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Abstract: Chronic pain is sustained, in part, through the intricate process of central sensitization (CS),
marked by maladaptive neuroplasticity and neuronal hyperexcitability within central pain pathways.
Accumulating evidence suggests that CS is also driven by neuroinflammation in the peripheral
and central nervous system. In any chronic disease, the search for perpetuating factors is crucial in
identifying therapeutic targets and developing primary preventive strategies. The brain-derived
neurotrophic factor (BDNF) emerges as a critical regulator of synaptic plasticity, serving as both
a neurotransmitter and neuromodulator. Mounting evidence supports BDNF’s pro-nociceptive role,
spanning from its pain-sensitizing capacity across multiple levels of nociceptive pathways to its
intricate involvement in CS and neuroinflammation. Moreover, consistently elevated BDNF levels
are observed in various chronic pain disorders. To comprehensively understand the profound impact
of BDNF in chronic pain, we delve into its key characteristics, focusing on its role in underlying
molecular mechanisms contributing to chronic pain. Additionally, we also explore the potential
utility of BDNF as an objective biomarker for chronic pain. This discussion encompasses emerging
therapeutic approaches aimed at modulating BDNF expression, offering insights into addressing the
intricate complexities of chronic pain.

Keywords: chronic pain; BDNF; central sensitization; neuroinflammation; neuroplasticity; epigenetic
modifications; BDNF polymorphisms

1. Introduction

Chronic pain represents a pervasive global health challenge, causing significant disabil-
ity and socioeconomic burdens [1,2]. With over 30% of the world’s population grappling
with chronic pain, it has emerged as a formidable public health concern, posing substantial
challenges for both researchers and clinicians [3,4]. Compounding the issue is the inade-
quacy of existing drug treatments, which often fall short in terms of efficacy and tolerability,
leaving more than half of patients with chronic pain without sufficient relief [5–8]. Ground-
breaking research in neuroscience has led the World Health Organization to recognize
chronic pain as a disease characterized by intricate functional and structural changes in the
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brain, neuroinflammation, and increased sensitivity of the central nervous system (CNS)
to nociceptive input—central sensitization (CS) [9–13]. In essence, chronic pain not only
represents prolonged acute pain but also involves maladaptive neuroplastic changes and
sensitization of the nociceptive pathways in the nervous system, extending beyond a simple
pain–damage association [14].

In recent years, intensive research has focused on understanding the biochemical and
molecular alterations contributing to chronic pain. One promising avenue of exploration
centers around the brain-derived neurotrophic factor (BDNF) gene, which influences circu-
lating levels of BDNF, and has been implicated in initiating and/or perpetuating neuronal
hyperexcitability, maladaptive neuroplasticity, and disinhibition at different levels of noci-
ceptive pathways [15]. BDNF assumes a central role in promoting brain homeostasis and
neuronal survival, and also serves as a critical regulator of synaptic plasticity [16]. Despite
its crucial role in maintaining normal physiological functions, a less positive perspective
emerges concerning chronic pain, where mounting evidence suggests a pro-nociceptive
role for BDNF [17,18]. Consequently, BDNF is increasingly acknowledged as a pivotal
perpetuating factor in chronic pain.

Here, we offer an up-to-date exploration of the intricate role of BDNF in chronic
pain, delving into factors potentially contributing to its pathophysiology, such as CS
and neuroinflammation. Additionally, this review discusses the potential of BDNF as an
objective biomarker and an innovative therapeutic target. The scope ranges from specific
interventions aimed at BDNF expression to indirect approaches targeting its receptors
and signaling pathways, providing a comprehensive overview of the current landscape in
chronic pain research and potential therapeutic avenues.

2. The Physiological Role of BDNF

Since its discovery, BDNF has garnered extensive attention as one of the most exten-
sively studied neurotrophins, owing to its multipotent impacts on various physiological
and pathological functions within the nervous system. Recognized for its robust protective
actions promoting brain homeostasis, neuronal survival, synaptogenesis, plasticity, and
cognitive function [16,19–21], BDNF exhibits activity throughout all stages of development
and aging [22,23]. BDNF plays a crucial role in initiating compensatory processes that
facilitate recovery and/or alleviate chronic adverse effects caused by injury or disease in
the nervous system [19]. Notably, knockout mice lacking BDNF face challenges in reaching
adulthood and, when they do, manifest several sensory impairments [24,25].

