
Citation: Nakashima, M.; Suga, N.;

Ikeda, Y.; Yoshikawa, S.; Matsuda, S.

Inspiring Tactics with the

Improvement of Mitophagy and

Redox Balance for the Development of

Innovative Treatment against

Polycystic Kidney Disease.

Biomolecules 2024, 14, 207. https://

doi.org/10.3390/biom14020207

Academic Editor: Liang-Jun Yan

Received: 21 December 2023

Revised: 31 January 2024

Accepted: 8 February 2024

Published: 9 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Inspiring Tactics with the Improvement of Mitophagy and Redox
Balance for the Development of Innovative Treatment against
Polycystic Kidney Disease
Moeka Nakashima, Naoko Suga, Yuka Ikeda, Sayuri Yoshikawa and Satoru Matsuda *

Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi,
Nara 630-8506, Japan
* Correspondence: smatsuda@cc.nara-wu.ac.jp

Abstract: Polycystic kidney disease (PKD) is the most common genetic form of chronic kidney disease
(CKD), and it involves the development of multiple kidney cysts. Not enough medical breakthroughs
have been made against PKD, a condition which features regional hypoxia and activation of the
hypoxia-inducible factor (HIF) pathway. The following pathology of CKD can severely instigate
kidney damage and/or renal failure. Significant evidence verifies an imperative role for mitophagy
in normal kidney physiology and the pathology of CKD and/or PKD. Mitophagy serves as important
component of mitochondrial quality control by removing impaired/dysfunctional mitochondria
from the cell to warrant redox homeostasis and sustain cell viability. Interestingly, treatment with the
peroxisome proliferator-activated receptor-α (PPAR-α) agonist could reduce the pathology of PDK
and might improve the renal function of the disease via the modulation of mitophagy, as well as the
condition of gut microbiome. Suitable modulation of mitophagy might be a favorable tactic for the
prevention and/or treatment of kidney diseases such as PKD and CKD.

Keywords: polycystic kidney disease; chronic kidney disease; autophagy; mitophagy; mitochondria;
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1. Introduction

