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Abstract: Lung cancer is one of the most lethal malignancies worldwide. Peroxisome proliferator-
activated receptor gamma (PPARγ, NR1C3) is a ligand-activated transcriptional factor that governs
the expression of genes involved in glucolipid metabolism, energy homeostasis, cell differentiation,
and inflammation. Multiple studies have demonstrated that PPARγ activation exerts anti-tumor
effects in lung cancer through regulation of lipid metabolism, induction of apoptosis, and cell
cycle arrest, as well as inhibition of invasion and migration. Interestingly, PPARγ activation may
have pro-tumor effects on cells of the tumor microenvironment, especially myeloid cells. Recent
clinical data has substantiated the potential of PPARγ agonists as therapeutic agents for lung cancer.
Additionally, PPARγ agonists also show synergistic effects with traditional chemotherapy and
radiotherapy. However, the clinical application of PPARγ agonists remains limited due to the presence
of adverse side effects. Thus, further research and clinical trials are necessary to comprehensively
explore the actions of PPARγ in both tumor and stromal cells and to evaluate the in vivo toxicity.
This review aims to consolidate the molecular mechanism of PPARγ modulators and to discuss their
clinical prospects and challenges in tackling lung cancer.

Keywords: peroxisome proliferator-activated receptor gamma; lung cancer; agonists; transcriptional
activity

1. Introduction

Lung cancer is the second most commonly diagnosed cancer and the leading cause
of cancer-related death, with an estimated 2.2 million new incidences and 1.8 million
mortalities worldwide in 2020 [1]. It can be broadly categorized into non-small cell lung
cancer (NSCLC) and small cell lung cancer (SCLC), comprising ~85% and ~15% of all cases,
respectively. The etiological factors of lung cancer are diverse, of which tobacco exposure is
the primary risk factor, while environmental exposures such as biomass fuels, industrial
carcinogens, and air pollution also strongly contribute to the development of lung cancer [2].
Unfortunately, patients with lung cancer often lack obvious specific symptoms initially and
are diagnosed at an advanced stage, which might drastically reduce the 5-year survival rate
from 90% (stage IA) to 10% (stage IV) [3]. Currently, the therapeutic options for lung cancer
mainly include surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy.
Although multiple treatment options are available, therapeutic resistance remains a major
obstacle for patients to gain continuous clinical benefits [4]. Therefore, there is an urgent
need to explore more therapeutic strategies to improve the clinical outcomes of patients
with lung cancer.

Peroxisome proliferator-activated receptor gamma (PPARγ), namely nuclear receptor
superfamily 1 group C member 3 (NR1C3), serves as a ligand-activated transcription factor
that controls the expression of genes related to lipid and glucose metabolism, energy home-
ostasis, cell differentiation, and inflammation [5]. Dysregulation of PPARγ target gene
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profiles is closely linked to tumorigenesis, as underscored by the loss of CD36 resulting
from repression of the PPARγ transcriptional program in breast cancer progression [6–8].
Furthermore, a growing body of evidence indicates that PPARγ activation prevents cancer
in tissues such as the colon, breasts, and lungs [9]. PPARγ agonists have been demonstrated
to exert anti-lung cancer effects by promoting cell differentiation, inhibiting cell prolifera-
tion, and inducing cell death [10,11]. Thus, PPARγ holds great potential as a therapeutic
target for tackling lung cancer. In this review, we summarize the molecular mechanism
underlying the action of PPARγ agonists and highlight the role of PPARγ activation in the
complex regulatory network of lung cancer, aiming to provide a reference for developing
novel therapeutic strategies for lung cancer.

2. Structure of PPARγ

The PPARG gene gives rise to four transcripts by differential promoter usage and
alternative splicing, which results in the production of PPARγ1 (encoded by PPARG1,
PPARG3, PPARG4 mRNAs) and PPARγ2 (encoded by PPARG2 mRNA) isoforms [12–15].
PPARγ2 has the same sequence as PPARγ1, except for an additional 28 amino acids at its
N-terminus [12]. PPARγ1 is ubiquitously abundant in many tissues, whereas PPARγ2 is
preferably expressed in adipocytes.