Like other neurotrophins, BDNF is initially synthesized as a pre-pro-protein. The pre-
protein undergoes rapid cleavage to form pro-BDNF, which then assembles in homod-
imers [26]. The pro-BDNF can be subsequently cleaved by extracellular proteases at
synapses and converted to mature BDNF [27]. BDNF exerts its biological functions via two
distinct classes of receptors: the high-affinity tropomyosin receptor kinase B (TrkB) and
the low-affinity p75 neurotrophin receptor (p75NTR). Pro-BDNF exhibits a preference for
binding to p75NTR, while mature BDNF preferentially binds the TrkB receptor. In general,
binding to TrkB receptors allows BDNF to modulate and promote neuronal survival, neu-
roprotection, and long-term potentiation (LTP)—a form of long-term synaptic plasticity in
nociceptive pathways [28]. Conversely, binding to p75NTR receptors may regulate neuronal
apoptosis, axonal process pruning, and long-term depression (LTD) [29,30]. The contrasting
effects of BDNF/TrkB and BDNF/p75NTR signaling form a delicate “yin-yang” system that
finely manipulates neuroplasticity and neuronal excitability [31]. Therefore, maintaining
a proper balance between these two forms of BDNF is crucial for optimal brain function.
Furthermore, dysregulation of BDNF functions has been implicated in some diseases such
as depression, chronic pain, and neurodegenerative conditions [32].

The functionality of the central nervous system (CNS) is intricately tied to available
BDNF expression. Predominantly synthesized and expressed in various neuronal cells of
the brain, such as sensory neurons and motor neurons [33–35], BDNF is also produced, to
a lesser extent, in non-neuronal cells such as glial cells and immune cells [36,37]. Avail-
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able BDNF was found in different regions of the brain, including the neocortex, pyriform
cortex, amygdala, hippocampus, claustrum, thalamus, striatum, hypothalamus, and brain-
stem [33,38]. In addition, circulating BDNF derives from both peripheral and cerebral
sources [39–41]. Notably, in human studies, serum [42–44] and plasma [45] BDNF levels
appear to correlate positively with BDNF levels in the brain. Moreover, findings from
animal studies suggest a positive correlation between peripheral blood BDNF levels and
its concentration in the cerebral cortex, indicating that fluctuations in peripheral blood
BDNF levels may reflect changes in the brain [46–50]. However, recent studies comparing
cerebrospinal fluid and serum BDNF levels in patients with Alzheimer’s disease have
indicated a lack of correlation [51] and that the levels of BDNF in serum or plasma were
found to be significantly higher than those in cerebrospinal fluid, possibly due to peripheral
synthesis [52].

3. The Role of BDNF in Patients with Chronic Pain
3.1. The Role of BDNF in Central Sensitization

Chronic pain is known to be associated with CS, a process by which the nociceptive
signals of neurons at every level of nociceptive pathways are gradually enhanced [53].
CS is responsible for both hyperalgesia and allodynia. At the cellular level, CS occurs in
part as a result of enhanced and more efficient synaptic communication between neurons,
which primarily involves the reshaping of neuronal circuits, neuronal hyperexcitability,
and a reduction in synaptic inhibition [54,55]. Consequently, pain stems from profound
changes within the CNS, which not only amplifies responses to nociceptive inputs but also
fails to suppress painful signals [56].

Given its essential role throughout the nervous system, BDNF has been implicated
in the induction and maintenance of the CS. For example, the activation of BDNF/TrkB
signaling has been linked to increased pain signaling mechanisms [57]. BDNF, upon release
from the dorsal root ganglia, engages with TrkB receptors located on primary afferent nerve
endings and post-synaptic tracts in the spinal cord. This interaction serves to amplify and
potentiate ascending sensory signals, contributing to the perpetuation of CS. As expected,
pain signaling mechanisms can be reversed through intrathecal administration of TrkB
inhibitors, which attenuates nociceptive response [58,59]. It is crucial to recognize that CS
involves an activity-dependent increase in the excitability of dorsal horn neurons [54], and
BDNF contributes to this process by promoting a gradual increase in neuronal excitability
and synaptic plasticity in the spinal dorsal horn [60–62]. Studies have demonstrated that
BDNF can be synthesized and expressed in the dorsal horn neurons, and the activation
of BDNF/TrkB signaling leads to a sustained increase in neuronal excitability, potentially
contributing to allodynia, hyperalgesia, and spontaneous pain in neuropathic pain models
characterized by CS [63,64].

Persistent CS has been described as a maladaptive neuroplasticity process in chronic
pain [65,66]. BDNF can regulate synaptic plasticity in an activity-dependent manner, con-
tributing to LTP [67,68]. LTP involves neuronal adaptation at the presynaptic (e.g., in-
creased ability to produce neurotransmitters) and postsynaptic (e.g., increased ability to
bind neurotransmitters to receptors) levels, resulting in enhanced synaptic efficiency and,
consequently, an increase in the excitability of neuronal pathways [69–71]. The synapses are
a critical link in inter-neuronal connections, and an increase in their number can facilitate
the transmission of nociceptive signals between neurons, potentially contributing to CS [72].
However, BDNF knockout specimens exhibited a decrease in preganglionic synaptic inner-
vation density to sympathetic neurons, suggesting that BDNF has the ability to increase
synaptic density [22]. In addition, with activation of TrkB receptors, there is a downstream
activation of various signaling pathway cascades, including the MEK/mitogen-activated
protein kinase (MAPK) pathway [73], phosphatidylinositol 3-kinase/protein kinase B
(PI3K/PKB) [74], PI3K/Akt/mammalian target of rapamycin (mTOR) pathway [75], and
nuclear factor kappaB (NF-κB) signaling pathways [76]. Each of these processes contributes
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to the induction and maintenance of CS in different parts of nociceptive pathways by
facilitating LTP.