Polycystic kidney disease (PKD) is the most familiar genetic type of CKD. The condi-
tion is characterized by the development of multiple kidney cysts, and it could subsequently
instigate kidney damage and/or renal failure [1]. This disease may be triggered by muta-
tions in PKD1 or PKD2 genes, which encode the integral membrane proteins polycystin-1
and polycystin-2, respectively [2]. Interestingly, these PKD proteins are associated with
decreased autophagy [2,3]. Autophagy has been found to be impaired in the epithelial cells
of the kidneys in animal models of PKD, as well as in patients with PKD, suggesting that
this impairment might contribute to the development and/or progression of PKD [4,5]. In
addition, several agents, such as rapamycin, could protect against PKD, which might restore
the autophagy in animal models [6]. Mechanistically, aberrant activation of the mammalian
target of rapamycin (mTOR), a target molecule of rapamycin, has been shown to be linked
to the impaired autophagy as well as the pathology of PKD [7]. Cyst enlargement in PKD
kidneys may result in restricted areas of hypoxia [8]. Hypoxic stimuli may then increase
the hypoxia-inducible factor-1α (HIF-1α) protein by preventing its degradation by the
proteasome. Under hypoxic conditions, the phosphatidylinositol 3-kinase (PI3K) and the
mTOR pathway might activate the expression of HIF-1α [9]. (Figure 1) Hypoxia-related
events have been revealed to be linked with cyst formation [10,11]. HIF-1α has been found
to be also highly expressed in dendritic cells, and its expression is relatively higher in
radicular cysts than in odontogenic tumors [12]. In PKD, HIF-1α may not disturb initial
cyst formation, but it is important for cyst progression and expansion in later stages of
the disease [13]. Conversely, it has also been shown that HIF-1α inhibition could reduce
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cystic growth [14]. Signaling pathways being related to the activation of HIF-1α during
hypoxia could be contributing to cyst expansion in PKD [15]. Reactive oxygen species
(ROS) have been also shown to stimulate cyst development in PKD. In addition, several
tissues of PKD may exhibit elevated ROS levels that are positively interrelated with disease
severity [15,16]. Peroxidation of phospholipids in animal and human kidneys may be
caused by high amounts of ROS [17,18]. Cultured renal cysts and MDCK cell cysts in a
three-dimensional setup have confirmed a relationship between lipid peroxidation and
increased cyst size [14,19]. It is well-known that damaged mitochondria could induce the
generation of ROS and may bring about an increase in membrane lipid peroxidation. There-
fore, autophagy, mitochondria, hypoxia and/or ROS might be important administrators
in the progression in PKD. Undoubtedly, these hypotheses need further investigation. In
addition, despite remarkable efforts to clarify all features of PKD through wide-ranging
translational research, there is still an unmet clinical requirement for biomarkers and/or
prognosticators that may possibly predict the speed of disease progression [20–22]. A better
comprehending of the pathophysiology of cystic expansion may lead to the advancement of
potential therapies to slow cyst development and/or expansion. The development of inno-
vative treatments that may act synergistically or have fewer side effects might considerably
improve the treatment consequences.
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Figure 1. Schematic representation of the relevant signaling pathway potentially being involved in
the pathogenesis of polycystic kidney disease (PKD) and/or chronic kidney disease (CKD). Several
modulator molecules linked to the PI3K/AKT/mTOR/mTORC1 signaling pathway are demon-
strated. Examples of compound metformin, as well as hypoxia and/or starvation, known to act
on the AMPK/mTOR and/or mitophagy signaling, are also shown. Arrowhead indicates stim-
ulation, whereas hammerhead shows inhibition. Note that several important activities, such as
cytokine-induction and/or inflammatory reactions, have been omitted for clarity. Abbreviation:
mTOR, mammalian/mechanistic target of rapamycin; PI3K, phosphoinositide-3 kinase; ROS, reactive
oxygen species.
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2. Autophagy/Mitophagy and Redox Imbalance in the Homeostasis of Kidney Cells

Substantial evidence has supported an imperative role for autophagy in kidney patho-
physiology. Autophagy is firmly regulated to support cells to get used to and/or decrease
cellular stress. Some studies have emphasized an intricate signaling system that could de-
tect alterations in energy and/or nutrient condition to either activate or prevent autophagy.
Intracellular stresses, which can be brought from ROS, hypoxia, stress of endoplasmic
reticulum, several DNA damages and/or inflammatory immune signaling have been
revealed as potential stimulators of autophagy [23]. Interestingly, autophagy has been
defined as a HIF-1α-dependent response [24]. Autophagy describes the process by which
cytoplasmic materials, including organelles, access the lysosomes for hydrolytic degener-
ation [25], which is also a course of cell repair that may frequently convey the apoptosis
termed “self-killing” of cells [26]. Dying cells may frequently exhibit an accumulation
of autophagosomes and hence adopt a morphology known as autophagic cell death [26].
Consequently, autophagic cell death might cause cell death with autophagy rather than cell
death by autophagy. Hypoxia can regulate the mTOR complex 1 (mTORC1) [27]. Therefore,
hypoxia and/or mTOR signaling may be modulators of autophagy [27]. (Figure 1) Mito-
chondria are particularly sensitive to hypoxa, which might result in both functional and
morphological impairments. Mitophagy is an arrangement of autophagy that eliminates
surplus mitochondria, facilitates reconstruction of mitochondria, and prevents the accumu-
lation of impaired mitochondria [28]. Therefore, mitophagy might be a key mechanism for
preserving the quality of mitochondria by eliminating damaged mitochondria. In response
to hypoxia, the PTEN-induced putative kinase 1 (PINK1) may be activated as a regulator
of mitophagy, confirming the suitable functioning of the total mitochondrial network [29].
Various stressors, such as hypoxia, ischemia, ageing, and oxidative stress, may lead to an
increase in ROS and damages to mitochondria, which may trigger the PINK1 mediated
mitophagy [30]. (Figure 2) There is evidence for weakened mitophagy in the renal cells of
diabetic mice with reduced expressions of mitochondrial PINK1 [31]. A working mitophagy
system may act as a scavenger of damaged mitochondria, and thereby maintain a decent
mitochondrial homeostasis.

