to fibrinogen to obtain a macroscale understanding of the role of fibrinogen
and TF in these clots. Overall, the magnitudes of the coefficients for fibrinogen and TF
concentrations are smaller compared to those for plasma clots made with thrombin.

4. Discussion

It is essential to study blood clot formation and clinically relevant fibrin network struc-
tures to pinpoint the role of selected blood proteins and infer patient risk from aberrancies
in their concentration or biochemistry [15,28,50,51]. Here, we have systematically studied
fibrin polymerization and the structure of clots made with purified fibrinogen and plasma
across a range of physiological concentrations and compared results between different
experimental techniques to identify overall trends.

Understanding the effect that changing fibrinogen concentration has on clot formation
is important because heart disease and stroke have been linked with increased fibrinogen
concentrations [48,51–53], while trauma-induced coagulopathy and bleeding have been
linked to decreasing fibrinogen concentrations [54–56]. In studying the samples made from
purified fibrinogen and samples made with plasma, many of the trends in alterations in clot
and fiber structure were the same with changing fibrinogen concentration (Figures 1 and 2,
Tables 1 and S2).

Furthermore, increasing fibrinogen concentration caused a longer lag time for purified
fibrinogen samples but a shorter lag time for the plasma samples. It would be expected that
with increasing fibrinogen concentration, there would be a lower thrombin: fibrinogen ratio,
leading to slower fibrinopeptide cleavage [57], and thus a longer lag phase. Furthermore,
increased fibrinogen concentration provides more holes for the knobs on fibrin monomers
to bind to, which would increase the lag phase. This explains the increased lag phase with
increased fibrinogen concentration that is seen with purified fibrinogen. It has been found
that gamma-globulin and fibronectin result in reduced lag phases [30], so it is possible that
these plasma proteins are contributing to the decreased lag phase with increased fibrinogen
concentration for the plasma samples, or it is possible that it is a difference in the reaction
time of starting the measurements, since the difference was insignificant and much shorter
than those seen with the purified fibrinogen samples. Future studies can further explore
the role of other plasma proteins.
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To isolate the role of fibrinogen concentration while excluding the confounding role of
TF, we examined a fixed ratio of tissue factor to fibrinogen rather than a fixed concentration
of tissue factor. With 1 mg/mL fibrinogen, the samples with a fixed ratio had thinner,
shorter fibers and a smaller fluorescent area covered compared to samples with 2.7 mg/mL
fibrinogen (Figure S5). They also had a longer lag phase and an increased rate of clot
formation (Table S1). Since a lower overall tissue factor leads to slower kinetics in the
1 mg/mL sample, the fibers had time to laterally aggregate more to create thicker fibers.
Surprisingly, the pore size is similar between the fixed ratio and volume ratio samples;
however, the increased fluorescent area covered is also likely due to the increased diameter.
With more protofibrils incorporated into the lateral aggregation of the fibers, they did not
grow as much longitudinally, as seen by comparing the fiber lengths in Figures 2 and S5.

It is also important to understand the effect of changing thrombin concentration,
as bleeding conditions, notably hemophilia, are characterized by insufficient levels of
thrombin [58–62]. While purified fibrinogen had similar trends for clot structure and
lag time (Figures 4 and 5, Tables 2 and S2), reverse trends were found for the rate of
clot formation and maximum turbidity (Table 2). An increased rate of clot formation for
purified fibrinogen can be explained by fibrinopeptide cleavage being faster with increasing
thrombin concentrations, resulting in faster protofibril formation [57], and the difference in
the plasma samples’ rate of clot formation is not statistically significant with the changing
thrombin concentrations. However, it could be affected by the presence of albumin in
plasma, which has been shown to decrease the rate of clot formation [28,63–65]. This
increasing maximum turbidity with increasing thrombin concentration for plasma was also
found by Shah et. al. [30] in comparing thrombin concentrations of 0.25 and 1.5 U/mL,
and it was hypothesized that it is because of antithrombins, resulting in less fibrinogen
being converted to fibrin at low thrombin concentrations, with their effect decreasing as
the thrombin concentration increases.

Altered fiber diameter has been linked to several diseases such as ST-elevation my-
ocardial infarction, ischemic stroke [66,67], venous thromboembolism [14,68], diabetes [69],
and COVID-19 [24,70,71]. Fibrin clot structure plays a role in fibrinolysis: changes to the
fibrin network and individual fibers can make a patient more susceptible or resistant to
lysis [15,24,39,72–75]. We investigated the fiber diameter using both SEM imaging and
using turbidimetry for comparison with two different turbidimetric fitting approaches
used. All three methods show an increase in the fiber diameter as the fibrinogen con-
centration is increased for both purified fibrinogen clots and for plasma clots. Similar to
previous results comparing turbidimetry with super-resolution microscopy [44], we found
good agreement between the diameter values obtained using the three methods for low
fibrinogen concentrations with the Carr–Hermans approach providing the most similar
diameter values to those obtained using SEM. However, much of the previous work did not
explore concentrations higher than 1 mg/mL, whereas physiological concentrations range
from 2 to 5 mg/mL and can be even higher in the presence of inflammation [47], COVID-
19 [23,24,75], diabetes mellitus [22,69], and smoking [76–78]. It has been previously shown
that as the fibrinogen concentration increases above 1 mg/mL, the corrected Yeromonahos
approach is the most accurate in comparison to SEM imaging [35], and we find the same
results for purified fibrinogen samples here. However, it appears from our results that as
the fibrinogen concentration is increased, the variability between the reported diameters
using the different methods increases, especially for the plasma samples. This makes sense
since the turbidimetric approaches are assuming that the solutions are diluted and that the
fibers are thin compared to the wavelengths being used for measurement. Therefore, as
the fibrinogen concentration is increased and the fibers become thicker, the turbidimetric
approaches become less reliable [37].