Finally, dysfunction in the descending inhibitory nociceptive modulation pathways
emerges as a crucial contributor to CS. Recent studies have unveiled reduced intracortical
inhibition in different pain populations compared to healthy subjects, with this reduction
being associated with more severe pain symptoms [77–80]. Disinhibition of GABAergic
and glycinergic synaptic transmission in nociceptive circuitry is crucial to the generation of
chronic pain. Centrally, BDNF can weaken GABAergic inhibitory synapses by reducing the
expression of potassium-chloride cotransporter 2 (KCC2), thus suppressing the intrinsic
inhibitory circuits [61,81,82]. Furthermore, Caumo W. et al. [78] demonstrated an inverse
correlation between serum BDNF levels and conditioned pain modulation (CPM) in patients
with chronic musculoskeletal pain, highlighting BDNF’s involvement in the impairment
of the descending inhibitory nociceptive modulation system. Altered CPM is in fact often
observed in individuals with persistent pain [83].

3.2. Neuroinflammation Drives Chronic Pain via Glial-Derived BDNF and CS

While acute inflammation is responsible for triggering acute pain sensations, neuroin-
flammation is supposed to play an important role in the chronification and persistence
of pain [84,85]. This neuroinflammation is initiated by the activity-dependent release of
glial activators, including neurotransmitters, chemokines, and proteases. This release stems
from the central terminals of primary afferent neurons or is prompted by the disruption
of the blood–brain barrier. Neuroinflammation is characterized by the activation of glial
cells such as microglia and astrocytes, the infiltration of immune cells, vasculature changes,
and an increased release of inflammatory and glial mediators like cytokines, chemokines,
and BDNF [86]. These glial mediators can significantly regulate both excitatory and in-
hibitory synaptic transmission, thereby contributing to CS and enhanced chronic pain
states. Moreover, glial mediators can further act on glial and immune cells to facilitate
neuroinflammation through autocrine and paracrine routes [87].

In the spinal cord and brain, glial cells also produce nerve growth factors and neu-
rotrophins, such as BDNF and basic fibroblast growth factor (bFGF), which can affect
neuronal function and may contribute to neurotoxicity in several brain pathologies [19]. In
fact, the expression of neurotrophins is often upregulated in chronic inflammatory diseases
due to their involvement in energy homeostasis [88]. For example, microglial activation
following peripheral nerve injury upregulates purinergic receptors, especially P2 × 4R,
leading to p38-MAPK phosphorylation and subsequent BDNF release [89]. This microglial-
derived BDNF has been implicated in facilitating neuropathic pain and morphine hyperal-
gesia [90,91]. Additionally, evidence from animal studies also indicated that the synthesis
and release of BDNF were significantly increased during inflammatory pain [92,93], cancer
pain [94], and neuropathic pain [95]. In the context of neuroinflammation, evidence points
to a pivotal shift in astrocytic behavior. Astrocytes, once adept at maintaining homeostatic
concentrations of glutamate (Glu) and potassium (K+), undergo a transformation wherein
they gain the ability to secrete ATP, Glu, and chemokines [96]. This phenomenon con-
tributes to CS and LTP. Glial-derived BDNF may mediate CS by attenuating inhibitory
synaptic transmission. As a pain mediator and modulator, BDNF can intricately manipulate
excitatory glutamatergic and inhibitory GABAergic/glycinergic signals [97,98].

A key player in inflammatory activation is the nuclear factor-kappa B (NF-κB), a
transcription factor that triggers the expression of pro- and anti-apoptotic genes [99]. Re-
markably, the binding of BDNF to the TrkB receptor serves as a trigger for the induction of
the NF-κB expression. Furthermore, chronic inflammatory pain has been reported to induce
an upregulation of TrkB mRNA and protein expression in the dorsal horn [100]. An ad-
ditional layer of complexity arises from a p75NTR-mediated effect on NF-κB expression,
as evidence suggests that peripheral inflammation induces an upregulation of pro-BDNF
and p75NTR in the spinal cord [101,102]. With the activation of p75NTR, pro-BDNF can
activate several downstream signaling pathways, including extracellular signal-regulated
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kinase (ERK)1 and ERK2, NF-κB, and c-Jun N-terminal kinase (JNK) pathways, further
promoting the neuroinflammatory state [103–105]. These signaling pathways can trigger a
series of changes, including neuronal hyperexcitability, LTP, maladaptive neuroplasticity,
and an imbalance in excitatory/inhibitory neurotransmission—all of which are intricately
involved in the process of CS (Figure 1). This cycle persists as long as the stressor exists,
potentially evolving into a serious chronic pain state. Hence, neuroinflammation may
drive chronic pain via CS, which can be induced and maintained by cytokines, chemokines,
BDNF, and other glia-produced mediators.
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Remarkably, the connection between BDNF and neuroinflammation remains an un-
derexplored area of research. The association between neuroinflammation and persistent
pain underscores the importance of investigating inflammatory factors, particularly BDNF,
as promising therapeutic targets for the management of chronic pain.