Mitophagy is principally facilitated by microtubule-associated protein 1 light chain 3
(LC3)-linked receptors. Ubiquitin-dependent mitophagy may include the mitochondrial
serine/threonine protein kinase PINK1 and E3 ubiquitin protein ligase Parkin; it also
may include the Parkin/PINK1 pathways [32]. Conclusions of the experiment in primary
human renal epithelial cells have demonstrated that mitochondrial quality control could be
disturbed by mitophagy mediated via PINK/Parkin signaling [33]. PINK1 accumulates
on the outer mitochondrial membrane (OMM) after loss of mitochondrial membrane
potential, where it recruits and then phosphorylates Parkin to add phosphor-ubiquitin
chains on OMM proteins. Interestingly, mitophagy could inhibit oxidative stress via
the upregulation of the PINK1-parkin pathway, which could delay kidney senescence
in mice [34]. Autophagy receptors, including optineurin, calcium-binding and coiled-
coil domain-containing protein 2, also called nuclear dot protein 52 kDa (NDP52), which
comprise both ubiquitin binding domains and LC3-interacting regions, could link the
ubiquitylated mitochondria to LC3-associated membranes for appropriation [35]. PINK1-
mediated phosphorylation of ubiquitin can employ optineurin and/or NDP52 to induce
mitophagy without Parkin. By attaching to LC3 at their cytosolic N-terminus, mitophagy
receptors could connect impaired mitochondria directly to autophagosomes. (Figure 2)
After ubiquitination, impaired mitochondria might be consequently recognized by adapter
proteins to be eaten by autophagosomes. Too much mitophagy might result in cellular
energy depletion. Therefore, mitophagy may positively or negatively regulate apoptosis,
which is a double-edged sword in the pathogenesis of several diseases. For example, a high
or low level of mitophagy activity may occasionally induce podocyte apoptosis, which
is the collective pathological base for the progression of several kidney diseases [36]. In
general, mitophagy may be induced as a protection mechanism for keeping a population
of well mitochondria and thus safeguarding cell survival. Although mitophagy may be
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dispensable for kidney development [37], mitophagy seems to be essential for maintaining
kidney integrity and normal physiology in adult kidney cells [38]. Clearance of damaged
mitochondria via mitophagy is valuable to the protective effect of impaired kidney cells [39].
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to oxidative stress and/or redox imbalance, resulting in PINK1 and Parkin increases in the outer 

Figure 2. An illustrative representation and overview of PINK1, Parkin, and related molecules in the
regulatory pathway for mitophagy. Under the healthy and steady state of cells, PINK1 is despoiled
within the surface of mitochondria, which may be reduced by mitochondrial damage due to oxidative
stress and/or redox imbalance, resulting in PINK1 and Parkin increases in the outer membrane of
mitochondria. Mainly, the PINK1 could phosphorylate ubiquitin to activate the ubiquitin ligase
activity for Parkin, where the Parkin is expected to be phosphorylated and ubiquitinated, resulting
in the induction of mitophagy. OMM, outer mitochondrial membrane; IMM, inner mitochondrial
membrane; MARK2, microtubule affinity regulating kinase 2; MFN1, mitofusin 1; MFN2, mitofusin
2; NDP52, nuclear dot protein 52; PARL, presenilin-associated rhomboid-like; OPTN, optineurin;
PINK1, PTEN-induced kinase 1; ROS, reactive oxygen species; VDAC1, voltage-dependent anion
channel 1; Ub, ubiquitin.