For the diameter values obtained using SEM and turbidimetry with changing throm-
bin concentration, all three methods show decreased diameter with increasing thrombin
concentration for both purified fibrinogen and plasma, but the three methods overestimate
relative to SEM. This could be due to the fibers shrinking during the drying steps required
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for SEM imaging, as the fibers were much thinner for the plasma samples than for the puri-
fied fibrinogen samples, which is the opposite of what has been previously reported [29,30].
This difference could also be due to prothrombin present in the plasma, which would mean
that the thrombin concentrations are higher than expected, explaining why the plasma
fibers are thinner than those for purified fibrinogen. The discrepancy between SEM and
turbidimetry for the plasma samples could also be due to inaccuracy in the turbidimetric
approaches, as described above. Since the diameters agree reasonably well between SEM
and turbidimetry for purified fibrinogen, but not for plasma, it is also possible that the
additional proteins present in plasma that bind to fibrin are leading to increased scattering,
which is causing overestimates of the diameter values with turbidimetry.

Maximum turbidity is often used as a marker of clot structural changes, particularly
diameter and density. Therefore, trends in how maximum turbidity changes can be used
to predict these structural properties. We found that there was an increase in maximum
turbidity for increasing fiber diameters for all conditions except plasma clots made with
increasing thrombin, which may have had confounding influences, as described above.
Similarly, there was an increase in maximum turbidity with increased percent fluorescent
area for all conditions except clots made with purified fibrinogen at increasing thrombin
concentrations. Interestingly, the linear fits and therefore linear relationships were stronger
for samples that were formed with increasing fibrinogen concentrations. This implies there
is more predictability for such comparisons.

After compiling structural and kinetic information, we were able to generate trends
for clots from purified fibrinogen and plasma made with thrombin or plasma clots made
with TF. These trends can aid in future studies to predict clot structure and polymerization
characteristics to optimize experimental conditions. The multiple linear regressions were
better fits for clots made with purified fibrinogen compared to those made with plasma.
This suggests that a non-linear model may better fit plasma clots compared to the linear
model. Nonetheless, these regressions provide a foundation to observe and predict trends
in structure and kinetics of clots under specified conditions.

In this study, we have quantified the rates at which fibrin fiber and clot properties
change as a function of coagulation molecule concentrations for both purified fibrinogen
and plasma. This work provides a foundation to show how clot polymerization and
structure change with altered fibrinogen and activation factor concentrations using a variety
of experimental methods. The results presented here may also be useful to compare and
interpret clotting from turbidity experiments with plasma samples from thrombotic patients,
where the fibrinogen concentrations are often higher than controls, or in trauma patients or
many dysfibrinogenemias, where there are low fibrinogen levels. It highlights not only how
values change for varying clot concentrations but also how trends differ for clots created
with purified fibrinogen and with plasma. Here, we focused on fibrinogen and clotting
agent concentrations; future work could incorporate platelets to study glycoprotein V and
platelet-generated thrombin that could alter clot structure. In addition, similar experiments
could be performed with other factors in the coagulation cascade. For example, there is
contradictory evidence on the role of FXIII on clot structure [79,80]; our combination of
techniques could aid in the understanding of this role. Furthermore, recent studies have
explored the role of mutant fibrinogens [26]; future studies could utilize our multi-technique
approach to systematically analyze changes in clot structure due to mutant fibrinogen,
genetic polymorphisms [81,82], and post-translational modifications of fibrinogen [83]. It
would be expected that alterations in normal fibrinogen would impact the clot structure.
Lastly, our clots were formed in the absence of flow, which resembles situations with the
obstruction of blood flow; future work could study clot formation and structure with the
presence of flow [84].

5. Conclusions

In this work, we studied clots made from both purified fibrinogen and plasma using
an array of analytical techniques. We found that while changing fibrinogen and activation
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factor concentrations typically results in similar trends for changes in network and fiber
structure for both purified fibrinogen and plasma clots, there were differences in the
polymerization times and rates. Ultimately, our findings can help other researchers choose
optimal conditions for their experiments and predict how results performed using purified
fibrinogen will translate to physiological conditions where there are plasma proteins present.
Furthermore, our results provide relevant parameters to develop or update mathematical
models of clotting. In the long term, understanding the impact of the different experimental
techniques and the varying clot conditions will aid researchers and clinicians alike in
developing diagnostics and therapeutics.
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