3.3. Pro-Nociceptive and Anti-Nociceptive Role of BDNF

Emerging evidence from human studies has revealed higher cerebrospinal fluid [106],
plasma [107–109], and serum [110–113] levels of BDNF in patients with chronic pain com-
pared to healthy individuals, which were positively correlated with more severe pain
symptoms (Table 1). For instance, higher serum BDNF levels were associated with lower
pressure pain thresholds in patients with fibromyalgia [113]. Notably, a one-month treat-
ment with duloxetine (an antidepressant) not only alleviated pain but also led to reduced
serum BDNF levels [114], supporting a pro-nociceptive role of BDNF in chronic pain. Recent
evidence also supports the pro-nociceptive role of BDNF in arthritis pain [115], with higher
plasma BDNF levels observed in patients with knee osteoarthritis compared to healthy
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controls, positively correlating with self-reported pain levels [109]. BDNF and TrkB were
identified in nerve fascicles within synovial tissue from both patients with osteoarthritis
and animal models of inflammatory arthritis [116,117]. As expected, experimental injection
of peripheral BDNF increased pain behavior [117]. In addition, inhibition of BDNF/TrkB
signaling in animal models of postherpetic neuralgia attenuated mechanical allodynia, re-
duced inflammation, and reversed neuronal hyperexcitability [18]. These findings strongly
advocate that upregulated BDNF expression in chronic pain is not merely a byproduct, but
a pivotal causal factor.

Despite previous studies indicating a strong involvement of BDNF in the nocicep-
tive system, its precise role remains uncertain. This uncertainty is further compounded
by conflicting findings, with some research indicating a potential anti-inflammatory ef-
fect [118–120]. For instance, preliminary evidence from animal research suggests that the
release of BDNF can alleviate allodynia and hyperalgesia induced by chronic constriction
injury [121]. Additionally, BDNF shows anti-inflammatory effects on the animal brain [122],
and experimentally induced inflammation, such as the infusion of IL-1 into the hippocam-
pus, and diminishes BDNF transcription capacity [123]. Several explanations may account
for its potential analgesic effect. Firstly, BDNF is involved in the regulation of neural circuits,
and alterations in neural circuitry may affect inflammatory responses. Emerging evidence
suggests that BDNF can inhibit neuroinflammation and regulate cognitive functions [124].
Secondly, the anti-nociceptive effect of BDNF may result from central rather than periph-
eral actions, as elevated levels of peripheral BDNF have been shown to sensitize primary
afferent neurons and promote pain hypersensitivity [125]. Moreover, given the fact that
inflammation is accompanied by BDNF release [126], upregulated BDNF expression in the
CNS may have an anti-inflammatory effect following early pain exposure, suggesting a
more significant role in acute rather than chronic pain. Finally, BDNF’s neuroprotective
properties may indirectly contribute to an anti-inflammatory environment. By promoting
the survival of neurons and maintaining overall neuronal health, BDNF may reduce the
release of inflammatory signals associated with cell damage.
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Table 1. Brain-derived neurotrophic factor levels and association with pain in patients with chronic pain.

Reference Study Population Source of BDNF
Measurement Mean ± SD BDNF Values p-Values Correlation with Pain

Polli et al., 2020 [127]
Chronic fatigue syndrome and comorbid

fibromyalgia (n = 28)
Healthy controls (n = 26)

Serum
Chronic fatigue syndrome and comorbid

fibromyalgia: 17.75 ± 4.48,
Healthy controls: 14.89 ± 3.55 (values in ng/mL)

Sig
Higher BDNF levels predicted
participants’ symptoms and

widespread hyperalgesia

Jasim et al., 2020
[128]

Chronic temporomandibular disorder myalgia
(n = 39)

Healthy controls (n = 39)
Plasma

Chronic temporomandibular disorder myalgia:
263.33 ± 245.13,

Healthy controls: 151.81 ± 125.90
(values in pg/mL)

Sig Not evaluated

Stefani et al., 2019
[111]

Fibromyalgia (n = 117)
Osteoarthritis (n = 88)

Chronic tensional-type headache (n = 33)
Healthy controls (n = 41)

Serum

Osteoarthritis: 24.85,
Fibromyalgia: 38.60,

Chronic tensional type headache: 37.22,
Healthy controls: 22.85

(values in pg/mL)

Sig Not evaluated

Jablochkova et al.,
2019 [107]

Fibromyalgia (n = 75)
Healthy controls (n = 25) Plasma

Fibromyalgia: 1553.30,
Healthy controls: 671.6

(values in pg/mL)
Sig No correlation

Caumo et al., 2016
[78]