PPARγ shares a typical NR domain structure composed of five domains: A/B, C,
D, E, and F domain (Figure 1A) [16]. The N-terminal A/B domain is highly variable
among the NR family, and harbors a ligand-independent transcriptional activation function
region termed AF-1 that regulates PPARγ activation through interdomain coordination
and phosphorylation [17,18]. The C domain, also known as the DNA-binding domain
(DBD), is the most conserved part of NRs and consists of two zinc finger motifs with nine
cysteines [17]. This domain specifically recognizes and binds to the PPAR response elements
(PPRE) on the target gene promoter to initiate transcription after forming a heterodimer
with the retinoic X receptor α (RXRα) [19,20]. The poorly conserved D domain serves as a
flexible hinge that allows rotation between the DNA-binding and ligand-binding domains,
as well as containing a nuclear localization signal [17]. The E domain, also named the
ligand binding domain (LBD), is the largest region of PPARγ and has four main functions,
including a second dimerization interface, the ligand binding pocket, a coregulator binding
surface, and ligand-dependent activation function referred to as AF-2 [21]. The C-terminal
F domain is relatively small, and may contribute to interaction with cofactors [22].
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Among PPARγ domain structures, the LBD was the first one to be characterized
in conformation [23]. The PPARγ LBD consists of 13 α-helices (termed helix 1–12 and
helix 2′) arranged in a three-layered sandwich and a small four-stranded β-sheet. The
ligand binding pocket is located in the center of the LBD, and has a large Y- or T-shaped
cavity with three branches [21]. Branch I is composed of helix3, helix5, helix11, and
helix12 in the C-terminal AF-2 region; branch II is positioned around helix2′, helix3, helix6,
helix7, and the β-sheet region; while branch III is surrounded by the β-sheet, helix2,
helix3, and helix5. Adjacent to the ligand-binding pocket, there is an AF-2 coregulator
interaction surface formed by the three-dimensional association of helix3, helix4, helix5,
and helix12 [23,24].

3. Transcriptional Activities of PPARγ

PPARγ regulates gene expression through transactivation and transrepression. In
the absence of ligands, PPARγ-RXRα heterodimer binds to PPREs and subsequently re-
cruits corepressors and associated chromatin-modifying enzymes to silence target gene
transcription, a process known as ligand-independent repression [25]. Once the ligand
binds to PPARγ, the PPARγ-RXRα heterodimer undergoes a conformational change that
releases corepressors in exchange for coactivators, resulting in the transcription of target
genes. Furthermore, PPARγ can also negatively regulate gene expression in a ligand-
dependent manner by antagonizing other transcription factors, such as nuclear factor-κB
and activator protein-1 [26].

4. Ligands of PPARγ

The majority of the molecular functions of PPARγ are regulated by its ligand molecules
that can be grouped as natural and synthetic ligands (Table 1). The natural ligands,
also termed endogenous agonists, can be further divided into four subgroups, namely
the eicosanoid prostaglandin-A1 and the cyclopentenone prostaglandin 15-deoxy-
D12,14-prostaglandin J2, the unsaturated fatty acids, the nitroalkanes, and the oxidized
phospholipids [27]. Notably, the natural ligands are not always efficient for PPARγ ac-
tivation and target gene transcription [28,29]. Synthetic ligands can be classified as full
agonists, partial agonists, antagonists, and inverse agonists. A well-known example of a
full agonist is thiazolidinediones (TZDs), which are recognized for their potent insulin-
sensitizing effects in type II diabetes mellitus [30]. However, TZDs also cause undesired
effects such as weight gain, edema, and heart failure, which has driven the develop-
ment of safer PPARγ partial agonists to avoid the toxicity induced by full agonists [31].
Partial agonists, referred to as SPPARMs, retain high affinity to the PPARγ, but show
reduced transcription of given genes [21]. In contrast, antagonists such as GW9662 sup-
press the transcription of PPARγ-responsive genes, which is achieved by competitively
binding the LBD pocket with agonists [32]. T0070907, an inverse agonist with a similar
chemical structure to GW9662, but a different effect on PPARγ transcriptional regulation,
inhibits the transactivation potential of PPARγ below basal cellular levels by recruiting
corepressors [33,34]. Generally, synthetic ligands are thought to regulate the transcription
activation of PPARγ by completely displacing natural/endogenous ligands upon binding
to the ligand-binding pocket in a competitive or “one-for-one” manner. Our recent re-
search put forward a cooperative cobinding concept of endogenous and synthetic ligands
to synergistically activate PPARγ, extending the understanding of nuclear receptor ligand
exchange models [35].
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Table 1. Chemical structure and transactivation of common PPARγ ligands.