3. Autophagy/Mitophagy Involved in the Pathogenesis of Several Kidney Diseases,
including Polycystic Kidney

Collecting evidence relates the impaired mitophagy with disease pathogenesis/progre-
ssion in several pathological situations, including kidney diseases [40]. Acute kidney injury
(AKI) may be categorized by a rapid weakening of kidney function, which typically results
from renal ischemia, sepsis, and nephrotoxic agents [41]. Mitophagy induction might act
as a mutual mechanism to kidney tubular cell protection in many models of AKI [42].
The mitophagy-mediated removal of injured mitochondria might inhibit excessive ROS
accumulation, as well as prevent the release of damage-associated molecular arrays which
might indorse inflammation during AKI. As renal tissue has massive mitochondrial content,
mitophagy and/or mitochondrial biogenesis may be critical to overwhelming stressful
illnesses, including AKI [42,43]. Mitophagy might enable compromised cells to persist
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during kidney interstitial fibrosis, which is a feature of maladaptive restoration in the
transition from AKI to chronic kidney disease (CKD) [44]. Mitophagy being induced in
distal tubules and pericytes could protect against renal interstitial fibrosis by suppressing
the inflammasome of the tumor growth factor β (TGFβ) and the NLR family pyrin domain
containing 3 (NLRP3) signaling [45]. Therefore, mitophagy might be a pharmacological tar-
get for the management of interstitial fibrosis in kidneys, particularly in regard to offering
new concepts for more efficient anti-fibrosis and delaying the development of CKD [46].
It has been shown that mitophagy activation may protect against renal fibrosis via the
downregulation of TGF-β1/Smad signaling, improving mitochondrial fitness and allevi-
ating inflammatory infiltration in kidneys [47]. Focal segmental glomerulosclerosis may
be one of the fibrotic diseases in kidneys that is characterized by glomerular lesions with
podocytes [48]. It has been revealed that podocyte mitophagy could have an imperative
role in the development of the focal segmental glomerulosclerosis [48]. In addition, modifi-
cations of the apolipoprotein L1 (APOL1) gene have known links with the focal segmental
glomerulosclerosis, which may affect endosomal trafficking and/or block mitophagic flux,
eventually leading to podocyte injury [49]. Therefore, podocyte mitophagy could counter-
act the development of the focal segmental glomerulosclerosis [50]. A decrease in podocyte
mitophagy may underlie the conceivable progression of podocytopathies, including the
focal segmental glomerulosclerosis [51]. Interestingly, activation of mTORC1 has been
detected in glomeruli from patients with the focal segmental glomerulosclerosis [52]. Hy-
perglycemia may inhibit mitophagy in kidney tubules of diabetic patients with diabetes
mellitus [53]. It seems that mitophagy has been impaired in the diabetic kidneys of patients
with diabetic kidney disease [53]. Defective mitophagy induced by high glucose levels may
accelerate the senescence of tubular cells [54]. Treatment with the mitochondria-targeted
antioxidant may ameliorate tubular injury in diabetic mice by restoring mitophagy, which
might be mediated by an elevation in PINK1 expression provoked by nuclear factor ery-
throid 2-related factor 2 [53,54]. Therefore, mitophagy in kidney tubules might be helpful
for diabetic kidney disease.

Autosomal-dominant polycystic kidney disease is a popular heritable human disease
featuring the final development of renal failure, which is caused by mutations in either
PKD1 or PKD2 genes. These gene product polycystins (PC1 and PC2) might play crucial
roles in ensuring proper mitophagic processes. In fact, PKD is one of the most common
ciliopathies that may be associated with decreased mitophagy [3,55]. The existence of
cilia may to be essential in the activation of mitophagy [56]. Accordingly, impairment of
mitophagy might suppress ciliagenesis [56]. At present, effective treatment seems to be
lacking, while inhibition of mTOR may slow cyst expansion in animal models. Several
agents that may protect against PKD in animal models could also restore mitophagy,
suggesting that mitophagy might be associated with a pathogenic role in PKD [6,57].
Interestingly, abnormal mTOR activation could be connected to the impaired mitophagy
and/or defective cilia in PKD [7,58].