Fibromyalgia (n = 19), osteoarthritis (n = 27),
myofascial pain syndrome (n = 54), healthy

controls (n = 14)
Serum

Fibromyalgia: 50.78 ± 16.06,
Osteoarthritis: 17.91 ± 7.27,

Myofascial pain syndrome: 29.28 ± 20.01,
Healthy controls: 19.00 ± 8.79

(values in ng/mL)

Sig

Higher BDNF levels were
significantly correlated with

decreased inhibitory system as
assessed through conditioned pain

modulation

Deitos et al., 2015
[129]

Central sensitivity syndrome absent of
structural pathology (n = 81)

Central sensitivity syndrome with persistent
nociception (n = 59)

Healthy controls (n = 37)

Serum

Central sensitivity syndrome absent of structural
pathology: 49.87 ± 31.86,

Central sensitivity syndrome with persistent
nociception: 20.44 ± 8.30,

Healthy controls: 14.09 ± 11.80
(values in ng/mL)

Sig Not evaluated

Bidari et al., 2022
[114]

Fibromyalgia (n = 53)
Non-fibromyalgia chronic nociceptive pain

(n = 60)
Serum No differences between the two groups Not Sig

Decreasing serum BDNF after
treatment with duloxetine was

associated with the improvement in
the disease severity, depression, and

pain level

Ranzolin et al., 2016
[130]

Fibromyalgia (n = 69)
Healthy controls (n = 61) Serum No differences between the two groups Not Sig Not evaluated

Iannuccelli et al.,
2022 [131]

Fibromyalgia (n = 40)
Healthy controls (n = 40) Serum

Fibromyalgia: 3.38 ± 2.49,
Healthy controls: 8.57 ± 3.65

(values in ng/mL)
Sig No correlation

BDNF, brain-derived neurotrophic factor.
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3.4. Genetics and BDNF in Chronic Pain

Over the past decade, the identification of altered BDNF levels in individuals with
chronic pain has guided many genetic studies, revealing these alterations to be largely
genetically determined. Specifically, mutations in the BDNF gene have been found to
downregulate its secretion and expression, thereby diminishing its impact on the nervous
system [132]. The single-nucleotide polymorphism rs6265 in the BDNF gene, located in the
5′-prodomain of immature BDNF protein and often referred to as Val66Met [132,133], has
emerged as a key player in shaping pain perception and pain-related symptoms [134,135],
and is associated with vulnerability to different chronic pain disorders [136–138] (Table 2).
The Val/Val genotype has been linked to a distinct propensity for fibromyalgia symptoms
and increased pain catastrophizing [137]. Similarly, research has established a connection
between individuals carrying the Val allele and an increased susceptibility to chronic
postsurgical pain [138], as well as a correlation with the severity of depression [139].
In addition, a recent clinical study in cancer survivors revealed that those with the Met/Met
genotype of BDNF rs6265 reported significantly more severe cancer-related neuropathic
pain and fatigue than those with other genotypes [140].

BDNF, with its influence on crucial neuronal processes, is subject to complex changes
in function due to its polymorphism, particularly in modulating neuroplasticity [68]. Ev-
idence suggests that BDNF polymorphisms can serve as predictors for responses to ex-
perimental pain stimulation and non-invasive brain stimulation techniques, contributing
to large interindividual variability in stimulation effects [141,142]. Furthermore, in cul-
tured hippocampal neurons, the BDNF protein carrying the Met variant exhibited lower
depolarization-induced secretion [134]. Individuals with one or two copies of the BDNF
Met allele also appear to exhibit decreased brain plasticity, suggesting that the Met allele
may influence mechanisms associated with rectifying dysfunctional circuits involved in
the imbalance of excitatory and inhibitory systems in the CNS [78,143,144]. In addition,
certain BDNF polymorphisms have an effect on specific aspects of brain function such
as default mode network connectivity, which is currently considered to be central in the
pathogenesis of fibromyalgia [145,146]. In conclusion, while chronic pain does not stem
from a singular gene, genetic studies focusing on BDNF polymorphisms offer valuable
insights into potential connections with pain perception and brain plasticity [147–149].
These genetic nuances may impact susceptibility to various chronic pain conditions and
influence the severity of pain experienced.
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Table 2. BDNF Val66Met Polymorphism in patients with chronic pain.

Reference Study Population Tissue Genotyping Method Genotype Model
(BDNF rs6265) Main Results

Goto et al., 2023 [140] Female cancer survivors
(n = 393) Buccal swab

Isolated genomic DNA from
buccal cells. The analysis of

the BDNF genotype involved
using the PCR SNP
Genotyping assays

Val/Val (n = 258)
Val/Met (n = 123)
Met/Met (n = 12)

Participants with the Met/Met BDNF
genotype reported significantly worse

cancer-related fatigue and neuropathic pain.

Álvaro et al., 2022
[136]

Fibromyalgia (n = 42) Blood RT-PCR Val/Val (n = 30)
Val/Met (n = 12)

Val/Met genotypes showed higher efficiency
of the descending pain modulatory system

and lower disability due to pain. FM patients
carrying the Val/Met BDNF genotype

presented an increased functional connectivity
across the motor and prefrontal cortex in

response to acute pain associated with
differences in acute pain perception and FM.