Class Compound Structure Transactivation (EC50) Refs.

Natural ligand 15-deoxy-D12,14-
prostaglandin J2
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5. Dynamic Mechanisms of Ligand Binding Agonism

In the absence of ligands, helix 12 acts as a highly flexible switching element in
equilibrium between many different conformations, ranging from active to repressive
(Figure 1B) [34,42]. Agonists stabilize helix 12 in a conformation that exposes the AF-2
surface for the binding of coregulators that control target genes transcription [43]. Full
PPARγ agonists stabilize an active AF-2 surface conformation via forming a critical hy-
drogen bond with Y473 residues on helix 12, facilitating the recruitment and binding of



Biomolecules 2024, 14, 190 5 of 15

coactivators [44]. Partial agonists generally do not form hydrogen bonds with the key
residues of the AF-2 regions, including Y473, but mildly stabilize helix 12 through interac-
tions with other regions of the ligand-binding pocket, resulting in differential coactivator
recruitment profiles and weak transcriptional activation compared to full agonists [21,45,46].
In contrast, inverse agonists exert transcriptional repression via stabilizing in a confor-
mation that favors the recruitment of corepressors. However, the structural mechanism
underlying the ligand-induced repression state is limited. Brust et al. identified R288 as
the critical corepressor-selective inverse agonist (T0070907) switch residue, and found that
T0070907-bound PPARγ exchanges between two long-lived conformations, one similar
to the coactivator-bound state and the other similar to the corepressor-bound state [33].
Subsequently, our study further verified the structurally diverse mechanism of the in-
verse agonist-bound state and revealed the mechanism of action of T0070907 [34]. Briefly,
T0070907 can stabilize helix 12 within the orthosteric pocket by pointing the pyridyl group
toward the AF-2 surface, thereby increasing corepressor binding affinity.

The preceding section has provided a description of the binding modes demonstrated
by various agonists. Subsequently, the dynamic changes in agonist binding with PPARγ
LBD will be outlined below. Prior studies remain controversial as to whether ligand bind-
ing proceeds through induced fitting or conformational selection mechanisms. Notably,
our recent study supported the existence of the induced fit mechanism involving a two-
step process of an initial ligand encounter complex followed by a conformational change
(Figure 1B) [47]. In the absence of ligand, helix 12 in apo-PPARγ LBD exchanges between
transcriptionally repressive and a solvent-exposed active conformation through entering
and exiting the orthosteric ligand-binding pocket. Agonist binds to the ligand entry site via
an initial fast step to form an encounter complex, and this process can occur to either of
these conformations. Subsequently, the agonist slowly enters the orthosteric ligand-binding
pocket and forms the final ligand-binding pose. In this step, agonist binding to the repres-
sive LBD conformation (helix 12 within the orthosteric pocket) would push helix 12 into an
active conformation, while agonist binding to the active LBD conformation (helix 12 outside
the orthosteric pocket) would facilitate transition into the final ligand-binding pose.