4. Autophagy/Mitophagy as a Target of Treatment against Polycystic Kidney Disease

A number of studies have emphasized the dysregulation of mitophagy in PKD, repre-
senting both the augmented and diminished activities of mitophagy. Impaired mitophagy
could lead to the accumulation of damaged mitochondria and cyst formation, while in-
creased mitophagy might exacerbate the cyst growth. Therefore, treatment with chemical
autophagy activators, including mTOR-dependent rapamycin, could slightly but noticeably
attenuate cyst formation and repair the kidney function [59]. It has been shown that the
PKD1 gene, which encodes the polycystin-1 (PC1) protein, is responsible for 85% of cases of
autosomal-dominant polycystic kidney disease [60]. The PC1 could regulate the function
of calcium-dependent calpain proteases, which may preserve lysosomal integrity [61].
In addition, failure of PC1 function might be associated with the development of renal
cysts and/or weakened kidney function. The polycystin-2 (PC2) constructs a complex
with beclin-1, which might exert a key role involved in the formation of autophagic vac-
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uole [62,63]. Therefore, PC2 is a critical mediator of mitophagy initiation [63,64]. Basal
autophagy may be boosted in PC1-deficient cells, implying that PC1 might promote au-
tophagic cell survival [65]. Interestingly, it has been shown that steviol, a metabolite of the
sweetening chemical compound stevioside, could decelerate the cyst development in renal
epithelial cells by increasing PC1 expression and by stimulating lysosomal degradation
of β-catenin in animal models of PKD [66]. In addition, the stevioside metabolite could
enhance the autophagy via the stimulation of an adenosine monophosphate-activated
protein kinase (AMPK) pathway [67]. Trehalose is also a natural, nonreducing disaccharide
comprising two glucose molecules linked by an α, α-1,1-glucosidic bond that has been
shown to enhance autophagy. Trehalose is found in microorganisms, plants, insects, and
invertebrates, but not in mammals [68]. Trehalose could defend the integrity of cells against
several damages, including oxidation and/or hypoxia, by decreasing protein denatura-
tion via the protein–trehalose interaction [69], which has been utilized in the preservation
of food but also applied to deal with medical diseases because of its ability to augment
autophagy. In adults, oral trehalose supplements may improve the vascular function by
increasing redox balance [70]. Furthermore, trehalose may exert cytoprotective effects in
podocytes and in proximal tubular cells by inducing autophagy [71,72].