Yamada et al., 2021
[150]

Chronic low back pain
(n = 107) Blood RT-PCR Val/Val (n = 81)

Val/Met (n = 26)
No significant associations between the

Val66Met genotypes and pain outcomes.

Camila et al., 2020
[137]

Fibromyalgia (n = 108)
Healthy controls (n = 108) Blood RT-PCR Val/Val (n = 87)

Val/Met (n = 21)

Val allele was significantly more frequent in
patients with FM compared to the healthy

controls. The BDNF Val/Val homozygotes are
a potential genetic risk factor associated with

higher scores in the Pain Catastrophizing
Scale domains: magnification and rumination

in patients with FM.

Reddy et al., 2014
[151]

Chronic abdominal pain
(n = 18)

Healthy controls (n = 31)
Blood RT-PCR Val/Val (n = 13)

Met allele (n = 5)

No significant associations observed with
regard to BDNF genotypes with sleep quality

or pain grouping.

BDNF, brain-derived neurotrophic factor; RT-PCR, real-time polymerase chain reaction; SNP, single nucleotide polymorphism; FM, fibromyalgia.
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3.5. The Epigenetic Regulation of BDNF Expression in Chronic Pain

Chronic pain intricately involves abnormal gene expression within the neural cells re-
sponsible for processing nociceptive signals in the brain [152,153]. While genetic alterations
offer a partial explanation for chronic pain, the emerging field of epigenetics provides
a more nuanced and dynamic perspective by unraveling the gene expression patterns
associated with chronic pain [154,155]. Recent studies revealed that epigenetic mecha-
nisms, including histone acetylation [156], non-coding RNAs [156,157], and DNA methyla-
tion [127,158,159], can influence the expression of BDNF (Figure 2, Table 3). These epigenetic
modifications may contribute to the pathogenesis and symptomatology of chronic pain.

Polli et al. [127] reported that patients with chronic fatigue syndrome and comorbid
fibromyalgia exhibited lower DNA methylation levels in the BDNF gene compared to
healthy individuals. DNA hypomethylation was associated with elevated serum BDNF ex-
pression, which in turn correlated with symptoms and hyperalgesia in these patients [127].
Additionally, Tao et al. [126] suggested that persistent inflammation could epigenetically
upregulate BDNF protein expression, in turn increasing hypersensitivity and pain levels.
Recent studies have shown that miRNAs can regulate BDNF expression and function. For
example, findings from animal research indicate that miR-206-3p regulates BDNF expres-
sion through a conserved binding site in its 3′-UTR [160]. Notably, a study demonstrated
that electroacupuncture alleviated neuropathic pain induced by chronic constriction injury
by increasing miR-206-3p expression and inhibiting BDNF overexpression [161]. How-
ever, administration of the miR-206-3p inhibitor partially impaired the analgesic effect of
electroacupuncture and the level of BDNF was elevated as well.

It is crucial to note that BDNF is highly susceptible to environmental influences
(e.g., physical exercise, diet and nutrition, stress, and sleep patterns), which can, in turn,
impact gene expression. For example, regular aerobic exercise has been associated with
increased levels of BDNF [162], while chronic stress and elevated cortisol levels correlate
with a reduction in BDNF expression [163]. Additionally, disrupted sleep patterns and
chronic sleep deprivation can negatively impact BDNF levels [164]. From a biological
perspective, an organism’s responses to the external environment are mirrored in epigenetic
changes, influencing neuronal activity, such as cortical excitability and synaptic plasticity,
thereby triggering behavioral alterations [165]. Moreover, alterations in chromatin structure
represent one mechanism through which pain gradually transforms into the pathological
processes of neuroinflammation, CS, and ultimately chronic pain [166].
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Table 3. DNA Methylation Changes in BDNF gene in patients with chronic pain.

Reference Study Population Study
Design

Epigenetic
Assessment Tissue Assay Main Results

Polli et al., 2020
[127]

Chronic fatigue
syndrome and comorbid

fibromyalgia (n = 28)
Healthy controls (n = 26)

Cross-sectional DNA methylation
(BDNF gene-specific) Blood PCR amplification,

pyrosequencing

Compared to controls, serum BNDF was
higher in patients with CFS/FM (mean

difference of 3.31 ng/mL; p = 0.001), whereas
BDNF DNA methylation in exon 9 was lower

(mean difference of −2.16%; p = 0.007).
Lower methylation in the same region

predicted higher BDNF levels (p = 0.009),
which in turn predicted participants’

symptoms (p = 0.001) and widespread
hyperalgesia (p = 0.044).

Paoloni-
Giacobino et al.,

2020 [158]

Chronic musculoskeletal
pain (n = 58)

Healthy controls (n = 18)
Cross-sectional DNA methylation

(BDNF gene-specific) Blood PCR amplification,
pyrosequencing

The methylation values of BDNF were
significantly (p< 0.005) increased 1.9-fold in

patients with CMS as compared with the
healthy controls.