6. Role of PPARγ Activation in Lung Cancer
6.1. Regulation of Lipid Metabolism

Metabolic reprogramming is a crucial hallmark of malignancy, allowing tumor cells
to meet demands for growth, proliferation, and metastasis, as well as be robust against
unfavorable environments [48,49]. Thus, targeting abnormal tumor metabolic activities,
including lipid metabolism, is a rapidly emerging direction for anti-cancer therapy [50].
PPARγ is a central regulator of lipid metabolism. Several studies have shown that PPARγ
upregulates fatty acid synthesis and β-oxidation in lung cancer (Figure 2). For example,
Phan et al. found that pioglitazone-mediated PPARγ activation induced de novo fatty
acid synthesis and β-oxidation in lung cancer [51]. Importantly, dramatic lipid synthesis
could deplete nicotinamide adenine dinucleotide phosphate (NADPH), a major reducing
agent important for cellular anti-oxidation systems, leading to disrupted redox balance
which, in turn, suppresses lung cancer. Moreover, Andela et al. reported a shift in cellular
energy metabolism towards fatty acid oxidation in the lung alveolar carcinoma cell line via
treatment with PPARγ agonist troglitazone [52].

Aldehyde dehydrogenases (ALDHs) act as an ‘aldehyde scavenger’ during lipid
peroxidation and exhibit high activity in lung cancer [53,54]. Inhibition of ALDHs can
expose cancer cells to highly reactive and toxic aldehydes, resulting in cell damage and
apoptosis [55]. Notably, PPARγ has been reported to downregulate certain members of
the ALDH family to function as a lung cancer inhibitor. For instance, arachidonic acid-
induced PPARγ activation suppressed the growth of A549 cells through increasing lipid
peroxidation and decreasing ALDH3A1 expression [56]. Additionally, TZD-mediated
PPARγ activation inhibited ALDH1A3 expression to exert anti-proliferative functions in
H1993 cells [57].
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6.2. Promotion of Cell Apoptosis

Apoptosis is a homeostatic mechanism to maintain cell populations in normal tis-
sues, whereas tumor cells engage various mechanisms to evade apoptosis for unrestricted
proliferation [58,59]. Classical pathways of apoptosis include the intrinsic mitochondrial
pathway and the extrinsic pathway that induces via the activation of death receptors on
the cell surface, both of which result in the activation of cysteine aspartyl-specific pro-
teases (also known as Caspases) to cleave several proteins leading to cell death [60,61].
PPARγ promotes apoptosis in lung cancer through dysregulating critical factors in these
pathways (Figure 2). Specifically, PPARγ activation could increase the expression of pro-
apoptotic factors Bax and Bad, decrease the expression of anti-apoptotic factors Bcl-2 and
Bcl-XL, enhance caspase3 and caspase9 activity, and trigger mitochondrial cytochrome
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c release [62–67]. Furthermore, PPARγ activation enhanced TRAIL-induced apoptosis
in human lung adenocarcinoma cells via autophagy flux [68]. Notably, PPARγ is also
able to regulate the upstream signaling pathways to provoke apoptosis. For instance,
KR-62980 or rosiglitazone-mediated PPARγ activation promoted the generation of reactive
oxygen species (ROS) via proline oxidase (POX) induction, leading to apoptotic cell death
in NSCLC [69]. Troglitazone-mediated PPARγ activation induced the phosphorylation of
extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and subsequently caused
apoptosis in NCI-H23 lung cancer cells via a mitochondrial pathway [70]. Another study
showed that troglitazone-mediated PPARγ activation stimulated the expression of DNA-
damage inducible gene 153 (GADD153) to trigger growth arrest and endoplasmic reticulum
stress-induced apoptosis of NSCLC cells [71]. PPARγ agonist efatutazone could induce
the cell cycle arrest and apoptosis of EGFR-TKI-resistant lung adenocarcinoma cells via
PPARγ/phosphatase and tensin homolog (PTEN)/Akt pathway [72].