In general, autophagy could be stimulated by nutrient and/or energy deprivation,
which may be regulated by signaling pathways with AMPK and/or mTOR. The mTOR
could construct the rapamycin-sensitive mTORC1 and the rapamycin-insensitive mTORC2,
which might be key regulators of autophagy [73]. Under nutrient-rich conditions, however,
mTORC1 suppresses autophagy by phosphorylating the unc-51-like autophagy activat-
ing kinase 1 (ULK1) and the autophagy related 13 (ATG13) [74]. Active mTORC1 could
also stimulate ribosome biogenesis and mRNA translation by phosphorylating p70 ribo-
somal protein S6 kinase (p70S6K), as well as the eukaryotic translation initiation factor
4E-binding protein 1 (4E-BP1) [75]. Well-known inhibitors of mTORC1 include rapamycin
and rapamycin analogues [76]. In hunger situations, mTORC1 is repressed and detaches
from the ULK1–ULK2 complex, permitting ULK1 to be triggered by AMPK to induce
autophagy [77]. Sirtuins, from SIRT1 to SIRT7, are nicotinamide adenine dinucleotide
(NAD+)-dependent class III histone deacetylases. In the conditions of energy depletion,
SIRT1 Is stimulated by increased NAD+ levels. Dynamic SIRT1 could activate autophagy
through the deacetylation of ATG proteins and/or of the transcription factor forkhead box
protein O1 (FOXO1) and forkhead box protein O3a (FOXO3a), which can transactivate
autophagy genes [78–80]. Moreover, crosstalks of Sirtuin-1 (SIRT1) with the mTOR and
AMPK pathway may control cell survival and/or autophagy by adjusting diverse mecha-
nisms involved in energy metabolism [81,82]. Interestingly, resveratrol could appropriately
activate SIRT1 [83], which might attenuate the oxidative stress and/or the mitochondrial
dysfunction partly via the mitophagy [84]. SIRT1 is upregulated in the autosomal-dominant
polycystic kidney disease and accelerates disease progression by deacetylating the p53
tumor suppressor. Niacinamide, also known as nicotinamide, is a dietary supplement and
a non-competitive inhibitor of sirtuins that can reduce proliferation and augment apoptosis
of cystic epithelial cells by preventing the deacetylation of p53 [85]. Long-term calorie
restriction could restore the autophagic activity via the activation of SIRT1, which may
protect from mitochondrial damages in the kidney induced by oxidative stress [86]. In
addition, calorie restriction might also enhance the autophagy in podocytes and in proximal
tubules [87]. Metformin could affect cells via the activation of AMPK [88,89], which is
a key regulator of several pathways involved in energy, glucose, and lipid metabolism,
as mentioned above. The blockade of AMPK signaling could considerably influence the
efficiency of metformin for the type-2 diabetes mellitus and/or atherosclerosis [90,91].
Also, metformin plays roles in altering the pathogenesis of diseases by restoring the redox
balance and influencing mitochondrial function [92,93]. Moreover, metformin can improve
mitochondrial bioenergetics by increasing autophagy [94,95].
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5. Another Tactic Regarding the Alteration of Gut Microbiome for the Treatment of
Polycystic Kidney