A high level of biopsychosocial complexity
was associated with lower average CpG
methylation values of BDNF (p = 0.02) in

patients with CMS, and may therefore
increase the level of BDNF.

The upregulation of BDNF is associated with
higher levels of biopsychosocial complexity.

Menzies et al.,
2013 [159]

Fibromyalgia (n = 10)
Healthy controls (n = 8) Cross-sectional DNA methylation

(genome-wide) Blood 450 K human
methylation assay

Authors found 69 differently methylated
positions, in 47 different genes, i.e., AXL,
HDAC4, BDNF, PRKCA, RTN1, PRKG1,

SOD3. There is a significant difference in the
methylation pattern of the BDNF gene

between patients with FM and controls.

BDNF, brain-derived neurotrophic factor; PCR, polymerase chain reaction; CMS, patients with chronic musculoskeletal pain; CFS, chronic fatigue syndrome; FM, fibromyalgia.
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4. Clinical and Methodological Implications
4.1. BDNF Treatment for Chronic Pain in a Broader Picture

BDNF serves as a driving force behind neuroplasticity in the context of chronic pain,
positioning it as a potential biomarker and a novel therapeutic target. Although our under-
standing of BDNF’s role in pain processing remains limited, emerging evidence suggests
its pro-nociceptive involvement in initiating and sustaining CS among individuals with
persistent pain. Consequently, exploring the pharmacological and non-pharmacological
manipulation of BDNF opens up crucial avenues for research. Various therapeutic strategies
known to influence the release of BDNF have been extensively studied for regulating BDNF
levels in patients with chronic pain, including neuromodulation techniques, BDNF-blocking
therapies, and exercise therapy.

Neuromodulation techniques, such as transcranial direct current stimulation (tDCS),
emerge as a promising treatment with analgesic properties [167–169]. By interfering with
ongoing neural activity associated with pain processing and manipulating neuroplasticity
and cortical excitability in specific brain regions, tDCS has been reported to improve pain
and pain-related symptoms in patients with chronic pain [170,171]. While the exact mech-
anisms underlying these effects remain unclear, accumulating research suggests that the
impact of tDCS may be neuroplasticity-state-dependent [172,173], with alterations in BDNF
levels predicting the effects of tDCS on behavioral outcomes [174,175]. In other words,
the analgesic effect of tDCS may depend on changes in endogenous BDNF levels [176,177],
as BDNF is a driving force behind neuroplasticity [66]. A recent clinical study in patients
with knee osteoarthritis revealed that active tDCS induced a significant reduction in both
serum BDNF levels and pain intensity, compared to sham tDCS [178]. Consistent with
previous preclinical studies, active tDCS reverted behavioral alterations associated with
neuropathic pain, and decreased both serum and cerebral cortex BDNF levels [177]. Sim-
ilarly, active tDCS alleviated nociceptive hypersensitivity induced by ovariectomy and
reduced hippocampal BDNF levels [179]. These findings not only demonstrate the analgesic
potential of tDCS but also suggest that tDCS-induced changes in neural circuits involved in
pain processing correspond to alterations in BDNF levels, wherein reduced BDNF levels
might directly contribute to pain relief.

Exercise therapy seems to hold the capability to influence BDNF expression. Recent
insights from a systematic review and meta-analysis within pain populations reveal an
upregulation of BDNF expression in peripheral blood following diverse physical activities,
accompanied by decreasing pain severity [180–182]. Similarly promising outcomes have
been observed in healthy individuals [183]. However, the duration of exercise can yield
varied results, with a single session or acute exercise reportedly increasing BDNF levels,
while long-term or regular exercise may reduce them [184–186]. Notably, among neu-
rotrophins, BDNF appears particularly responsive to exercise and physical activities [187].
Furthermore, the interplay of physical activity/inactivity extends to influencing epigenetic
modifications, potentially inducing changes in BDNF expression [188,189].

In animal studies, the administration of a BDNF inhibitor or TrkB inhibitor was shown
to reduce pain-like behavior. This suggests that BDNF-blocking therapies offer a viable
therapeutic approach, targeting BDNF and/or its receptors through both pharmacological
and non-pharmacological approaches. The TrkB receptor, serving as an endogenous recep-
tor for BDNF and abundantly expressed in primary sensory neurons, is upregulated in
chronic pain states, implicating BDNF/TrkB signaling in the process of CS [93,190]. TrkB-Fc,
a chimeric compound sequestering endogenous BDNF, has shown promise in blocking
BDNF effects on synaptic plasticity both in vivo and in neuropathic pain models [191].
Furthermore, spinal administration of TrkB-Fc has been reported to successfully reverse
pain behavior in neuropathic pain models [192].