6.3. Induction of Cell Cycle Arrest

Cell division is tightly regulated by multiple conserved cell cycle control mechanisms,
such as cyclins and cyclin-dependent kinases (CDKs), G1-S transcriptional regulation,
DNA damage checkpoint, DNA replication stress checkpoint, and spindle assembly check-
point [73]. The eukaryotic cell cycle can be divided into G0, G1, S, G2, and M phases.
DNA replicates during the S phase and cell separates during the M phase. Several lines of
evidence have shown that PPARγ is involved in cell cycle processes to induce the growth
arrest of lung cancer cells (Figure 2). Troglitazone-mediated PPARγ activation could induce
cell cycle arrest in the G0/G1 phase by downregulation of cyclins D and E [74]. The PPARγ
ligands PGJ2, ciglitazone, troglitazone, and GW1929 suppressed human lung carcinoma
cell growth by stimulating cyclin-dependent kinase inhibitor p21 expression and reducing
cyclin D1 expression [75].

6.4. Inhibition of Tumor Metastasis

Metastasis is the cause of 90% of cancer-related deaths [76]. In the process of metas-
tasis, normal cells transform into carcinogenic cells that proliferate uncontrollably, evade
the immune system, resist programmed cell death, stimulate angiogenesis, acquire in-
vasive potential, survive in the bloodstream, and establish cancerous growth in distant
organs [77]. Epithelial–mesenchymal transition (EMT), a process through which epithelial
cells lose apical–basal polarity, and cell–cell junctions, as well as attain a mesenchymal
phenotype with invasive and migratory capabilities, is a critical event in the initiation of
metastasis [77,78]. The mechanism of PPARγ in lung cancer-related EMT is not yet fully
understood. Multiple studies have shown that PPARγ can regulate the expression of EMT-
related molecules to exert an inhibitory effect on metastasis (Figure 2). Specifically, PPARγ
activation increased expression of epithelial marker E-cadherin, decreased expression of
mesenchymal marker N-cadherin, Snail, and fibronectin, as well as down-regulated ex-
pression of matrix metalloproteinase 9 (MMP-9) and heparanase (HPA) [79–83]. Moreover,
PPARγ activation could also suppress the expression of invasion-related proteins, such as
intercellular adhesion molecule-1 (ICAM-1) and C-X-C chemokine receptor type 4 (CXCR4),
which function as facilitators in EMT [80,81,83].

Angiogenesis is the major route by which cancer cells spread from the primary tumor
to other sites [77]. Tumor angiogenesis is regulated by both pro- and anti-angiogenic
factors, and an imbalance between the two can lead to malformation of the vasculature
with excessive branching, hyperpermeability, and leakage [77,84]. PPARγ has been re-
ported to be involved in regulating angiogenic factors (Figure 2). For instance, PPARγ
activation could inhibit angiogenesis by blocking the production of ELR + CXC chemokines
in NSCLC [85]. Moreover, vascular endothelial growth factor (VEGF) was drastically
downregulated through the PPARγ/NF-κB signaling pathway in human lung carcinoma
95D cells [64].
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6.5. Influence on Tumor Immunity

The role of PPARγ activation in lung cancer immunity remains a controversial issue,
which may correlate with the complexity of the immune microenvironment. Notably, the
tumor microenvironment encompasses not only malignant cells, but also stromal cells, vas-
cular endothelial cells, as well as various types of immune cells including tumor-associated
macrophages and myeloid-derived suppressor cells (MDSCs) [86]. Interestingly, PPARγ
seems to have opposing effects on cancer progression among different cells, with anti-
oncogenic effects on cancer cells but pro-oncogenic effects on cancer-associated immune
cells [87,88]. Gou et al. found that PPARγ inhibits the tumor immune escape by inducing
PD-L1 autophagic degradation in NSCLC cells [89]. Interestingly, this process was inde-
pendent of the transcriptional activity of PPARγ, but rather formed autophagy receptors
through the binding of PPARγ to microtubule-associated protein 1A/1B-light chain 3 (LC3),
leading to degradation of PD-L1 in lysosomes. Nevertheless, Li et al. suggested that PPARγ
activation in myeloid cells promoted lung cancer progression and metastasis [87].

7. Therapeutic Exploration of PPARγ Agonists

Given the multiple functions of PPARγ activation in lung cancer, PPARγ agonists
included thiazolidinediones and non-thiazolidinediones have been used as therapeutic
agents to tackle lung cancer in preclinical and clinical studies.