Decreased fatty acid oxidation and/or a dysregulated lipid metabolism have been rec-
ognized as key PKD features [96]. Remarkably, treatment with the peroxisome proliferator-
activated receptor-α (PPAR-α) agonist could enhance the fatty acid oxidation and reduce
cystic disease in PKD models [97]. Peroxisome proliferator-activated receptors (PPARs) are
categorized as members of the nuclear receptor family of transcription factors, which may
be activated by several fatty acids and their derivatives [98]. It is well-known that some
fatty acids may modulate the autophagy. In addition, gut microbiota may play crucial roles
in some pathological processes through controlling several metabolic factors, including
certain fatty acids [99]. Therefore, reciprocal interactions have been observed between
PPARs and the gut microbiota in both healthy and diseased conditions, indicating that
the nuclear receptors might be good targets for treatment of various diseases through
the crosstalk with the gut microbiota [99]. The discovery of the gut–kidney axis may also
establish the relationship between the disruption of gut homeostasis and CKD onset and/or
progression, which may be regulated by the gut microbiota and/or immune cells [100,101].
Autosomal-dominant polycystic kidney disease may be the prominent cause of inherited
kidney disease, with significant contributions to CKD [102]. Hence, treatment against
CKD might be also beneficial for the treatment of polycystic kidney disease. The rela-
tionship between CKD and gut dysbiosis is also bidirectional. For example, gut-derived
metabolites and/or toxins could influence the progression of CKD, and the uremic situ-
ation might also affect the gut microbiota [103]. Intestinal dysbiosis may contribute to
the compromised intestinal barrier function, which could facilitate the translocation of
uremic metabolites from the gut to the blood, contributing to the elevation of oxidative
stress and CKD progression [104]. With increased permeability of the colon-intestinal
epithelium, pathogens and/or antigens could come into systemic circulation, which may
also lead to CKD progression. Remarkably, it has been shown that Bifidobacterium and
Lactobacilli sp. in the gut may be negatively correlated with CKD progression and long-term
survival [105]. In addition, the presence of Roseburia, Faecalibacterium prausnitzii, and/or
Prevotella may be also negatively correlated with uremic toxin accumulation and disease
progression [105]. The colon–intestinal tract might be protected by a huge number of
immune cells and structures for the appropriate homeostasis. Several infections may be
common factors in critical exacerbations of CKD, which may be resulting from immune and
inflammatory responses [106,107]. Alterations in the gut microbiota might be sometimes
beneficial for the CKD regression via the metabolic changes, immune modification, and/or
reduced inflammation. Therefore, using prebiotics, probiotics, and/or fecal microbiota
transplantation (FMT) to regulate the gut ecology may alleviate oxidative stress as well
as improve kidney function [108]. (Figure 3) Remarkably, it has been reported that oral
supplementation of short chain fatty acid may amend kidney functions in rats, possibly
by enhancing autophagy/mitophagy via the AMPK/mTOR pathway [109]. Lastly, there
is some evidence that the gut microbiome is possibly altered in patients with CKD and
polycystic kidney disease [110].
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kidney diseases, including polycystic kidney disease (PKD) and chronic kidney disease (CKD). Some
kinds of probiotics and/or fecal microbiota transplantation (FMT) might assist the alteration of the
gut microbiome for the modification of mitophagy, which might be advantageous in the treatment
of several kidney diseases, including polycystic kidney disease (PKD) and chronic kidney disease
(CKD). Note that some important activities, such as autophagy initiation, inflammatory reaction, and
reactive oxygen species (ROS) production, have been misplaced for clarity. “?” represents author
speculation. PPAR: peroxisome proliferator-activated receptor. SCFAs: short chain fatty acids.

6. Future Perspectives

Given the vital role of mitophagy in the development of various kidney diseases,
suitable modulation of mitophagy might be a promising tactic for the prevention and/or
treatment of kidney diseases, including polycystic kidney disease. In addition, pharmaco-
logical modulation of autophagy has been useful in some experimental models of AKI and
chronic kidney injury (CKI). However, the precise advantageous function of mitophagy in
kidney cells remains controversial. Although many signaling pathways may participate
in the regulation of mitophagy in various organs, their detailed mechanisms also remain
mostly unknown and/or complicated. Furthermore, signaling of mitophagy might interact
with other cellular routes to influence the development of other renal diseases. Among
them, CKD might be a major public health concern affecting more than 10% of the global
population [111]. In general, dietary restrictions have been used to treat the CKD. Addition-
ally, interventions such as synbiotics, prebiotics, and probiotics may improve the balance
of the gut microbiota and enhance gut barrier function, which may also contribute to the
amelioration of the kidney function.