Medications can influence BDNF levels through various mechanisms, one of which is
to reduce inflammation by targeting specific pro-inflammatory cytokines [193,194]. Steroids,
commonly used to alleviate inflammation in immune-mediated diseases, have been demon-
strated to inhibit BDNF expression in neurons [193]. While the pharmacological manip-
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ulation of BDNF expression holds promise for novel treatments, navigating the complex
effects of different medications—often necessitating multiple drugs for patients—adds
intricacy to the assessment of the final outcome. Notably, the potential adverse effects of
blocking BDNF must be carefully considered, given its neuroprotective role in promoting
neuronal growth and survival. Consequently, finely tuning BDNF expression, location, and
secretion becomes imperative to fulfill its complex duties. A comprehensive understanding
of these processes holds the key to developing new molecules and treatments for diseases
associated with BDNF.

4.2. Using BDNF as an Objective Biomarker

Peripheral blood BDNF has been proposed as a potential biomarker related to disease
activity and neuroprogression in various diseases [195–197], speculated to mirror alter-
ations in brain expression of BDNF. This intricate relationship between brain and blood
BDNF levels underscores the potential utility of peripheral measurements as informative
markers for CNS dynamics. Given the challenges in directly measuring BDNF levels in
the human brain, most clinical studies resort to using plasma or serum samples as prox-
ies [47,198]. Measuring circulatory BDNF in peripheral blood, specifically in serum and
plasma, provides a reliable and easily accessible method for sample collection with minimal
disadvantages for patients [199].

BDNF polymorphisms have emerged as promising pain biomarkers. Specifically, the
BDNF Val66Met polymorphism has been detected in diverse chronic pain populations,
providing valuable insights into the susceptibility to distinct chronic pain conditions and the
considerable interindividual variations in responses to various pain therapies [137,145,200].
Importantly, current literature suggests that BDNF polymorphisms can be reliably measured
in both peripheral blood and buccal swab samples, making them accessible for potential
diagnostic applications. Moreover, the development of tests to detect and define chronic
pain conditions in the presence of the Val66Met polymorphism is an intriguing prospect.
Several techniques, such as genotyping assays or real-time polymerase chain reaction
(PCR) methods, could be explored to identify this specific genetic variant in blood samples.
Additionally, advancements in genomic technologies, like next-generation sequencing,
could provide a more comprehensive analysis of multiple genetic factors, including BDNF
polymorphisms, in a single test. Despite these advancements, it is crucial to acknowledge
the intricate nature of chronic pain, which results from a complex interplay of genetic,
environmental, and psychological factors. While certain genetic variations may contribute
to an individual’s susceptibility to pain or influence their responsiveness to pain treatments,
it is improbable that a single genetic polymorphism, such as one related to BDNF, can
conclusively pinpoint or define a chronic pain condition. Future research endeavors should
strive to integrate different genetic risk factors with patient characteristics and clinical and
psychological parameters to comprehensively address the multifaceted nature of chronic
pain disorders.

The absence of biomarkers for diagnosing chronic pain remains a significant challenge
in clinical practice. Typically, pain severity is assessed through the patient’s subjective
report, an approach constrained by difficulties in quantification, reliability, and interpartici-
pant comparability. The integration of objective biomarkers directly linked to the presence
and severity of chronic pain would significantly (a) enhance the diagnosis and classification
of pain pathophysiology, (b) assist with disease prognostication or predicting therapy
responses, and (c) facilitate the development of innovative, mechanism-based treatment
approaches, thereby reducing the reliance on long-term opioid use. Overall, BDNF is one
of the most promising biomarkers for chronic pain disorders; however, a definitive clinical
validation is still lacking.

5. Conclusions and Future Directions

The exploration of perpetuating factors in pain pathophysiology and their potential
as therapeutic targets is crucial, given that existing treatments for patients with persistent
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pain, while effective, often fall short of expectations. CS is a form of maladaptive neuro-
plasticity underlying different chronic pain conditions and BDNF is a driving force behind
neuroplasticity, influencing optimal brain function. This maladaptive neuroplasticity has
been observed in the literature in subjects with similar characteristics. In this sense, it is
possible to find therapies that promote the correct adaptation of this induced plasticity,
thus providing a way to improve pain and functional recovery in individuals with persis-
tent pain. Several studies have reported altered levels of both brain and peripheral BDNF
in pain populations. However, the exact pathophysiological mechanisms driving these
changes remain incompletely understood. The existing evidence does not conclusively
determine whether alterations in BDNF levels are a cause or a consequence of chronic pain.
Therefore, future research directions should prioritize elucidating the multifaceted role
of BDNF in chronic pain, particularly given its nuanced actions dependent on pain type,
site of expression/secretion, receptor type, and gene polymorphisms. This review also
delves into BDNF polymorphisms and epigenetic regulation of BDNF expression within the
context of chronic pain. Currently, most evidence comes from cross-sectional and preclinical
studies. To comprehensively understand the dynamics of BDNF expression via epigenetic
regulation in various chronic pain conditions, further research with larger sample sizes and
longitudinal studies in pain populations is imperative. This approach will facilitate a more
in-depth exploration of the intricate interplay among genetics, epigenetic modifications,
and BDNF in the development and persistence of chronic pain.
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