7.1. Thiazolidinediones

Thiazolidinediones (TZDs), also known as glitazones, were first reported as insulin
sensitizers in the early 1980s and were found to be ligands for PPARγ until the 1990s [90,91].
Ciglitazone is the prototype of all TZDs, but has never been approved for clinical appli-
cation due to its weak therapeutic effect on diabetics. Troglitazone was the first TZD
introduced in 1997, but was quickly removed from the market in 2000 because of its serious
hepatotoxicity [92]. Both rosiglitazone and pioglitazone were second-generation TZDs
and were released in 1999. However, rosiglitazone was temporarily withdrawn due to a
connection to adverse cardiovascular effects, while pioglitazone was restricted in light of a
possible increased risk of bladder cancer [93,94]. Efatutazone is a novel third-generation
TZD with highly selective and is currently undergoing clinical evaluation. Although TZDs
were developed as an anti-diabetic drug and known to cause side effects, the potent PPARγ
activating effects of TZDs have driven extensive exploration of their potential as anti-cancer
therapies for lung cancer. TZDs exert anti-lung cancer functions in PPARγ-dependent and
PPARγ-independent manners, of which PPARγ-dependent effects have been summarized
in the above section.

Several studies have shown that PPARγ antagonist or siRNA-mediated silencing of
PPARγ expression failed to abrogate certain anti-tumor effects of TZDs. Han et al. provided
evidence that rosiglitazone inhibited NSCLC cell proliferation via down-regulation of the
Akt/mTOR/p70S6K signaling pathway [95]. Moreover, Sun et al. found that nicotine-
induced NSCLC cell proliferation was partly mediated through alpha4 nAChR, which
could be blocked by rosiglitazone through activating the ERK/p38 MAPK/p53 signaling
pathway in a PPARγ-independent manner [96]. Zou et al. reported that the PPARγ ligands
troglitazone, cigolitazone, and GW1929 exerted PPARγ-independent effects to upregulate
expression of death receptor 5 and downregulate c-FLIP levels, thereby enhancing TRAIL-
induced apoptosis [97]. Similarly, ciglitazone could inhibit NSCLC cell proliferation in
a PPARγ-independent mechanism. Hann et al. found that ciglitazone suppressed the
expression of phosphoinositide-dependent protein kinase 1, which was not blocked by
GW9662, leading to the inhibition of the growth of NSCLC cells [98].

7.2. Other Agonists

Non-TZD PPARγ agonists have also been explored the potential of the treatment of lung
cancer. 13-S-hydroxyoctadecadienoic acid (13(S)-HODE) and 15(S)-hydroxyeicosatetraenoic
acid (15(S)-HETE), as endogenous ligands for PPARγ, were significantly reduced in NNK-
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induced lung cancer and could inhibit NSCLC when exogenously supplemented [99,100].
KR-62980, a selective PPARγ agonist, induced apoptotic cell death in NSCLC mainly
through ROS formation via POX induction [39,69]. Telmisartan, a partial agonist with a
benzimidazole scaffold, inhibited the expression of ICAM-1 and MMP-9 to exhibit an anti-
proliferative effect in A549 cells [80]. Bavachinin, a natural bioactive flavanone from Psoralea
corylifolia, induced the death of A549 cells through mediating ROS generation [62,101]. All
of CB11, CB13, and PPZ023, designed by Kim et al., were suggested to overcome the
radioresistance of lung cancer [66,67,102].