Against the polycystic kidney diseases, however, those interventions with probi-
otics/prebiotics may be somewhat inadequate in regard to the improvement of the kidney
function [109,110]. What are the additional factors/signaling required? Firstly, some
antioxidants and/or redox balance might be valuable, as mentioned in the previous sec-
tion. For example, significant studies have suggested that metformin exerts its favorable
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effect by various mechanisms, including affecting mitochondrial function, restoring of
redox balance, and modulating the gut microbiome, which may be apart from the AMPK-
dependent mechanism [112]. Preceding studies have shown the inhibition of nuclear factor
(erythroid-derived 2)-like 2 (Nrf2), which is involved in regulating the expression of an-
tioxidant proteins such as heme-oxygenase 1(HO-1) and/or catalase in animal models
of chronic kidney disease (CKD), and it also may increase the inflammation and oxida-
tive stress [113]. Resveratrol may be favorable for saving the redox balance, which is a
polyphenolic chemical compound isolated from Veratrum grandiflorum with a diversity of
biological activities, including antioxidant and/or anti-inflammatory properties [114]. In
fact, resveratrol administration could inhibit HIF-1α expression, which may reduce the
production of hypoxia-induced reactive oxygen species (ROS) [115]. Secondly, some factors
involved in the tryptophan and kynurenine pathway might also be conceivable, which
has been shown to be associated with immune-related diseases [116]. Several studies have
described abnormal expression of the genes-encoding factors of the immune response
in autosomal-dominant polycystic kidney disease, in which the immune system and/or
infiltration of immune cells may be mostly stimulated [117]. The events associated with
inflammation and/or activation of the immune system might promote the pathology of
PKD [118]. Therefore, both polycystic kidney and autosomal-dominant polycystic kid-
ney disease may be also categorized as immune-related diseases. Shaped by repetitive
inflammatory conditions, an “engram” might commit to a mild progression of several
immune-related diseases [116]. If that is the case in PKD, a certain “engram” modulation
with the modification of gut microbiome might be beneficial for a superior treatment tactic
against PKD [116]. (Figure 3) Additionally, a substantial proportion of PKD patients may
experience hypertension prior to kidney dysfunction [119]. Remarkably, a significant pro-
portion of PKD patients with normal kidney function may also progress to hypertension
prior to the development of polycysts, suggesting that PKD2 channels can regulate blood
pressure, probably through an extrarenal mechanism [120]. Hypertension is an important
prognosticator of the disease progression, which might be the most frequent cause of death
in patients with autosomal-dominant polycystic kidney disease. Angiotensin-converting
enzyme inhibitors may be used as therapeutic agents in the treatment of hypertension
in autosomal-dominant polycystic kidney disease [121]. The therapeutic benefit of using
angiotensin-converting enzyme inhibitors may contribute to treating hypertension, as
well as to diminishing renal cyst growth in the autosomal-dominant polycystic kidney
disease [122].

7. Conclusions

Mitophagy may play an imperative role in the pathology of various kidney diseases,
including PKD, CKD and/or AKI. Appropriate mitophagy might be firmly regulated
to enable cells to lessen cellular stress, probably via sustaining the redox balance. Prior
research has indicated that those kidney diseases might be also related with gut dysbiosis,
which may lead to the development and/or progression of kidney diseases. Superior
modification of mitophagy in kidneys via the modulation of the gut microbiome may
contribute to the development of prevention/treatment tactic for several kidney diseases,
including PKD.
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Abbreviations

AKI Acute kidney injury
AMPK adenosine monophosphate-activated protein kinase
APOL1 apolipoprotein L1
ATG13 autophagy related 13
CKD chronic kidney disease
4E-BP1 eukaryotic translation initiation factor 4E-binding protein 1
eIF3 eukaryotic initiation factor 3
FMT fecal microbiota transplantation
FOXO1 forkhead box protein O1
FOXO3a forkhead box protein O3a
HIF-1α hypoxia inducible factor-1α
HO-1 heme-oxygenase 1
LC3 microtubule-associated protein 1 light chain 3
mRNAs messenger RNAs
mTOR mechanistic/mammalian target of rapamycin
mTORC1 mTOR complex 1
mTORC2 mTOR complex 2
NAD+ nicotinamide adenine dinucleotide
NDP52 nuclear dot protein 52 kDa
NLRP3 NLR family pyrin domain containing 3
Nrf2 nuclear factor (erythroid-derived 2)-like 2
ORF open reading framework
p70S6K p70 ribosomal protein S6 kinase
PC1 polycystin-1
PC2 polycystin-2
PINK1 PTEN-induced putative kinase 1
PKD Polycystic kidney disease
PPAR-α peroxisome proliferator-activated receptor-α
PPARs Peroxisome proliferator-activated receptors
SIRT1 Sirtuin-1
TGFβ tumor growth factor β
ULK1 unc-51-like autophagy activating kinase 1
ULK2 unc-51-like autophagy activating kinase 2
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