7.3. Potential for the Combination of PPARγ Agonists and Other Therapies

Therapeutic resistance remains a major obstacle to achieving cures in patients with
cancer [103]. The discovery of epidermal growth factor receptor (EGFR) gene alterations
in lung cancer has fueled the development of targeted therapy using tyrosine kinase
inhibitors (TKIs) [104]. EGFR-TKIs act as a first-line treatment for patients with EGFR
mutation; however, most patients fail to gain sustainable benefit due to developing re-
sistance [105]. In preclinical studies, PPARγ has been demonstrated to exert synergistic
therapeutic potential with EGFR-TKIs. Lee et al. suggested that rosiglitazone potentiated
the antiproliferative effects of gefitinib by increased PTEN expression [106]. Serizawa
et al. reported that efatutazone inhibited cell motility by antagonizing the TGF-β/Smad2
pathway and effectively prevented metastasis in NSCLC patients with acquired resistance
to EGFR-TKI [107]. Another study completed by Ni et al. found that efatutazone and gefi-
tinib synergistically inhibited the proliferation of EGFR-TKI-resistant lung adenocarcinoma
cells via the PPARγ/PTEN/Akt pathway [72]. To et al. suggested that PPARγ agonists
enhanced the anti-cancer effects of gefitinib through activating the PTEN/PI3K/Akt sig-
naling pathway [108]. Furthermore, PPARγ can also increase the efficacy of conventional
chemotherapy and radiotherapy. Specifically, troglitazone could synergize with cisplatin or
paclitaxel to inhibit NSCLC both in vitro and in vivo in a sequence-specific manner, while
rosiglitazone combination with carboplatin reduced the growth of KRAS- or EGFR-mutated
lung cancers [109,110]. In addition, PPARγ agonists, including ciglitazone, PPZ023, and
CB13, could function as a radiosensitizer in radioresistance-related lung cancer through
inducing ROS generation or ER stress [66,67,111].

7.4. Clinical Trials

A retrospective analysis of 87,678 male diabetics demonstrated that TZD users showed
a 33% reduction in the risk of lung cancer compared with nonusers [112]. Subsequently,
several clinical trials were launched to test the efficacy of PPARγ agonists in the treatment
of lung cancer. Wigle et al. suggested a potential preventive effect for pioglitazone in early
stage NSCLC through a clinical trial in patients with stage IA-IIIA NSCLC [113]. Nicotine
exposure remains a major risk factor for lung cancer [2]. Keith et al. conducted a phase II
trial to investigate pioglitazone as a chemoprevention for lung cancer in high-risk smokers
and found that pioglitazone could slightly improve endobronchial dysplasia [114]. Jones
et al. verified that pioglitazone could reduce nicotine craving in heavy smokers [115]. This
interesting study indicated that pioglitazone might exert its anti-lung cancer effects via
multiple mechanisms, rather than only targeting malignant cells. Indeed, pioglitazone-
mediated PPARγ activation has been reported to attenuate the expression of physical and
emotional nicotine withdrawal symptoms through mechanisms involving amygdala and
hippocampal neurotransmission [116]. Furthermore, a preclinical study identified that
glitazone could inhibit nicotine-induced inflammation via downregulation of the Toll-like
receptor 4 signaling pathway in alveolar macrophages [117].

8. Conclusions and Prospects

PPARγ agonists have shown beneficial effects in anti-lung cancer, including disruption
of tumor metabolic homeostasis, promotion of cell apoptosis, induction of cell cycle arrest,
as well as inhibition of cell invasion and angiogenesis. However, the role of PPARγ
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in tumor immune microenvironment is still controversial. Specifically, PPARγ induced
PD-L1 degradation in malignant cells, which contributes to enhancing the sensitivity
to immunotherapy, whereas PPARγ activation in myeloid cells promotes lung cancer
progression and metastasis. Therefore, it is essential to evaluate the systemic effects of
PPARγ agonists in tumor sites. Even so, PPARγ remains a viable target for the treatment
and prevention of lung cancer due to the effectiveness of PPARγ agonists as monotherapy
and in combination with traditional radiotherapy or chemotherapy in preclinical studies.
Notably, although TZDs have some side effects, they are the most potent PPARγ agonists
and have been conducted to explore anti-lung cancer effects in clinical settings. While
most partial agonists with fewer side effects were initially developed for the treatment of
metabolic diseases, their gene expression signatures could also be optimized to provide
more anti-tumor benefits in the future. Herein, we summarized the molecular mechanisms
of action of agonists and the complex signaling networks resulting from PPARγ activation,
which may contribute to the design of PPARγ agonists characterized by more efficient,
safer, and potent anti-tumor effects in the future.
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